1
|
Su Q, Wong OWH, Lu W, Wan Y, Zhang L, Xu W, Li MKT, Liu C, Cheung CP, Ching JYL, Cheong PK, Leung TF, Chan S, Leung P, Chan FKL, Ng SC. Multikingdom and functional gut microbiota markers for autism spectrum disorder. Nat Microbiol 2024; 9:2344-2355. [PMID: 38977906 DOI: 10.1038/s41564-024-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/20/2024] [Indexed: 07/10/2024]
Abstract
Associations between the gut microbiome and autism spectrum disorder (ASD) have been investigated although most studies have focused on the bacterial component of the microbiome. Whether gut archaea, fungi and viruses, or function of the gut microbiome, is altered in ASD is unclear. Here we performed metagenomic sequencing on faecal samples from 1,627 children (aged 1-13 years, 24.4% female) with or without ASD, with extensive phenotype data. Integrated analyses revealed that 14 archaea, 51 bacteria, 7 fungi, 18 viruses, 27 microbial genes and 12 metabolic pathways were altered in children with ASD. Machine learning using single-kingdom panels showed area under the curve (AUC) of 0.68 to 0.87 in differentiating children with ASD from those that are neurotypical. A panel of 31 multikingdom and functional markers showed a superior diagnostic accuracy with an AUC of 0.91, with comparable performance for males and females. Accuracy of the model was predominantly driven by the biosynthesis pathways of ubiquinol-7 or thiamine diphosphate, which were less abundant in children with ASD. Collectively, our findings highlight the potential application of multikingdom and functional gut microbiota markers as non-invasive diagnostic tools in ASD.
Collapse
Affiliation(s)
- Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Oscar W H Wong
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenqi Lu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yating Wan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenye Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Moses K T Li
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Chengyu Liu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | - Ting Fan Leung
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sandra Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Leung
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Singh JK, Devi PB, Reddy GB, Jaiswal AK, Kavitake D, Shetty PH. Biosynthesis, classification, properties, and applications of Weissella bacteriocins. Front Microbiol 2024; 15:1406904. [PMID: 38939182 PMCID: PMC11210197 DOI: 10.3389/fmicb.2024.1406904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
This review aims to comprehensively chronicle the biosynthesis, classification, properties, and applications of bacteriocins produced by Weissella genus strains, particularly emphasizing their potential benefits in food preservation, human health, and animal productivity. Lactic Acid Bacteria (LAB) are a class of microorganisms well-known for their beneficial role in food fermentation, probiotics, and human health. A notable property of LAB is that they can synthesize antimicrobial peptides known as bacteriocins that exhibit antimicrobial action against both closely related and other bacteria as well. Bacteriocins produced by Weissella spp. are known to exhibit antimicrobial activity against several pathogenic bacteria including food spoilage species, making them highly invaluable for potential application in food preservation and food safety. Importantly, they provide significant health benefits to humans, including combating infections, reducing inflammation, and modulating the gut microbiota. In addition to their applications in food fermentation and probiotics, Weissella bacteriocins show promising prospects in poultry production, processing, and improving animal productivity. Future research should explore the utilization of Weissella bacteriocins in innovative food safety measures and medical applications, emphasizing their potential to combat antibiotic-resistant pathogens, enhance gut microbiota composition and function, and synergize with existing antimicrobial therapies.
Collapse
Affiliation(s)
- Jahnavi Kumari Singh
- Department of Food Science and Technology, Pondicherry University, Pondicherry, India
| | | | - G. Bhanuprakash Reddy
- Biochemistry Division, Indian Council of Medical Research (ICMR)-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, Dublin, Ireland
| | - Digambar Kavitake
- Biochemistry Division, Indian Council of Medical Research (ICMR)-National Institute of Nutrition, Hyderabad, Telangana, India
| | | |
Collapse
|
3
|
Vidhate P, Wakchoure P, Borole S, Khan AA. Lactobacillus as probiotics: opportunities and challenges for potential benefits in female reproductive health. Am J Transl Res 2024; 16:720-729. [PMID: 38586104 PMCID: PMC10994795 DOI: 10.62347/igwr5474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
The growing interest of the scientific community in the study of probiotics has gathered valuable data about its beneficial effects for multiple clinical conditions. This data also provides evidence for the functions and properties of probiotics and how they contribute to health benefits by influencing normal microbiota. Lactobacillus is an important genus which has long been utilized in the food industry and is also found as normal oral, intestinal and vaginal microbiota. Lactobacillus has shown multiple health benefits but its relative importance as a probiotic is majorly explored for gastrointestinal health. Healthy vaginal microbiota typically harbors Lactobacillus spp. providing several health benefits for female reproductive health, but there is more data required in order to compare the relative benefits with probiotic Lactobacillus added through either natural food sources or with standard probiotics supplements. The present article discusses the current status of knowledge about vaginal Lactobacillus as a probiotic and also compares the potential of probiotics from natural sources and through supplements along with recent approaches in this area.
Collapse
Affiliation(s)
- Pallavi Vidhate
- Division of Microbiology, ICMR-National AIDS Research Institute Pune, Maharashtra, India
| | - Pooja Wakchoure
- Division of Microbiology, ICMR-National AIDS Research Institute Pune, Maharashtra, India
| | - Samiksha Borole
- Division of Microbiology, ICMR-National AIDS Research Institute Pune, Maharashtra, India
| | - Abdul Arif Khan
- Division of Microbiology, ICMR-National AIDS Research Institute Pune, Maharashtra, India
| |
Collapse
|
4
|
Rodríguez-García A, Arroyo A, García-Vicente R, Morales ML, Gómez-Gordo R, Justo P, Cuéllar C, Sánchez-Pina J, López N, Alonso R, Puig N, Mateos MV, Ayala R, Gómez-Garre D, Martínez-López J, Linares M. Short-Chain Fatty Acid Production by Gut Microbiota Predicts Treatment Response in Multiple Myeloma. Clin Cancer Res 2024; 30:904-917. [PMID: 38109212 PMCID: PMC10870002 DOI: 10.1158/1078-0432.ccr-23-0195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE The gut microbiota plays important roles in health and disease. We questioned whether the gut microbiota and related metabolites are altered in monoclonal gammopathies and evaluated their potential role in multiple myeloma and its response to treatment. EXPERIMENTAL DESIGN We used 16S rRNA sequencing to characterize and compare the gut microbiota of patients with monoclonal gammopathy of undetermined significance (n = 11), smoldering multiple myeloma (n = 9), newly diagnosed multiple myeloma (n = 11), relapsed/refractory multiple myeloma (n = 6), or with complete remission (n = 9). Short-chain fatty acids (SCFA) were quantified in serum and tested in cell lines. Relevant metabolites were validated in a second cohort of 62 patients. RESULTS Significant differences in alpha- and beta diversity were present across the groups and both were lower in patients with relapse/refractory disease and higher in patients with complete remission after treatment. Differences were found in the abundance of several microbiota taxa across disease progression and in response to treatment. Bacteria involved in SCFA production, including Prevotella, Blautia, Weissella, and Agathobacter, were more represented in the premalignant or complete remission samples, and patients with higher levels of Agathobacter showed better overall survival. Serum levels of butyrate and propionate decreased across disease progression and butyrate was positively associated with a better response. Both metabolites had antiproliferative effects in multiple myeloma cell lines. CONCLUSIONS We demonstrate that SCFAs metabolites and the gut microbiota associated with their production might have beneficial effects in disease evolution and response to treatment, underscoring its therapeutic potential and value as a predictor.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Andrés Arroyo
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Rubén Gómez-Gordo
- Microbiota and Vascular Biology Laboratory, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Pablo Justo
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Clara Cuéllar
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - José Sánchez-Pina
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Nieves López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Rafael Alonso
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
| | - Noemí Puig
- Hematology Department, Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - María-Victoria Mateos
- Hematology Department, Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Rosa Ayala
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
- Department of Medicine, Medicine School, Universidad Complutense, Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Microbiota and Vascular Biology Laboratory, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Madrid, Spain
- Department of Physiology, Medicine School, Universidad Complutense, Madrid, Spain
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
- Department of Medicine, Medicine School, Universidad Complutense, Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense, Madrid, Spain
| |
Collapse
|
5
|
Du Y, Liu L, Yan W, Li Y, Li Y, Cui K, Yu P, Gu Z, Zhang W, Feng J, Li Z, Tang H, Du Y, Zhao H. The anticancer mechanisms of exopolysaccharide from Weissella cibaria D-2 on colorectal cancer via apoptosis induction. Sci Rep 2023; 13:21117. [PMID: 38036594 PMCID: PMC10689803 DOI: 10.1038/s41598-023-47943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Exopolysaccharide (EPS) from Weissella cibaria has been devoted to the study of food industry. However, the anticancer activity of W. cibaria derived EPS has not yet been investigated. In this study, we obtained the EPS from W. cibaria D-2 isolated from the feces of healthy infants and found that D-2-EPS, a homopolysaccharide with porous web like structure, could effectively inhibit the proliferation, migration, invasion and induce cell cycle arrest in G0/G1 phase of colorectal cancer (CRC) cells. In HT-29 tumor xenografts, D-2-EPS significantly retarded tumor growth without obvious cytotoxicity to normal organs. Furthermore, we revealed that D-2-EPS promoted the apoptosis of CRC cells by increasing the levels of Fas, FasL and activating Caspase-8/Caspase-3, indicating that D-2-EPS might induce apoptosis through the extrinsic Fas/FasL pathway. Taken together, the D-2-EPS has the potential to be developed as a nutraceutical or drug to prevent and treat colorectal cancer.
Collapse
Affiliation(s)
- Yurong Du
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Lei Liu
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Weiliang Yan
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Yang Li
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Yuanzhe Li
- Department of Pediatrics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Kang Cui
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Pu Yu
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - WanCun Zhang
- Department of Pediatrics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Yabing Du
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| | - Huan Zhao
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
6
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
7
|
Dimov SG. The Controversial Nature of Some Non-Starter Lactic Acid Bacteria Actively Participating in Cheese Ripening. BIOTECH 2023; 12:63. [PMID: 37987480 PMCID: PMC10660856 DOI: 10.3390/biotech12040063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
This mini review deals with some controversial non-starter lactic acid bacteria (NSLAB) species known to be both human and animal pathogens but also health-promoting and probiotic. The focus is on Lactococcus garvieae, two Streptococcus species (S. uberis and S. parauberis), four Weissella species (W. hellenica, W. confusa, W. paramesenteroides, and W. cibaria), and Mammalicoccus sciuri, which worldwide, are often found within the microbiotas of different kinds of cheese, mainly traditional artisanal cheeses made from raw milk and/or relying on environmental bacteria for their ripening. Based on literature data, the virulence and health-promoting effects of these bacteria are examined, and some of the mechanisms of these actions are reviewed. Additionally, their possible roles in cheese ripening are also discussed. The analysis of the literature data available so far showed that, in general, the pathogenic and the beneficial strains, despite belonging to the same species, show somewhat different genetic constitutions. Yet, when the safety of a given strain is assessed, genomic analysis on its own is not enough, and a polyphasic approach including additional physiological and functional tests is needed.
Collapse
Affiliation(s)
- Svetoslav G Dimov
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1504 Sofia, Bulgaria
| |
Collapse
|
8
|
Choi YH, Kim BS, Kang SS. Genomic DNA Extracted from Lactiplantibacillus plantarum Attenuates Porphyromonas gingivalis Lipopolysaccharide (LPS)-Induced Inflammatory Responses via Suppression of Toll-Like Receptor (TLR)-Mediated Mitogen-Activated Protein Kinase (MAPK) and Nuclear Factor-κB (NF-κB) Signaling Pathways. Food Sci Anim Resour 2023; 43:938-947. [PMID: 37701749 PMCID: PMC10493568 DOI: 10.5851/kosfa.2023.e43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 09/14/2023] Open
Abstract
In the present study, we aimed to examine the inhibition of genomic DNA from Lactiplantibacillus plantarum (LpDNA) on Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammatory responses in RAW264.7 cells. Pretreatment with LpDNA for 15 h significantly inhibited PgLPS-induced mRNA expression and protein secretion of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1. LpDNA pretreatment also reduced the mRNA expression of Toll-like receptor (TLR)2 and TLR4. Furthermore, LpDNA inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the activation of nuclear factor-κB (NF-κB) induced by PgLPS. Taken together, these findings demonstrate that LpDNA attenuates PgLPS-induced inflammatory responses by regulating MAPKs and NF-κB signaling pathways through the suppression of TLR2 and TLR4 expression.
Collapse
Affiliation(s)
- Young Hyeon Choi
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | - Bong Sun Kim
- Division of Applied Food System, Major in
Food Science & Technology, Seoul Women’s
University, Seoul 01797, Korea
| | - Seok-Seong Kang
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| |
Collapse
|
9
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
10
|
Knez E, Kadac-Czapska K, Grembecka M. Fermented Vegetables and Legumes vs. Lifestyle Diseases: Microbiota and More. Life (Basel) 2023; 13:life13041044. [PMID: 37109573 PMCID: PMC10141223 DOI: 10.3390/life13041044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Silages may be preventive against lifestyle diseases, including obesity, diabetes mellitus, or metabolic syndrome. Fermented vegetables and legumes are characterized by pleiotropic health effects, such as probiotic or antioxidant potential. That is mainly due to the fermentation process. Despite the low viability of microorganisms in the gastrointestinal tract, their probiotic potential was confirmed. The modification of microbiota diversity caused by these food products has numerous implications. Most of them are connected to changes in the production of metabolites by bacteria, such as butyrate. Moreover, intake of fermented vegetables and legumes influences epigenetic changes, which lead to inhibition of lipogenesis and decreased appetite. Lifestyle diseases' feature is increased inflammation; thus, foods with high antioxidant potential are recommended. Silages are characterized by having a higher bioavailable antioxidants content than fresh samples. That is due to fermentative microorganisms that produce the enzyme β-glucosidase, which releases these compounds from conjugated bonds with antinutrients. However, fermented vegetables and legumes are rich in salt or salt substitutes, such as potassium chloride. However, until today, silages intake has not been connected to the prevalence of hypertension or kidney failure.
Collapse
Affiliation(s)
- Eliza Knez
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| | - Kornelia Kadac-Czapska
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| |
Collapse
|
11
|
Sharma N, Gupta D, Park YS. Genome analysis revealed a repertoire of oligosaccharide utilizing CAZymes in Weissella confusa CCK931 and Weissella cibaria YRK005. Food Sci Biotechnol 2023; 32:553-564. [PMID: 36911327 PMCID: PMC9992689 DOI: 10.1007/s10068-022-01232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Weissella bacteria are gram-positive, anaerobic, fermentative, and have probiotic potential. This study aimed to compare the genomes of W. cibaria YRK005 and W. confusa CCK931 isolated from young radish and kimchi, respectively. The genomic size of W. cibaria YRK005 and W. confusa CCK931 with GC content is 2.36 Mb (45%) and 2.28 Mb (44.67%), respectively. The genome study identified 92 and 83 CAZymes genes, respectively, for W. cibaria YRK005 and W. confusa CCK931, that are responsible for 26 and 27 glycoside hydrolases (GH) and 21 and 27 glycosyl transferases. Both species have one gene for carbohydrate esterases and three genes for carbohydrate-binding modules. The primary CAZymes found in both species that are involved in oligosaccharide utilization are GH1, GH2, GH30, GH13_30, GH13_31, GH42, GH43, and GH65. The study also details the production pathways for glycogen and folate. Both strains include a unique repertoire of genes, including hypothetical proteins, showing adaptability to diverse ecological niches and evolution over time. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01232-7.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Deepshikha Gupta
- Department of Plant Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046 India
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana 500032 India
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
12
|
Eom S, Lee S, Lee J, Pyeon M, Yeom HD, Song JH, Choi EJ, Lee M, Lee JH, Chang JY. Molecular Mechanism of L-Pyroglutamic Acid Interaction with the Human Sour Receptor. J Microbiol Biotechnol 2023; 33:203-210. [PMID: 36655284 PMCID: PMC9998207 DOI: 10.4014/jmb.2212.12007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/20/2023]
Abstract
Taste is classified into five types, each of which has evolved to play its respective role in mammalian survival. Sour taste is one of the important ways to judge whether food has gone bad, and the sour taste receptor (PKD2L1) is the gene behind it. Here, we investigated whether L-pyroglutamic acid interacts with sour taste receptors through electrophysiology and mutation experiments using Xenopus oocytes. R299 of hPKD2L1 was revealed to be involved in L-pyroglutamic acid binding in a concentration-dependent manner. As a result, it is possible to objectify the change in signal intensity according to the concentration of L-pyroglutamic acid, an active ingredient involved in the taste of kimchi, at the molecular level. Since the taste of other ingredients can also be measured with the method used in this experiment, it is expected that an objective database of taste can be created.
Collapse
Affiliation(s)
- Sanung Eom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shinhui Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiwon Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minsu Pyeon
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye Duck Yeom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Hee Song
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Eun Ji Choi
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Moeun Lee
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Junho H Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Yoon Chang
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
13
|
Han HS, Yum H, Cho YD, Kim S. Improvement of halitosis by probiotic bacterium Weissella cibaria CMU: A randomized controlled trial. Front Microbiol 2023; 14:1108762. [PMID: 36733919 PMCID: PMC9886871 DOI: 10.3389/fmicb.2023.1108762] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Several in vitro and in vivo studies have evaluated the effect of probiotics on oral health; however, human clinical studies are still limited. Therefore, this study aimed to examine the effects of Weissella cibaria Chonnam Medical University (CMU)-containing tablets on halitosis. This randomized, double-blinded, placebo-controlled study included 100 adults with halitosis (age, 20-70 years). The participants were randomly assigned to the test group (n = 50) and control group (n = 50). One tablet [1 × 108 colony forming units (CFU)/tablet] was to be taken each day over 8 weeks. The concentrations of volatile sulfur compounds (VSCs), bad breath improvement scores, and oral colonization of W. cibaria were measured. Psychosocial indicators including depression, self-esteem, oral health-related quality of life, and subjective oral health status were evaluated. Most variables were assessed at baseline, 4, and 8 weeks, and W. cibaria number and safety variables were assessed at baseline and 8 weeks. Intergroup comparisons were carried out using Student's t-test, Chi-square test, or Fisher's exact test on per-protocol analysis. Intragroup differences before and after intake were analyzed using the linear mixed-effect model (LMM). Per-protocol analysis was carried out in the test group (n = 45) and control group (n = 46). Total VSC was significantly lower in the probiotics group than in the placebo group at baseline (week 0, p = 0.046) and at 8 weeks (p = 0.017). The sum of hydrogen sulfide and methyl mercaptan did not differ significantly between the groups at baseline; however, it was significantly lower in the probiotics group than in the placebo group at week 8 (p = 0.012). Bad breath improvement (BBI) scores were significantly reduced at week 8 (p = 0.006) in the probiotics group. Statistically significant intergroup differences were observed for changes in the level of W. cibaria at week 8 (p < 0.001). Psychological indicators significantly improved from baseline to week 8 in the probiotics group. No safety issues were observed in either group. The levels of W. cibaria was higher in patients with halitosis using W. cibaria CMU-containing tablets. The subjective degree of bad breath and psychological indicators were improved in patients with halitosis using W. cibaria CMU-containing tablets.
Collapse
|
14
|
Sodium hydroxide-induced Weissella kimchii ghosts (WKGs) as immunostimulant. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
The Weissella Genus: Clinically Treatable Bacteria with Antimicrobial/Probiotic Effects on Inflammation and Cancer. Microorganisms 2022; 10:microorganisms10122427. [PMID: 36557680 PMCID: PMC9788376 DOI: 10.3390/microorganisms10122427] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Weissella is a genus earlier considered a member of the family Leuconostocaceae, which was reclassified into the family Lactobacillaceae in 1993. Recently, there have been studies emphasizing the probiotic and anti-inflammatory potential of various species of Weissella, of which W. confusa and W. cibaria are the most representative. Other species within this genus include: W. paramesenteroides, W. viridescens, W. halotolerans, W. minor, W. kandleri, W. soli, W. ghanensis, W. hellenica, W. thailandensis, W. fabalis, W. cryptocerci, W. koreensis, W. beninensis, W. fabaria, W. oryzae, W. ceti, W. uvarum, W. bombi, W. sagaensis, W. kimchi, W. muntiaci, W. jogaejeotgali, W. coleopterorum, W. hanii, W. salipiscis, and W. diestrammenae. Weissella confusa, W. paramesenteroides, W. koreensis, and W. cibaria are among the few species that have been isolated from human samples, although the identification of these and other species is possible using metagenomics, as we have shown for inflammatory bowel disease (IBD) and healthy controls. We were able to isolate Weissella in gut-associated bacteria (post 24 h food deprivation and laxatives). Other sources of isolation include fermented food, soil, and skin/gut/saliva of insects/animals. With the potential for hospital and industrial applications, there is a concern about possible infections. Herein, we present the current applications of Weissella on its antimicrobial and anti-inflammatory mechanistic effects, the predisposing factors (e.g., vancomycin) for pathogenicity in humans, and the antimicrobials used in patients. To address the medical concerns, we examined 28 case reports focused on W. confusa and found that 78.5% of infections were bacteremia (of which 7 were fatal; 1 for lack of treatment), 8 were associated with underlying malignancies, and 8 with gastrointestinal procedures/diseases of which 2 were Crohn’s disease patients. In cases of a successful resolution, commonly administered antibiotics included: cephalosporin, ampicillin, piperacillin-tazobactam, and daptomycin. Despite reports of Weissella-related infections, the evolving mechanistic findings suggest that Weissella are clinically treatable bacteria with emerging antimicrobial and probiotic benefits ranging from oral health, skin care, obesity, and inflammatory diseases to cancer.
Collapse
|
16
|
Wu Z, Zhang S, Li L, Huang Z, Huang D, Hu Y. The gut microbiota modulates responses to anti-PD-1 and chemotherapy combination therapy and related adverse events in patients with advanced solid tumors. Front Oncol 2022; 12:887383. [PMID: 36387171 PMCID: PMC9641019 DOI: 10.3389/fonc.2022.887383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/29/2022] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1) have been widely used in treating different malignancies. Several studies have reported that the gut microbiota modulates the response and adverse events (AEs) to ICIs in melanoma, non-small cell lung cancer (NSCLC), renal cell cancer and hepatocellular carcinoma, but data on other cancer types and ICI combination therapy are limited. METHODS Stool samples were collected from patients with cancer who received anti-PD-1 and chemotherapy combination treatment and were analyzed by fecal metagenomic sequencing. The microbiota diversity and composition were compared between the responder (R) and non-responder (NR) groups and the AE vs. the non-AE (NAE) groups. In addition, associated functional genes and metabolic pathways were identified. RESULTS At baseline, the microbiota diversity of the groups was similar, but the genera Parabacteroides, Clostridia bacterium UC5.1_2F7, and Bifidobacterium dentium were enriched in the R group, whereas Bacteroides dorei and 11 species of Nocardia were enriched in the NR group. At 6 weeks, the beta diversity was significantly different between the R and NR groups. Further analysis found that 35 genera, such as Alipes, Parabacteroides, Phascolarctobacterium, Collinsella, Ruminiclostridium, Porphyromonas, and Butyricimonas and several genera of the Fibrobacteraceae family, were frequently distributed in the R group, whereas 17 genera, including Enterococcus, Lachnoclostridium, Hungatella, and Bilophila and several genera of the Pseudonocardiaceae and Beijerinckiaceae families, were more abundant in the NR group. A total of 66 and 52 Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs (KOs) were significantly enriched in the R and NR groups, respectively. In addition, pathway analysis revealed functional differences in the gut microbacteria in the R group, including the enrichment of anabolic pathways and DNA damage repair (DDR) pathways. Dynamic comparisons of the bacterial composition at baseline, 6 weeks, and 12 weeks showed that the abundance of Weissella significantly increased in the R group at 6 weeks and the abundance of Fusobacterium and Anaerotruncus significantly increased in the NR group at 12 weeks. Linear discriminant analysis effect size analysis indicated that bacteria of Bacteroidetes, especially Bacteroides, were enriched in the NAE group, whereas flora of Firmcutes, such as Faecalibacterium prausnitzii, Bacteroides fragilis, and Ruminococcus lactaris, were enriched in the AE group. CONCLUSION Beta diversity and differences in the gut microbiota modulated AEs and the response to anti-PD-1 blockade combined with chemotherapy, by regulating related anabolic and DDR pathways. Dynamic changes in the intestinal microbiome may predict the efficacy of PD-1 inhibitor-based therapy.
Collapse
Affiliation(s)
- Zhaozhen Wu
- Department of Medical Oncology, the Fifth Medicine Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Beijing Chest Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Sujie Zhang
- Department of Medical Oncology, the Fifth Medicine Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lingling Li
- Department of Medical Oncology, the Fifth Medicine Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Ziwei Huang
- Department of Medical Oncology, the Fifth Medicine Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Di Huang
- Department of Medical Oncology, the Fifth Medicine Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yi Hu
- Department of Medical Oncology, the Fifth Medicine Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Fhoula I, Boumaiza M, Tayh G, Rehaiem A, Klibi N, Ouzari I. Antimicrobial activity and safety features assessment of Weissella spp. from environmental sources. Food Sci Nutr 2022; 10:2896-2910. [PMID: 36171785 PMCID: PMC9469857 DOI: 10.1002/fsn3.2885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/06/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
Weissella strains have been reported to be useful in biotechnological and probiotic determinations, and some of them are considered opportunistic pathogens. Given the widespread interest about antimicrobial susceptibilities, transmission of resistances, and virulence factors, there is little research available on such topics for Weissella. The aim of this study was to assess the safety aspects and antimicrobial potential of 54 Weissella spp. strains from different environmental sources. Antibiotic susceptibility, hemolytic activity, horizontal transfer, and antibacterial activity were studied, as well as the detection of biogenic amine BA production on decarboxylase medium and PCR was performed. All the strains were nonhemolytic and sensitive to chloramphenicol and ampicillin. Several strains were classified as resistant to fusidic acid, and very low resistance rates were detected to ciprofloxacin, tetracycline, streptomycin, lincomycin, erythromycin, and rifampicin, although all strains had intrinsic resistance to vancomycin, nalidixic acid, kanamycin, and teicoplanin. Two BA-producing strains (W. halotolerans FAS30 and FAS29) exhibited tyrosine decarboxylase activity, and just one W. confusa FS077 produced both tyramine and histamine, and their genetic determinants were identified. Ornithine decarboxylase/odc gene was found in 16 of the Weissella strains, although 3 of them synthesize putrescine. Interestingly, eight strains with good properties displayed antibacterial activity. Conjugation frequencies of erythromycin from Bacillus to Weissella spp. varied in the average of 3 × 10-9 transconjugants/recipient. However, no tetracycline-resistant transconjugant was obtained with Enterococcus faecalis JH2-2 as recipient. The obtained results support the safe status of Weissella strains, derived from environmental sources, when used as probiotics in animal feed.
Collapse
Affiliation(s)
- Imene Fhoula
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Mohamed Boumaiza
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Ghassan Tayh
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
- Service de Microbiologie et d’ImmunologieEcole Nationale de Médecine VétérinaireUniversité ManoubaSidi ThabetTunisia
| | - Amel Rehaiem
- Faculty of Medicine of TunisResearch Laboratory “Antimicrobial Resistance” LR99ES09University of Tunis El ManarTunisTunisia
- Laboratory of MicrobiologyCharles Nicolle HospitalTunisTunisia
| | - Naouel Klibi
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Imene‐Hadda Ouzari
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| |
Collapse
|
18
|
Surachat K, Kantachote D, Wonglapsuwan M, Chukamnerd A, Deachamag P, Mittraparp-arthorn P, Jeenkeawpiam K. Complete Genome Sequence of Weissella cibaria NH9449 and Comprehensive Comparative-Genomic Analysis: Genomic Diversity and Versatility Trait Revealed. Front Microbiol 2022; 13:826683. [PMID: 35663880 PMCID: PMC9161744 DOI: 10.3389/fmicb.2022.826683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) in the genus Weissella spp. contain traits in their genome that confer versatility. In particular, Weissella cibaria encodes several beneficial genes that are useful in biotechnological applications. The complete genome of W. cibaria NH9449 was sequenced and an in silico comparative analysis was performed to gain insight into the genomic diversity among members of the genus Weissella. A total of 219 Weissella genomes were used in a bioinformatics analysis of pan-genomes, phylogenetics, self-defense mechanisms, virulence factors, antimicrobial resistance, and carbohydrate-active enzymes. These investigations showed that the strain NH9449 encodes several restriction-modification-related genes and a CRISPR-Cas region in its genome. The identification of carbohydrate-active enzyme-encoding genes indicated that this strain could be beneficial in biotechnological applications. The comparative genomic analysis reveals the very high genomic diversity in this genus, and some marked differences in genetic variation and genes among Weissella species. The calculated average amino acid identity (AAI) and phylogenetic analysis of core and accessory genes shows the possible existence of three new species in this genus. These new genomic insights into Weissella species and their biological functions could be useful in the food industry and other applications.
Collapse
Affiliation(s)
- Komwit Surachat
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- *Correspondence: Komwit Surachat,
| | - Duangporn Kantachote
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Panchalika Deachamag
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Pimonsri Mittraparp-arthorn
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
19
|
Identification and characterization of bacteriocin biosynthetic gene clusters found in multiple bacteriocins producing Lactiplantibacillus plantarum PUK6. J Biosci Bioeng 2022; 133:444-451. [DOI: 10.1016/j.jbiosc.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
|
20
|
Park S, Saravanakumar K, Sathiyaseelan A, Park S, Hu X, Wang MH. Cellular antioxidant properties of nontoxic exopolysaccharide extracted from Lactobacillales (Weissella cibaria) isolated from Korean kimchi. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112727] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Combined effect of various salt concentrations and lactic acid bacteria fermentation on the survival of Escherichia coli O157:H7 and Listeria monocytogenes in white kimchi at different temperatures. Food Sci Biotechnol 2021; 30:1593-1600. [PMID: 34868707 DOI: 10.1007/s10068-021-00979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022] Open
Abstract
This study was conducted to investigate the effect of lactic acid fermentation and salt on the survival of Escherichia coli O157:H7 and Listeria monocytogenes in white kimchi containing various salt concentrations during storage at 4 and 15 °C. The survivals of pathogens during fermentation differed depending on salt concentrations and storage temperature. The survival of pathogens in kimchi containing 3% salt was higher than that in kimchi containing 1 and 2% salt, which may be related to the fact that lactic acid bacteria remained constant throughout the initial stage of fermentation. Thus, there was a lower reduction in the pH of kimchi containing 3% salt regardless of storage temperature. These protective effects may result from a gradual reduction in pH; however, the mechanisms are not clearly understood. Therefore, further investigations are needed to explain the mechanism by which lactic acid fermentation and salt in kimchi affect the growth of foodborne pathogens.
Collapse
|
22
|
Abdullah D, Poddar S, Rai RP, Purwati E, Dewi NP, Pratama YE. Molecular Identification of Lactic Acid Bacteria Approach to Sustainable food Security. J Public Health Res 2021; 10. [PMID: 34818881 PMCID: PMC9131486 DOI: 10.4081/jphr.2021.2508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Dadiah is a traditional dish from West Sumatra made from buffalo milk, which is fermented in bamboo tubes and left at room temperature for ±2 days. Dadiah is included in the staple food category because it contains Lactic Acid Bacteria (LAB) which has the potential to be a probiotic. This study aims to determine the identification and characterization of LAB from Dadiah from Halaban, Kab. Fifty Cities, West Sumatra. DESIGN AND METHODS A survey method was used in this research with a descriptive analysis, Antimicrobial activity testing was done with bacteria Escherichia coli O157, Staphylococcus aureus, Listeria monocytogenes, and Listeria innocua. Molecular identification was done using the 16S rRNA gene. RESULTS Probiotic candidate test with the best results in testing for resistance to stomach acid at pH3 with the viability of 65.98%, bile salt resistance 0.3%, viability of 54.90% from 2DA isolates. Antimicrobial activity with the best clear zone area results was obtained in 2DA isolates with Escherichia coli O157 test bacteria of 21.16 mm, Staphylococcus aureus with a clear zone area of 23.17 mm, Listeria innocua of 19.24 mm and Listeria monocytogenes with a clear zone area 18.23 mm in 4DA isolate, LAB identification using 16S sRNA gene, results of running PCR base length 1419bp. CONCLUSIONS Phylogenetic analysis shows that Dadiah of Limapuluh Kota Regency is a kin to Lactobacillus plantarum. The superiority of identification technology by using 16S rRNA gene only can be conducted if the nucleotide sequence information of the targeted bacteria is known beforehand.
Collapse
Affiliation(s)
- Dessy Abdullah
- Research Scholar, Lincoln University College, Wisma Lincoln, No, 12-18, SS 6/12, Off Jalan Perbandaran,, 47301 Petaling Jaya, Selangor D. E, Malaysia Lecturer, Medical Faculty, Baiturrahmah University Padang, West Sumatera, Indonesia.
| | - Sandeep Poddar
- Deputy Vice Chancellor of Research, Lincoln University College.
| | - Ramesh Prasath Rai
- Lincoln University College, Wisma Lincoln, No, 12-18, SS 6/12, Off Jalan Perbandaran, 47301 Petaling Jaya, Selangor, Malaysia.
| | - Endang Purwati
- Faculty of Animal Science, University of Andalas, Padang, West Sumatera, Indonesia.
| | - Nadia Purnama Dewi
- Research Scholar, Lincoln University College, Wisma Lincoln, No, 12-18, SS 6/12, Off Jalan Perbandaran,, 47301 Petaling Jaya, Selangor, Malaysia Lecturer, Medical Faculty, Baiturrahmah University Padang, West Sumatera, Indonesia.
| | - Yudha Endra Pratama
- Doctoral Program, Faculty of Animal Science, University of Andalas, Padang, Indonesia.
| |
Collapse
|
23
|
Kwon H, Chae SH, Jung HJ, Shin HM, Ban OH, Yang J, Kim JH, Jeong JE, Jeon HM, Kang YW, Park CK, Won DD, Lee JK. The effect of probiotics supplementation in postoperative cancer patients: a prospective pilot study. Ann Surg Treat Res 2021; 101:281-290. [PMID: 34796144 PMCID: PMC8564079 DOI: 10.4174/astr.2021.101.5.281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose Microbiota manipulation through selected probiotics may be a promising tool to prevent cancer development as well as onset, to improve clinical efficacy for cancer treatments. The purpose of this study was to evaluate change in microbiota composition after-probiotics supplementation and assessed the efficacy of probiotics in improving quality of life (QOL) in postoperative cancer patients. Methods Stool samples were collected from 30 cancer patients from February to October 2020 before (group I) and after (group II) 8 weeks of probiotics supplementation. We performed 16S ribosomal RNA gene sequencing to evaluate differences in gut microbiota between groups by comparing gut microbiota diversity, overall composition, and taxonomic signature abundance. The health-related QOL was evaluated through the EORTC Quality of life Questionnaire Core 30 questionnaire. Results Statistically significant differences were noted in group II; increase of Shannon and Simpson index (P = 0.004 and P = 0.001), decrease of Bacteroidetes and Fusobacteria at the phylum level (P = 0.032 and P = 0.014, retrospectively), increased of beneficial bacteria such as Weissella (0.096% vs. 0.361%, P < 0.004), Lactococcus (0.023% vs. 0.16%, P < 0.001), and Catenibacterium (0.0% vs. 0.005%, P < 0.042) at the genus level. There was a significant improvement in sleep disturbance (P = 0.039) in group II. Conclusion Gut microbiota in cancer patients can be manipulated by specific probiotic strains, result in an altered microbiota. Microbiota modulation by probiotics can be considered as part of a supplement that helps to increase gut microbiota diversity and improve QOL in cancer patients after surgery.
Collapse
Affiliation(s)
- Hyeji Kwon
- Cancer Genomic Research Institute, Immunology Laboratory, Seoul Song Do Colorectal Hospital, Seoul, Korea
| | - Song Hwa Chae
- Cancer Genomic Research Institute, Immunology Laboratory, Seoul Song Do Colorectal Hospital, Seoul, Korea
| | - Hyo Jin Jung
- Cancer Genomic Research Institute, Immunology Laboratory, Seoul Song Do Colorectal Hospital, Seoul, Korea
| | - Hyeon Min Shin
- Cancer Genomic Research Institute, Immunology Laboratory, Seoul Song Do Colorectal Hospital, Seoul, Korea
| | | | | | - Jung Ha Kim
- Cancer Immune Clinic, Seoul Song Do Colorectal Hospital, Seoul, Korea.,Department of Surgery, Pelvic Floor Center, Seoul Song Do Colorectal Hospital, Seoul, Korea
| | - Ji Eun Jeong
- Cancer Immune Clinic, Seoul Song Do Colorectal Hospital, Seoul, Korea
| | - Hae Myung Jeon
- Cancer Genomic Research Institute, Immunology Laboratory, Seoul Song Do Colorectal Hospital, Seoul, Korea.,Cancer Immune Clinic, Seoul Song Do Colorectal Hospital, Seoul, Korea
| | - Yong Won Kang
- Department of Surgery, Pelvic Floor Center, Seoul Song Do Colorectal Hospital, Seoul, Korea
| | - Chan Kum Park
- Department of Pathology, Seoul Song Do Colorectal Hospital, Seoul, Korea
| | - Daeyoun David Won
- Department of Surgery, Pelvic Floor Center, Seoul Song Do Colorectal Hospital, Seoul, Korea
| | - Jong Kyun Lee
- Cancer Immune Clinic, Seoul Song Do Colorectal Hospital, Seoul, Korea.,Department of Surgery, Pelvic Floor Center, Seoul Song Do Colorectal Hospital, Seoul, Korea
| |
Collapse
|
24
|
Wang T, Guo XK, Xu H. Disentangling the Progression of Non-alcoholic Fatty Liver Disease in the Human Gut Microbiota. Front Microbiol 2021; 12:728823. [PMID: 34721326 PMCID: PMC8548776 DOI: 10.3389/fmicb.2021.728823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiome dysbiosis has been known to be associated with all stages of non-alcoholic fatty liver disease (NAFLD), but questions remain about microbial profiles in progression and homogeneity across NAFLD stages. We performed a meta-analysis of three publicly shotgun datasets and built predictive models to determine diagnostic capacity. Here, we found consistently microbiome shifts across NAFLD stages, of which co-occurrence patterns and core sets of new biomarkers significantly correlated with NAFLD progression were identified. Machine learning models that are able to distinguish patients with any NAFLD stage from healthy controls remained predictive when applied to patients with other NAFLD stages, suggesting the homogeneity across stages once again. Focusing on species and metabolic pathways specifically associated with progressive stages, we found that increased toxic metabolites and decreased protection of butyrate and choline contributed to advanced NAFLD. We further built models discriminating one stage from the others with an average of 0.86 of area under the curve. In conclusion, this meta-analysis firmly establishes generalizable microbiome dysbiosis and predictive taxonomic and functional signatures as a basis for future diagnostics across NAFLD stages.
Collapse
Affiliation(s)
- Tianjiao Wang
- School of Medicine, Tsinghua University, Beijing, China
| | - Xue-Kun Guo
- School of Medicine, Tsinghua University, Beijing, China
| | - Huji Xu
- School of Medicine, Tsinghua University, Beijing, China.,Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China.,Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
25
|
Bai Y, Feldman C, Li Y, Keys K, Overgaard K. A Functional Vegetable Option: An Exploratory Study Testing Kimchi Variation for Acceptance among Consumers. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2020.1790075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yeon Bai
- Department of Nutrition and Food Studies, Montclair State University, Montclair, New Jersey, USA
| | - Charles Feldman
- Department of Nutrition and Food Studies, Montclair State University, Montclair, New Jersey, USA
| | - Yanyan Li
- College of Science and Humanities, Husson University, Bangor, Maine, USA
| | - Ki Keys
- Department of Nutrition and Food Studies, Montclair State University, Montclair, New Jersey, USA
| | - Kaitlin Overgaard
- Department of Nutrition and Food Studies, Montclair State University, Montclair, New Jersey, USA
| |
Collapse
|
26
|
Lactobacillus plantarum and Lactobacillus brevis Alleviate Intestinal Inflammation and Microbial Disorder Induced by ETEC in a Murine Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6867962. [PMID: 34594475 PMCID: PMC8478549 DOI: 10.1155/2021/6867962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
The purpose of this research is to explore the positive effects of Lactobacillus plantarum and Lactobacillus brevis on the tissue damage and microbial community in mice challenged by Enterotoxigenic Escherichia coli (ETEC). Twenty-four mice were divided into four groups randomly: the CON group, ETEC group, LP-ETEC group and LB-ETEC group. Our results demonstrated that, compared with the ETEC group, the LP-ETEC and LB-ETEC groups experienced less weight loss and morphological damage of the jejunum. We measured proinflammatory factors of colonic tissue and found that L. plantarum and L. brevis inhibited the expression of proinflammatory factors such as IL-β, TNF-α, and IL-6 and promoted that of the tight junction protein such as claudin-1, occludin, and ZO-1. Additionally, L. plantarum and L. brevis altered the impact of ETEC on the intestinal microbial community of mice, significantly increased the abundance of probiotics such as Lactobacillus, and reduced that of pathogenic bacteria such as Proteobacteria, Clostridia, Epsilonproteobacteria, and Helicobacter. Therefore, we believe that L. plantarum and L. brevis can stabilize the intestinal microbiota and inhibit the growth of pathogenic bacteria, thus protecting mice from the gut inflammation induced by ETEC.
Collapse
|
27
|
Park SH, Kim JG, Jang YA, Bayazid AB, Ou Lim B. Fermented black rice and blueberry with Lactobacillus plantarum MG4221 improve UVB-induced skin injury. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1967300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Seo Hyun Park
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
- R&D Center, Ahn-Gook Health Co., Ltd., Seoul, Korea
| | - Jae Gon Kim
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
- Research of Institute of Inflammatory Diseases, BK21FOUR GLOCAL Education Program for Nutraceutical and Biopharmaceutical Research, Konkuk University, Chungju, Republic of Korea
| | - Young Ah Jang
- Convergence Research Center for Smart Healthcare, R&DB Foundation of Kyungsung University, Busan, Korea
| | - Al Borhan Bayazid
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
| | - Beong Ou Lim
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
- Research of Institute of Inflammatory Diseases, BK21FOUR GLOCAL Education Program for Nutraceutical and Biopharmaceutical Research, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
28
|
MOSTAFA HS, ALI MR, MOHAMED RM. Production of a novel probiotic date juice with anti-proliferative activity against Hep-2 cancer cells. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.09920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Yi R, Feng M, Chen Q, Long X, Park KY, Zhao X. The Effect of Lactobacillus plantarum CQPC02 on Fatigue and Biochemical Oxidation Levels in a Mouse Model of Physical Exhaustion. Front Nutr 2021; 8:641544. [PMID: 34095185 PMCID: PMC8173150 DOI: 10.3389/fnut.2021.641544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Chinese Sichuan pickle is a fermented food rich in microorganisms. Microorganisms have the potential to become an important new form of potent future therapeutic capable of treating human disease. Selecting vitamin C as a positive control, a lactic acid bacteria (Lactobacillus plantarum CQPC02, LP-CQPC02) isolated from Sichuan pickle was given to mice over 4 weeks to investigate the effect of CQPC02 on fatigue levels and biochemical oxidation phenomena in exercise-exhausted Institute of Cancer Research (ICR) mice. The fatigue model was established by forced swimming of mice, the levels of hepatic glycogen, skeletal muscle glycogen, lactic acid, blood urea nitrogen and free fatty acid were measured by physicochemical methods, serum serum creatine kinase (CK), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) levels were measured by kits, the histopathological changes in the livers of mice were observed by H&E slicing, and the mRNA changes in the livers and skeletal muscles were observed by quantitative polymerase chain reaction (qPCR). Both vitamin C and LP-CQPC02 increased swimming exhaustion time. The concentration of LP-CQPC02 and exhaustion time were positively correlated. LP-CQPC02 also increased liver glycogen, skeletal muscle glycogen and free fatty acid content in mice and reduced lactic acid and blood urea nitrogen content in a dose-dependent manner. As walnut albumin antioxidant peptide concentration increased, levels of mouse CK, AST, and AST gradually decreased. LP-CQPC02 increased SOD and CAT levels and decreased MDA levels in a dose-dependent fashion. LP-CQPC02 up-regulated expression of mRNA encoding copper/zinc-superoxide dismutase (Cu/Zn-SOD), manganese-superoxide dismutase (Mn-SOD), and CAT in swimming exhaustion mouse liver tissue. LP-CQPC02 also up-regulated alanine/serine/cysteine/threonine transporter 1 (ASCT1) expression while down-regulating syncytin-1, inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α) expression in swimming exhaustion mouse skeletal muscle. Overall, LP-CQPC02 had a clear anti-fatigue and anti-oxidation effect. This suggests that LP-CQPC02 can be developed as a microbiological therapeutic agent.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Min Feng
- Department of Obstetrics, Eastern Hospital, Sichuan Provincial Medical Sciences Academy and Sichuan Provincial People's Hospital, Chengdu, China
| | - Qiuping Chen
- Department of Education, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea
| | - Kun-Young Park
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
30
|
Kim E, Yang SM, Kim HY. Analysis of Cultivable Microbial Community during Kimchi Fermentation Using MALDI-TOF MS. Foods 2021; 10:foods10051068. [PMID: 34066045 PMCID: PMC8151656 DOI: 10.3390/foods10051068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 12/31/2022] Open
Abstract
Kimchi, a traditional Korean fermented vegetable, has received considerable attention for its health-promoting effects. This study analyzes the cultivable microbial community in kimchi fermented at different temperatures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to comprehensively understand the factors affecting the quality of kimchi. Of the 5204 strains isolated from kimchi, aligned with the in-house database, 4467 (85.8%) were correctly identified at the species level. The fermentation temperature affected the microbial community by varying the pH and acidity, which was mainly caused by temperature-dependent competition between the different lactic acid bacteria (LAB) species in kimchi. LAB, such as Levilactobacillus (Lb.) brevis and Lactiplantibacillus (Lpb.) plantarum associated with rancidity and tissue softening, proliferated faster at higher temperatures than at low temperature. In addition, LAB, such as Latilactobacillus (Lat.) sakei and Leuconostoc (Leu.) mesenteroides, which produce beneficial substances and flavor, were mainly distributed in kimchi fermented at 4 °C. This study shows as a novelty that MALDI-TOF MS is a robust and economically affordable method for investigating viable microbial communities in kimchi.
Collapse
Affiliation(s)
| | | | - Hae-Yeong Kim
- Correspondence: ; Tel.: +82-31-201-2600; Fax: +82-31-204-8116
| |
Collapse
|
31
|
Gastric Cancer and the Daily Intake of the Major Dish Groups Contributing to Sodium Intake: A Case-Control Study in Korea. Nutrients 2021; 13:nu13041365. [PMID: 33921757 PMCID: PMC8072798 DOI: 10.3390/nu13041365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
Studies on the association between gastric cancer (GC) and the intake of soup-based dish groups (noodles and dumplings, soups, and stews), which are sodium-contributing foods, in Korea are insufficient, and the results of studies on the intake of pickled vegetables such as kimchi are inconsistent. This study aimed to determine the association between the incidence of GC and the daily intake of high-sodium dish groups (noodles and dumplings, soups, stews, and pickled vegetables) and whether these associations differ depending on behavioral risk factors for GC. In this case-control study, subjects aged 20–79 years were recruited from two hospitals between December 2002 and September 2006. A total of 440 cases and 485 controls were recruited, of which 307 pairs were matched and included for the analysis. In our results, a higher intake of noodles and dumplings was associated with a significantly increased incidence of GC. In the participants who consumed past or current alcohol, a higher intake of noodles and dumplings was associated with a significantly increased incidence of GC. Our results suggest that efforts to reduce the daily sodium intake from noodles and dumplings are needed to prevent and reduce the incidence of GC.
Collapse
|
32
|
Cai W, Tang F, Wang Y, Zhang Z, Xue Y, Zhao X, Guo Z, Shan C. Bacterial diversity and flavor profile of Zha-Chili, a traditional fermented food in China. Food Res Int 2021; 141:110112. [PMID: 33641979 DOI: 10.1016/j.foodres.2021.110112] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/18/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Zha-chili is a traditional Chinese fermented food with special flavor, which is often used as an appetizer in condiments and an important energy source. The final quality of zha-chili is closely related to its microbial community structure. However, the differences of bacterial diversity in zha-chili from different regions and how bacterial species affect zha-chili fermentation process and flavor quality have not been reported. In this study, the bacterial diversity and flavor quality of zha-chili samples from different regions were analyzed using Illumina Miseq high-throughput sequencing, electronic nose and electronic tongue technology. Twenty-three bacterial phyla and 665 bacterial genera were identified in all zha-chili samples. Firmicutes, Proteobacteria and Actinobacteria were the dominant bacterial phyla in zha-chili samples, while Lactobacillus, Pseudomonas, Pediococcus, Weissella and Staphylococcus were the dominant bacterial genera. The bacterial community structure of zha-chili samples from different regions was significantly diverse (p < 0.05). The flavor of zha-chili samples also varied in different regions, and the discrepancy of taste was much greater than that of aroma. Moreover, there were significant correlations (p < 0.05) between 6 dominant bacterial genera and 8 flavor indicators (3 aroma indicators, 5 taste indicators). In addition, the results of microbiome phenotypes prediction by BugBase and bacterial functional potential prediction using PICRUSt showed that eight out of nine predicted phenotypic functions of zha-chili samples from different regions were significantly different (p < 0.05), bacterial metabolism was vigorous in the zha-chili samples, and Lactobacillus was the dominant bacterial genus involved in metabolism during fermentation.
Collapse
Affiliation(s)
- Wenchao Cai
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China
| | - Fengxian Tang
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China
| | - Zhendong Zhang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China
| | - Yuang Xue
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China
| | - Xinxin Zhao
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China.
| | - Chunhui Shan
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China.
| |
Collapse
|
33
|
Huang L, Cui K, Mao W, Du Y, Yao N, Li Z, Zhao H, Ma W. Weissella cibaria Attenuated LPS-Induced Dysfunction of Intestinal Epithelial Barrier in a Caco-2 Cell Monolayer Model. Front Microbiol 2020; 11:2039. [PMID: 33013748 PMCID: PMC7509449 DOI: 10.3389/fmicb.2020.02039] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
The dysfunction of the intestinal epithelial barrier contributes to local or systemic infection and inflammation. Some lactic acid bacteria (LAB) strains had been shown to improve the conditions of barrier function and, for this reason, are recognized as probiotics. Weissella cibaria, a species belonging to the LAB group, is known to promote several health benefits. However, the role of W. cibaria in regulating the integrity of the intestinal epithelial barrier has not yet been investigated. In this study, W. cibaria MW01 was isolated from Chinese sauerkraut and was selected based on its functional features, such as gastric juice and bile salt tolerance, besides antagonistic activity against pathogenic bacteria. In a cellular model of the intestinal barrier, it was observed that W. cibaria was able to adhere more efficiently than Lactobacillus rhamnosus GG in Caco-2 cells. Moreover, the LPS-induced inflammation in Caco-2 cells was attenuated by the treatment with W. cibaria MW01, which reduced the synthesis of TNF-α, IL-6, and IL-8. In addition, it was noted that the treatment with W. cibaria MW01 recovered the integrity of the Caco-2 cell monolayer exposed to LPS. Furthermore, W. cibaria MW01 significantly alleviated LPS-induced downregulation of tight junction proteins (TJP) (claudin, occludin, and tight junction protein-1). Mechanistically, W. cibaria MW01 inhibited the translocation of NF-κB to the nucleus and deactivated the MLCK-pMLC pathway during LPS exposure. Thus, W. cibaria MW01, as a potential probiotic, can protect intestinal epithelial barrier function by regulating inflammation and expression of TJP via the NF-κB-mediated MLCK-pMLC pathway.
Collapse
Affiliation(s)
- Liping Huang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhao Mao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yurong Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Yao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Microbiome Laboratory, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Kang MS, Lee DS, Lee SA, Kim MS, Nam SH. Effects of probiotic bacterium Weissella cibaria CMU on periodontal health and microbiota: a randomised, double-blind, placebo-controlled trial. BMC Oral Health 2020; 20:243. [PMID: 32878603 PMCID: PMC7469353 DOI: 10.1186/s12903-020-01231-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background Weissella cibaria CMU (oraCMU) has been commercially available in the market for several years as oral care probiotics. The present study aimed to evaluate the effects of oraCMU-containing tablets on periodontal health and oral microbiota. Methods A randomised, double-blind, placebo-controlled trial was conducted in 92 adults without periodontitis (20–39 years of age). All subjects received dental scaling and root planing, and were randomly assigned to either probiotic or placebo groups. The tablets were administered once daily for 8 weeks. Periodontal clinical parameters included bleeding on probing (BOP), probing depth (PD), gingival index (GI), and plaque index (PI). In addition, microbiota in the gingival sulcus were analysed. Results BOP improved more in the probiotic group over 8 weeks. There were statistically significant differences in BOP of the maxilla buccal and lingual sites between the groups during the intervention (P < 0.05). No significant inter-group differences in PD, GI, and PI were observed during the intervention. Oral bacteria were observed to be fewer in the probiotic group. There was a significant change in levels of Fusobacterium nucleatum at four and 8 weeks between the two groups. Besides, there were significant differences at 8 weeks in levels of Staphylococcus aureus. Conclusions We reported an improvement in BOP and microbial environment and demonstrated the antimicrobial activity of oraCMU against F. nucleatum. Thus, its supplementation may contribute to overall oral health. Trial registration Ethical issues approved by the Kangwon National University Institutional Review Board with a number of KWNUIRB-2018-05-003-005 and CRIS code Number of KCT0005078 were retrospectively registered on 06/02/2020. This study was conducted in the period of July to November 2018.
Collapse
Affiliation(s)
- Mi-Sun Kang
- R&D Center, OraPharm Inc., Seoul, 04782, South Korea
| | - Dong-Suk Lee
- School of Nursing, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seung-Ah Lee
- School of Nursing, Kangwon National University, Chuncheon, 24341, South Korea
| | - Myoung-Suk Kim
- School of Nursing, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seoul-Hee Nam
- Department of Dental Hygiene, College of Health Sciences, Kangwon National University, 346 Hwangjo-gil, Dogye-up, Samcheok-si, Gangwon-do, 25949, South Korea.
| |
Collapse
|
35
|
Complete Genome Sequence of Weissella cibaria Strain BM2, Isolated from Korean Kimchi. Microbiol Resour Announc 2020; 9:9/34/e00534-20. [PMID: 32816971 PMCID: PMC7441229 DOI: 10.1128/mra.00534-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Weissella cibaria appears to have broad-spectrum health benefits. Here, we report the genome sequence of Weissella cibaria strain BM2, which was isolated from homemade kimchi; it consists of one circular chromosome of 2,462,443 bp and one plasmid of 11,067 bp. A total of 2,337 coding sequences were predicted, including 2,117 protein-coding sequences and a G+C content of 45.06%. Weissella cibaria appears to have broad-spectrum health benefits. Here, we report the genome sequence of Weissella cibaria strain BM2, which was isolated from homemade kimchi; it consists of one circular chromosome of 2,462,443 bp and one plasmid of 11,067 bp. A total of 2,337 coding sequences were predicted, including 2,117 protein-coding sequences and a G+C content of 45.06%.
Collapse
|
36
|
Mun SY, Chang HC. Characterization of Weissella koreensis SK Isolated from Kimchi Fermented at Low Temperature (around 0 °C) Based on Complete Genome Sequence and Corresponding Phenotype. Microorganisms 2020; 8:E1147. [PMID: 32751267 PMCID: PMC7464874 DOI: 10.3390/microorganisms8081147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 01/12/2023] Open
Abstract
This study identified lactic acid bacteria (LAB) that play a major role in kimchi fermented at low temperature, and investigated the safety and functionality of the LAB via biologic and genomic analyses for its potential use as a starter culture or probiotic. Fifty LAB were isolated from 45 kimchi samples fermented at -1.5~0 °C for 2~3 months. Weissella koreensis strains were determined as the dominant LAB in all kimchi samples. One strain, W. koreensis SK, was selected and its phenotypic and genomic features characterized. The complete genome of W. koreensis SK contains one circular chromosome and plasmid. W. koreensis SK grew well under mesophilic and psychrophilic conditions. W. koreensis SK was found to ferment several carbohydrates and utilize an alternative carbon source, the amino acid arginine, to obtain energy. Supplementation with arginine improved cell growth and resulted in high production of ornithine. The arginine deiminase pathway of W. koreensis SK was encoded in a cluster of four genes (arcA-arcB-arcD-arcC). No virulence traits were identified in the genomic and phenotypic analyses. The results indicate that W. koreensis SK may be a promising starter culture for fermented vegetables or fruits at low temperature as well as a probiotic candidate.
Collapse
Affiliation(s)
| | - Hae Choon Chang
- Department of Food and Nutrition, Kimchi Research Center, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| |
Collapse
|
37
|
Maheshwari M, Gupta A, Gaur S. Probiotic Potential of Traditional Indian Fermented Drinks. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190821113406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Probiotics are living microorganisms, which when taken in adequate amount, provide various health benefits by maintaining the balance of bacteria in the intestine. Probiotics are purported to have countless health benefits, some of which include improved digestion, enhanced immunity, prevention of cancer and diabetes. The most common group of probiotics include species of Lactobacillus, Bifidobacterium and Enterococcus. In order to work as an effective probiotic, the microbial strain is expected to exhibit certain desirable characteristics like acid and bile tolerance, antimicrobial activity, adhesion to intestinal epithelium, etc. The fermented products contain a myriad of bacteria, some of which are characterized as probiotics and are responsible for various health benefits associated with the product. The fermented foods and drinks have been consumed in India since time immemorial. The art of fermentation has been a part of the traditional knowledge of India for thousands of years. The use of fermented products is strongly linked to the culture and tradition of India. Some traditional fermented drinks of India having probiotic potential include Koozh, Toddy, Kanji, Hamei and Handia. Further research on the probiotic potential of traditional fermented drinks may pave a path for their medical usage and commercial development.
Collapse
Affiliation(s)
- Mahima Maheshwari
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Akshra Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| |
Collapse
|
38
|
Lee DS, Lee SA, Kim M, Nam SH, Kang MS. Reduction of Halitosis by a Tablet Containing Weissella cibaria CMU: A Randomized, Double-Blind, Placebo-Controlled Study. J Med Food 2020; 23:649-657. [PMID: 32379992 DOI: 10.1089/jmf.2019.4603] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Halitosis is referred to as an unpleasant odor coming from the mouth. Recently, probiotics have been studied as an alternative prevention for halitosis. The aim of this study was to evaluate the effects of probiotic bacterium Weissella cibaria Chonnam Medical University (CMU)-containing tablets (1 × 108 colony forming units [CFU]/g) on oral malodor. The randomized, double-blind, placebo-controlled trial was conducted in 92 healthy adults (20-39 years of age) with bad breath. All subjects were randomly assigned to a test (probiotic, n = 49) or control (placebo, n = 43) group after dental scaling and root planing. The tablets were taken once daily for 8 weeks. Measurements included an organoleptic test (OLT), volatile sulfur compounds (VSC), bad breath improvement (BBI) scores, and the oral colonization of W. cibaria CMU. This study also assessed safety variables of adverse reactions, vital signs, and the findings of hematology and blood chemistry. Most of the variables were measured at baseline, 4, and 8 weeks. Safety-related variables were measured at baseline and 8 weeks. At week 4, a significant decrease in OLT and VSC results was observed in the test group while BBI scores were significantly reduced at week 8 (P < .05). Statistically significant intergroup differences were observed for changes in W. cibaria number at weeks 4 and 8. No safety issues were encountered in either group. These results indicate that W. cibaria CMU tablets could be a safe and useful oral care product for controlling bad breath.
Collapse
Affiliation(s)
- Dong-Suk Lee
- School of Nursing, Kangwon National University, Chuncheon, Korea
| | - Seung-Ah Lee
- School of Nursing, Kangwon National University, Chuncheon, Korea
| | - Myoungsuk Kim
- School of Nursing, Kangwon National University, Chuncheon, Korea
| | - Seoul-Hee Nam
- Department of Dental Hygiene, School of Health Science, Kangwon National University, Samcheok, Korea
| | - Mi-Sun Kang
- R&D Department, Research Institute, OraPharm, Inc., Seoul, Korea
| |
Collapse
|
39
|
Kim M, Nam DG, Im P, Choe JS, Choi AJ. Optimal conditions for the encapsulation of Weissella cibaria JW15 using alginate and chicory root and evaluation of capsule stability in a simulated gastrointestinal system. J Food Sci 2020; 85:394-403. [PMID: 31976556 DOI: 10.1111/1750-3841.15013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 11/26/2022]
Abstract
The delivery of active probiotic cells in capsules can reduce probiotic cell loss induced by detrimental external factors during digestion. In this study, we determined the optimal conditions for the encapsulation of Weissella cibaria JW15 (JW15) within calcium and polyethylene glycol (PEG)-alginate with chicory root extract powder (CREP). JW15 was encapsulated as the core material (109 cells/mL, 2 mL/min), and a solution containing a mixture of 1.5% sodium alginate and 1% CREP was extruded into a receiving bath with 0.1 M calcium chloride (CaCl2 ) and 0.05% PEG. Capsule morphology and size were measured using optical microscopy. The optimal air pressure and frequency vibration for capsules containing alginate only (Al) were 200 mbar and 200 Hz, respectively and 100 mbar and 350 Hz for capsules containing alginate with CREP (Ch), respectively. The voltage for both capsules types was fixed at 1.35 kV. Then, the capsules were incubated in a simulated gastrointestinal (GI) system for 6 hr at 37 °C. The addition of PEG in a CaCl2 hardening solution led to degradation of the Ch capsule (Ch-PEG) and the release of cells into the small intestine vessel in the simulated GI system. By contrast, the cells were trapped within the Al capsules. Based on these data, effective encapsulation using alginate with CREP and PEG can enable JW15 to be released at a targeted anatomical site of activity within the GI system, thereby, enhancing the efficacy of probiotic cells. These protective effects can be leveraged during the development of probiotic products. PRACTICAL APPLICATION: Weissella cibaria JW15 (109 cells/mL) was encapsulated in biodegradable and biocompatible capsules, prepared by mixing 1.5% alginate with 1% chicory root extract powder (CREP) in 0.1 M CaCl2 and 0.05% PEG using an encapsulator. The optimal processing parameters were as follows: pressure, 100 mbar; vibration frequency, 350 Hz; voltage, 1.35 kV; and core flow rate, 2 mL/min. When the resulting capsules were subjected to a simulated gastrointestinal system for 6 hr, the cells were released into the small intestine, and up to 95% cell viability was preserved. These results suggest that capsules made from alginate with CREP and formulated using calcium and PEG are a promising delivery system for probiotic cells.
Collapse
Affiliation(s)
- Mina Kim
- Div. of Functional Food & Nutrition, Dept. of Agrofood Resources, Natl. Inst. of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Dong-Geon Nam
- Div. of Functional Food & Nutrition, Dept. of Agrofood Resources, Natl. Inst. of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Pureum Im
- Div. of Functional Food & Nutrition, Dept. of Agrofood Resources, Natl. Inst. of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jeong-Sook Choe
- Div. of Functional Food & Nutrition, Dept. of Agrofood Resources, Natl. Inst. of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Ae-Jin Choi
- Div. of Functional Food & Nutrition, Dept. of Agrofood Resources, Natl. Inst. of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
40
|
Huang CH, Ho CY, Chen CT, Hsu HF, Lin YH. Probiotic BSH Activity and Anti-Obesity Potential of Lactobacillus plantarum Strain TCI378 Isolated from Korean Kimchi. Prev Nutr Food Sci 2019; 24:434-441. [PMID: 31915639 PMCID: PMC6941724 DOI: 10.3746/pnf.2019.24.4.434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Lactobacillus (Lab.) is a human probiotic beneficial for the prevention and improvement of disease, yet properties of different Lab. strains are diverse. To obtain a Lab. strain that possesses greater potential against gastrointestinal dysfunction, we isolated Lactobacillus plantarum TCI378 (TCI378) from naturally fermented Korean kimchi. TCI378 has shown potential as probiotic since it can survive at pH 3.0 and in the presence of 0.3% bile acid. The bile salt hydrolase activity of TCI378 was shown by formation of opaque granular white colonies on solid de Man Rogosa Sharpe (MRS) medium supplemented with taurodeoxycholic acid, and its cholesterol-lowering ability in MRS medium supplemented with cholesterol. The metabolites of TCI378 from liquid culture in MRS medium prevented emulsification of bile salts. Moreover, both the metabolites of TCI378 and the dead bacteria reduced oil droplet accumulation in 3T3-L1, as detected by Oil red O staining. The expressions of adipocyte-specific genes perilipin 1 and glucose transporter type 4 were suppressed by the metabolites of TCI378, indicating TCI378 may have anti-obesity effects in adipocytes. These in vitro data show the potential of the prophylactic applications of TCI378 and its metabolites for reducing fat and lowering cholesterol.
Collapse
Affiliation(s)
- Chu-Han Huang
- TCI Research and Design Center, TCI Co., Ltd., Taipei 11494, Taiwan- Republic of China
| | - Cheng-Yu Ho
- TCI Research and Design Center, TCI Co., Ltd., Taipei 11494, Taiwan- Republic of China
| | - Ciao-Ting Chen
- TCI Research and Design Center, TCI Co., Ltd., Taipei 11494, Taiwan- Republic of China
| | - Hsin-Fen Hsu
- TCI Research and Design Center, TCI Co., Ltd., Taipei 11494, Taiwan- Republic of China
| | - Yung-Hsiang Lin
- TCI Research and Design Center, TCI Co., Ltd., Taipei 11494, Taiwan- Republic of China
| |
Collapse
|
41
|
Le B, Ngoc APT, Yang SH. Synbiotic fermented soymilk with Weissella cibaria FB069 and xylooligosaccharides prevents proliferation in human colon cancer cells. J Appl Microbiol 2019; 128:1486-1496. [PMID: 31834648 DOI: 10.1111/jam.14551] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 01/17/2023]
Abstract
AIM Studies on the anticancer effects of synbiotic fermented soymilk are rare. The aim of the present study was to evaluate the effect of synbiotic fermented soymilk supplemented with xylooligosaccharides and inoculated with Weissella cibaria FB069 (FSMXW) in the proliferation of colon cancer cell and compare it with the effect of soymilk inoculated with Lactobacillus rhamnosus GG (LGG). METHODS AND RESULTS Both FB069 and LGG were able to grow in soy-based products and rapidly reduce their pH as a result of fermentation. The addition of XOS significantly enhanced the acidification rate, viscosity and total cell concentration in fermented soymilk inoculated with W. cibaria FB069. However, the same effect was not observed following inoculation with LGG. Moreover, the synbiotic FSMXW showed higher dextran, folate, GABA and aglycone content. FSMXW inhibited the proliferation of Caco-2 and HCT116 cell lines, by reducing the transcription of MD2, TLR4, MyD88, and NF-κb. CONCLUSIONS The synbiotic soymilk containing XOS and W. cibaria FB069 increase nutrient and functional compounds through fermentation process. SIGNIFICANCE AND IMPACT OF THE STUDY Our finding suggests that W. cibaria and XOS can be potentially employed in developing functional foods and health-related products.
Collapse
Affiliation(s)
- B Le
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, Republic of Korea
| | - A P T Ngoc
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, Republic of Korea
| | - S H Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, Republic of Korea
| |
Collapse
|
42
|
Matti A, Utami T, Hidayat C, S. Rahayu E. Isolation, Screening, and Identification of Proteolytic Lactic Acid Bacteria from Indigenous Chao Product. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1639872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Agussalim Matti
- Department of Fisheries products processing technology, Pangkep State Polytechnic of Agricultural, Pangkajene dan Kepulauan, Indonesia
| | - Tyas Utami
- Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta, Indonesia
| | - Chusnul Hidayat
- Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta, Indonesia
| | - Endang S. Rahayu
- Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
43
|
Safika S, Wardinal W, Ismail YS, Nisa K, Sari WN. Weissella, a novel lactic acid bacteria isolated from wild Sumatran orangutans ( Pongo abelii). Vet World 2019; 12:1060-1065. [PMID: 31528033 PMCID: PMC6702570 DOI: 10.14202/vetworld.2019.1060-1065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022] Open
Abstract
Aims This study aimed to isolate and identify lactic acid bacteria (LAB) in wild Sumatran orangutans to provide more information about LAB diversity derived from Sumatran orangutan feces. Materials and Methods Fecal sampling from three female orangutans, around 35 years old, was carried out in the wild forest areas at the research station of Suaq Belimbing Gunung Leuser National Park located in the South Aceh district. Orangutan fecal samples were taken in the morning when the orangutans first defecated. The orangutans were above the tree, which is approximately 12-15 m from the ground where feces were found. Results Fermentation testing using the API 50 CHL Kit showed that OUL4 isolates were identified as Lactococcus lactis ssp. lactis with an identity value of 73.5%. Homology analysis demonstrated that the OUL4 isolates have 93% similarity to Weissella cibaria, and phylogenetic trees constructed using Mega 7.0 also showed that OUL4 isolates are related to W. cibaria. Conclusion These results show that there is a difference in identification between biochemical testing with API kits and molecular analyses on LAB isolates from wild Sumatran orangutans. Based on 16S rRNA gene homology, the OUL4 LAB isolates from wild Sumatran orangutans have 93% homology to W. cibaria.
Collapse
Affiliation(s)
- Safika Safika
- Department of Veterinary Infection Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Jalan Agatis, IPB Dermaga, Bogor 16680, Indonesia
| | - Wardinal Wardinal
- Department of Biology, Education and Teaching Faculty, Ar-Raniry State Islamic University Banda Aceh 23111, Indonesia
| | - Yulia Sari Ismail
- Department of Biology, Faculty of Mathematics and Sciences, Syiah Kuala University, Banda Aceh 23111, Indonesia
| | - Khairun Nisa
- Department of Biology, Education and Teaching Faculty, Ar-Raniry State Islamic University Banda Aceh 23111, Indonesia
| | - Wenny Novita Sari
- Department of Mathematics and Applied Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia
| |
Collapse
|
44
|
Gharehyakheh S, Elhami Rad AH, Nateghi L, Varmira K. Production of GABA‐enriched honey syrup using
Lactobacillus
bacteria isolated from honey bee stomach. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sepideh Gharehyakheh
- Department of Food Science and Technology, Sabzevar Branch Islamic Azad University Sabzevar Iran
| | - Amir Hosein Elhami Rad
- Department of Food Science and Technology, Sabzevar Branch Islamic Azad University Sabzevar Iran
| | - Leila Nateghi
- Faculty of Agriculture, Department of Food Science and Technology, Varamin Pishva Branch Islamic Azad University Varamin Iran
| | - Kambiz Varmira
- Research Center of Oils and Fats Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
45
|
Lee SY, Lee DY, Kim OY, Hur SJ. Analysis for change in microbial contents in five mixed Kimchi starter culture and commercial lactic acid bacterial-fermented sausages and biological hazard in manufacturing facilities. Food Sci Biotechnol 2019; 28:787-794. [PMID: 31093436 PMCID: PMC6484038 DOI: 10.1007/s10068-018-0510-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/17/2018] [Accepted: 11/11/2018] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to compare change in microbial contents between sausages with five mixed Kimchi starter culture (T1) and commercial lactic acid bacterial (LAB) (T2) during fermentation, and to screen manufacturing facilities for microbial condition. For T1 and T2, pH levels decreased at 7 days and increased at 14 days. For color, the lightness of T1 decreased at 7 days (36.50 ± 6.04) and slightly increased at 14 days (38.40 ± 4.35). In addition, T1 and T2 were observed decrement of redness and increment of yellowness during ripening. Mold, yeast, and LAB were detected, whereas pathogenic bacteria were not detected in both sausages (T1 and T2) and screening manufacturing facilities. Taken together, five mixed Kimchi starter culture fermented sausage was similar to commercial LAB-fermented sausage, and this study could be used to information as basic data biological hazard for HACCP system in fermented sausage.
Collapse
Affiliation(s)
- Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546 Republic of Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546 Republic of Korea
| | - On You Kim
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546 Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546 Republic of Korea
| |
Collapse
|
46
|
Kang MS, Yeu JE, Hong SP. Safety Evaluation of Oral Care Probiotics Weissella cibaria CMU and CMS1 by Phenotypic |and Genotypic Analysis. Int J Mol Sci 2019; 20:E2693. [PMID: 31159278 PMCID: PMC6601035 DOI: 10.3390/ijms20112693] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022] Open
Abstract
Weissella cibaria CMU and CMS1 are known to exert beneficial effects on the oral cavity but have not yet been determined to be generally recognized as safe (GRAS), although they are used as commercial strains in Korea. We aimed to verify the safety of W. cibaria CMU and CMS1 strains through phenotypic and genotypic analyses. Their safety was evaluated by a minimum inhibitory concentration assay for 14 antibiotics, DNA analysis for 28 antibiotic resistance genes (ARGs) and one conjugative element, antibiotic resistance gene transferability, virulence gene analysis, hemolysis, mucin degradation, toxic metabolite production, and platelet aggregation reaction. W. cibaria CMU showed higher kanamycin resistance than the European Food Safety Authority (EFSA) cut-off, but this resistance was not transferred to the recipient strain. W. cibaria CMU and CMS1 lacked ARGs in chromosomes and plasmids, and genetic analysis confirmed that antibiotic resistance of kanamycin was an intrinsic characteristic of W. cibaria. Additionally, these strains did not harbor virulence genes associated with pathogenic bacteria and lacked toxic metabolite production, β-hemolysis, mucin degradation, bile salt deconjugation, β-glucuronidase, nitroreductase activity, gelatin liquefaction, phenylalanine degradation, and platelet aggregation. Our findings demonstrate that W. cibaria CMU and CMS1 can achieve the GRAS status in future.
Collapse
Affiliation(s)
- Mi-Sun Kang
- Research Institute, Oradentics Inc., 1805-ho, 25 Seongsuil-ro-4-gil, Seongdong-gu, Seoul 04781, Korea.
| | - Ji-Eun Yeu
- Research Institute, Oradentics Inc., 1805-ho, 25 Seongsuil-ro-4-gil, Seongdong-gu, Seoul 04781, Korea.
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Sang-Phil Hong
- Division of Strategic Food Research, Korea Food Research Institute (KFRI), 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| |
Collapse
|
47
|
Liu Z, Peng Z, Huang T, Guan Q, Li J, Xie M, Xiong T. Bacterial community dynamics and physicochemical characteristics in natural fermentation of jiang-shui, a traditional food made in northwest China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3391-3397. [PMID: 30609036 DOI: 10.1002/jsfa.9556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/15/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chinese jiang-shui is fermented food without salt. In consideration of the few studies of the bacterial community and dynamics of jiang-shui fermentation, the aim of this study was to investigate the microbial diversity and dynamics of jiang-shui fermentation using high-throughput sequencing (HTS), denaturing gradient gel electrophoresis (DGGE) and the culture-dependent method. RESULTS The culture-dependent method showed that pathogenic bacteria (Staphylococcus aureus, Salmonella and Escherichia coli) and yeast mainly existed in the early stage and lactic acid bacteria dominated until the end stage. HTS and DGGE revealed that Serratia marcescens, Serratia sp., Lactobacillus curvatus, Lactococcus lactis, uncultured bacterium and Bacillus thuringiensis started the fermentation, followed by the middle stage with Lactococcus lactis, Weissella sp. and Bacillus arthracis as the predominant species. The end stage was characterized with Lactobacillus pentosus, Weissella cibaria and Weissella sp. as the major bacteria. CONCLUSIONS The results showed that genera Serratia, Lactococcus, Weissella and Lactobacillus dominated the whole process of jiang-shui fermentation. This study provided a good analysis of the bacterial changes of jiang-shui fermentation, and future studies should consider the relationships among the sensory characteristics, microbial communities and metabolites. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhanggen Liu
- State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| | - Zhen Peng
- State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| | - Tao Huang
- State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| | - Qianqian Guan
- State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| | - Junyi Li
- State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi, PR China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| |
Collapse
|
48
|
Moon PD, Lee JS, Kim HY, Han NR, Kang I, Kim HM, Jeong HJ. Heat-treated Lactobacillus plantarum increases the immune responses through activation of natural killer cells and macrophages on in vivo and in vitro models. J Med Microbiol 2019; 68:467-474. [DOI: 10.1099/jmm.0.000938] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Phil-Dong Moon
- 1 Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- 2 Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Soo Lee
- 1 Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Yun Kim
- 1 Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na-Ra Han
- 1 Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Inyeong Kang
- 3 Biogenicskorea Co., Ltd., Seoul 06628, Republic of Korea
| | - Hyung-Min Kim
- 1 Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun-Ja Jeong
- 4 Department of Food Science & Technology and Biochip Research Center, Hoseo University, Chungnam 31499, Republic of Korea
| |
Collapse
|
49
|
Lavefve L, Marasini D, Carbonero F. Microbial Ecology of Fermented Vegetables and Non-Alcoholic Drinks and Current Knowledge on Their Impact on Human Health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 87:147-185. [PMID: 30678814 DOI: 10.1016/bs.afnr.2018.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fermented foods are currently experiencing a re-discovery, largely driven by numerous health benefits claims. While fermented dairy, beer, and wine (and other alcoholic fermented beverages) have been the subject of intensive research, other plant-based fermented foods that are in some case widely consumed (kimchi/sauerkraut, pickles, kombucha) have received less scientific attention. In this chapter, the current knowledge on the microbiology and potential health benefits of such plant-based fermented foods are presented. Kimchi is the most studied, characterized by primarily acidic fermentation by lactic acid bacteria. Anti-obesity and anti-hypertension properties have been reported for kimchi and other pickled vegetables. Kombucha is the most popular non-alcoholic fermented drink. Kombucha's microbiology is remarkable as it involves all fermenters described in known fermented foods: lactic acid bacteria, acetic acid bacteria, fungi, and yeasts. While kombucha is often hyped as a "super-food," only antioxidant and antimicrobial properties toward foodborne pathogens are well established; and it is unknown if these properties incur beneficial impact, even in vitro or in animal models. The mode of action that has been studied and demonstrated the most is the probiotic one. However, it can be expected that fermentation metabolites may be prebiotic, or influence host health directly. To conclude, plant-based fermented foods and drinks are usually safe products; few negative reports can be found, but more research, especially human dietary intervention studies, are warranted to substantiate any health claim.
Collapse
Affiliation(s)
- Laura Lavefve
- Department of Food Science and Center for Human Nutrition, University of Arkansas, Fayetteville, AR, United States; Direction des Etudes Et Prestations (DEEP), Institut Polytechnique UniLaSalle, Beauvais, France
| | - Daya Marasini
- Department of Food Science and Center for Human Nutrition, University of Arkansas, Fayetteville, AR, United States
| | - Franck Carbonero
- Department of Food Science and Center for Human Nutrition, University of Arkansas, Fayetteville, AR, United States.
| |
Collapse
|
50
|
El Sheikha AF, Hu DM. Molecular techniques reveal more secrets of fermented foods. Crit Rev Food Sci Nutr 2018; 60:11-32. [DOI: 10.1080/10408398.2018.1506906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Aly Farag El Sheikha
- Jiangxi Agricultural University, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, China
- McMaster University, Department of Biology, Hamilton, Ontario, Canada
- Minufiya University, Faculty of Agriculture, Department of Food Science and Technology, Shibin El Kom, Minufiya Government, Egypt
| | - Dian-Ming Hu
- Jiangxi Agricultural University, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, China
| |
Collapse
|