1
|
Magnetic deep eutectic solvent-based microextraction for determination of organophosphorus flame retardants in aqueous samples: One step closer to green chemistry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
2
|
Varshavsky JR, Robinson JF, Zhou Y, Puckett KA, Kwan E, Buarpung S, Aburajab R, Gaw SL, Sen S, Gao S, Smith SC, Park JS, Zakharevich I, Gerona RR, Fisher SJ, Woodruff TJ. Organophosphate Flame Retardants, Highly Fluorinated Chemicals, and Biomarkers of Placental Development and Disease During Mid-Gestation. Toxicol Sci 2021; 181:215-228. [PMID: 33677611 PMCID: PMC8163039 DOI: 10.1093/toxsci/kfab028] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) and organophosphate flame retardants (OPFRs) are chemicals that may contribute to placenta-mediated complications and adverse maternal-fetal health risks. Few studies have investigated these chemicals in relation to biomarkers of effect during pregnancy. We measured 12 PFASs and four urinary OPFR metabolites in 132 healthy pregnant women during mid-gestation and examined a subset with biomarkers of placental development and disease (n = 62). Molecular biomarkers included integrin alpha-1 (ITGA1), vascular endothelial-cadherin (CDH5), and matrix metalloproteinase-1 (MMP1). Morphological endpoints included potential indicators of placental stress and the extent of cytotrophoblast (CTB)-mediated uterine artery remodeling. Serum PFASs and urinary OPFR metabolites were detected in ∼50%-100% of samples. The most prevalent PFASs were perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonic acid (PFOS), with geometric mean (GM) levels of ∼1.3-2.8 (95% confidence limits from 1.2-3.1) ng/ml compared to ≤0.5 ng/ml for other PFASs. Diphenyl phosphate (DPhP) and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) were the most prevalent OPFR metabolites, with GMs of 2.9 (95% CI: 2.5-3.4) and 3.6 (95% CI: 2.2-3.1) ng/ml, respectively, compared to <1 ng/ml for bis(2-chloroethyl) phosphate (BCEP) and bis(1-chloro-2-propyl) phosphate (BCIPP). We found inverse associations of PFASs or OPFRs with ITGA1 or CDH5 immunoreactivity and positive associations with indicators of placental stress in multiple basal plate regions, indicating these chemicals may contribute to abnormal placentation and future health risks. Associations with blood pressure and lipid concentrations warrant further examination. This is the first study of these chemicals with placental biomarkers measured directly in human tissues and suggests specific biomarkers are sensitive indicators of exposure during a vulnerable developmental period.
Collapse
Affiliation(s)
- Julia R Varshavsky
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, California 94158
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Joshua F Robinson
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, California 94158
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Yan Zhou
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Kenisha A Puckett
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Elaine Kwan
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Sirirak Buarpung
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Rayyan Aburajab
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Stephanie L Gaw
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | - Sabrina Crispo Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, California 94710
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, California 94710
| | - Igor Zakharevich
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Roy R Gerona
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Susan J Fisher
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, California 94158
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, California 94158
| |
Collapse
|
3
|
Saquib Q, Siddiqui M, Al-Khedhairy A. Organophosphorus flame-retardant tris(1-chloro-2-propyl)phosphate is genotoxic and apoptotic inducer in human umbilical vein endothelial cells. J Appl Toxicol 2021; 41:861-873. [PMID: 33641188 DOI: 10.1002/jat.4158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 11/08/2022]
Abstract
Tris(1-chloro-2-propyl)phosphate (TCPP) is a chlorinated organophosphorus flame retardant (OPFR) widely used in consumer goods after the phaseout of brominated flame retardants (BFRs). TCPP can percolate into the indoor and outdoor dusts, leading to its detection in the human body fluids (urine, breast milk) and placenta. However, TCPP has not been studied so far for its toxicity in the human vascular system. Hence, we have used human umbilical vein endothelial cells (HUVECs) and exposed them to TCPP ranging from low to high (5-400 μM) concentrations for 24 h. Cytotoxicity analysis by MTT and NRU assays exhibited 15.27% and 20.56%, 21.67%, and 48.67% survival decline of cells only at 200 and 400 μM. Comet assay data showed DNA damage from 50 to 400 μM with Olive tail moment (OTM) values between 1.03 and 35.59, respectively. TCPP-exposed HUVECs exhibited 1.09 and 1.39-fold greater intracellular reactive oxygen species (ROS) at 25 and 400 μM, indicating oxidative stress. HUVEC mitochondrial membrane potential (ΔΨm) measurements showed 1.16 and 1.48-fold higher fluorescence of Rh123 dye at 25 and 400 μM, confirming mitochondrial dysfunction. Flow cytometric data demonstrated 5.1%-58.8% cells in SubG1 apoptotic phase at 5 and 400 μM TCPP. Our novel data revealed that TCPP is a genotoxic and apoptotic inducer, which may trigger alike responses in human vascular system. Overall, detailed in vivo studies are warranted on the transcriptional and translations effects of TCPP.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia.,Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maqsood Siddiqui
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia.,Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Bowen C, Childers G, Perry C, Martin N, McPherson CA, Lauten T, Santos J, Harry GJ. Mitochondrial-related effects of pentabromophenol, tetrabromobisphenol A, and triphenyl phosphate on murine BV-2 microglia cells. CHEMOSPHERE 2020; 255:126919. [PMID: 32402876 PMCID: PMC8439439 DOI: 10.1016/j.chemosphere.2020.126919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 05/02/2023]
Abstract
The predominant reliance on bromated flame retardants (BFRs) is diminishing with expanded use of alternative organophosphate flame retardants. However, exposure related issues for susceptible populations, the developing, infirmed, or aged, remain given environmental persistence and home-environment detection. In this regard, reports of flame retardant (FR)-related effects on the innate immune system suggest process by which a spectrum of adverse health effects could manifest across the life-span. As representative of the nervous system innate immune system, the current study examined changes in microglia following exposure to representative FRs, pentabromophenol (PBP), tetrabromobisphenol A (2,2',6,6',-tetrabromo-4,4'-isopropylidine diphenol; TBBPA) and triphenyl phosphate (TPP). Following 18hr exposure of murine BV-2 cells, at dose levels resulting in ≥80% viability (10 and 40 μM), limited alterations in pro-inflammatory responses were observed however, changes were observed in mitochondrial respiration. Basal respiration was altered by PBP; ATP-linked respiration by PBP and TBBPA, and maximum respiration by all three FRs. Basal glycolytic rate was altered by PBP and TBBPA and compensatory glycolysis by all three. Phagocytosis was decreased for PBP and TBBPA. NLRP3 inflammasome activation was assessed using BV-2-ASC (apoptosis-associated speck-like protein containing a CARD) reporter cells to visualize aggregate formation. PBP, showed a direct stimulation of aggregate formation and properties as a NLRP3 inflammasome secondary trigger. TBBPA showed indications of possible secondary triggering activity while no changes were seen with TPP. Thus, the data suggests an effect of all three FRs on mitochondria metabolism yet, different functional outcomes including, phagocytic capability and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
| | | | | | - Negin Martin
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | | |
Collapse
|
5
|
Ji C, Lu Z, Xu L, Li F, Cong M, Shan X, Wu H. Global responses to tris(1-chloro-2-propyl)phosphate (TCPP) in rockfish Sebastes schlegeli using integrated proteomic and metabolomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138307. [PMID: 32272412 DOI: 10.1016/j.scitotenv.2020.138307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 05/22/2023]
Abstract
As alternatives of brominated flame retardants, organophosphate flame retardants (OPFRs) can be detected in multiple marine environmental media. Tris(1-chloro-2-propyl)phosphate (TCPP) was one of the most frequently and abundantly detected OPFRs in the Bohai Sea. Exposure to TCPP has been shown to induce abnormal behavior in zebrafish as well as neurotoxicity in Caenorhabditis elegans. However, there is a lack of mechanism investigations on the toxic effects of TCPP at molecular levels. In this work, proteomics and metabolomics were integrated to analyze the proteome and metabolome responses in rockfish Sebastes schlegeli treated with TCPP (10 and 100 nM) for 15 days. A total of 143 proteins and 8 metabolites were significantly altered in rockfish following TCPP treatments. The responsive proteins and metabolites were predominantly involved in neurotransmission, neurodevelopment, signal transduction, cellular transport, cholesterol metabolism, bile acid synthesis, and detoxification. Furthermore, a hypothesized network of proteins, metabolites, and pathways in rockfish was summarized based on the combination of proteomic and metabolomic results, showing some key molecular events in response to TCPP. Overall, the present study unraveled the molecular responses at protein and metabolite levels, which provided a better understanding of toxicological effects and mechanisms of TCPP in marine teleost.
Collapse
Affiliation(s)
- Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Zhen Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lanlan Xu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Ming Cong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
6
|
Watanabe M, Noguchi M, Hashimoto T, Yoshida S. [Adsorption of Airbone Organophosphorus Flame Retardants on Polished Rice Stored in a House]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2020; 60:159-167. [PMID: 31969535 DOI: 10.3358/shokueishi.60.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to clarify the actual situation of indoor pollution to polished rice with organophosphorus flame retardants (PFRs) which are ubiquitous in the indoor environment, the pollution of PFRs to polished rice stored in a house for a week was investigated. The survey covered 64 ordinary families in the Osaka region. We analyzed six typical PFRs in 37 rice samples in 2015, and ten typical PFRs in 27 rice samples in 2016. Polished rice was homogenized with acetone-hexane and defatted by hexane-acetonitrile partition. Quantitative analysis for PFRs was performed by GC-FPD. The detection frequency of PFRs in the rice samples was 35/37 in 2015 and 27/27 in 2016. The highest values were 160 ng/g for TCEP, 500 ng/g for TCIPP and 430 ng/g for TBEP. The concentration ratio of each detected PFR in the polished rice samples was different in each house. In the analysis of 16 polished rice samples which were stored in the home, PFRs were detected in ten samples regardless of the storage methods. PFRs were detected from 12 out of 16 commercial brown rice samples. This result suggested that they were polluted during distribution and storage process of them.
Collapse
Affiliation(s)
- Misaki Watanabe
- Food Science and Nutrition Major, Graduate School of Human Environmental Sciences, Mukogawa Women's University
| | - Mikako Noguchi
- Food Science and Nutrition Major, Graduate School of Human Environmental Sciences, Mukogawa Women's University
| | - Tamiko Hashimoto
- Department of Food Science and Nutrition, Faculty of Human Environmental Sciences, Mukogawa Women's University
| | - Seisaku Yoshida
- Department of Food Science and Nutrition, Faculty of Human Environmental Sciences, Mukogawa Women's University
| |
Collapse
|
7
|
Shahbodaghi M, Faraji H, Shahbaazi H, Shabani M. Sustainable and green microextraction of organophosphorus flame retardants by a novel phosphonium‐based deep eutectic solvent. J Sep Sci 2019; 43:452-461. [DOI: 10.1002/jssc.201900504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Maryam Shahbodaghi
- Department of ChemistryVaramin‐Pishva BranchIslamic Azad University Varamin Iran
| | - Hakim Faraji
- Department of ChemistryVaramin‐Pishva BranchIslamic Azad University Varamin Iran
| | - Hamidreza Shahbaazi
- Department of ChemistryVaramin‐Pishva BranchIslamic Azad University Varamin Iran
| | - Mohsen Shabani
- Department of ChemistryVaramin‐Pishva BranchIslamic Azad University Varamin Iran
| |
Collapse
|