1
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579142. [PMID: 38370745 PMCID: PMC10871249 DOI: 10.1101/2024.02.06.579142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
2
|
Neiman M, Hehman G, Miller JT, Logsdon JM, Taylor DR. Accelerated mutation accumulation in asexual lineages of a freshwater snail. Mol Biol Evol 2009; 27:954-63. [PMID: 19995828 DOI: 10.1093/molbev/msp300] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sexual reproduction is both extremely costly and widespread relative to asexual reproduction, meaning that it must also confer profound advantages in order to persist. One theorized benefit of sex is that it facilitates the clearance of harmful mutations, which would accumulate more rapidly in the absence of recombination. The extent to which ineffective purifying selection and mutation accumulation are direct consequences of asexuality and whether the accelerated buildup of harmful mutations in asexuals can occur rapidly enough to maintain sex within natural populations, however, remain as open questions. We addressed key components of these questions by estimating the rate of mutation accumulation in the mitochondrial genomes of multiple sexual and asexual representatives of Potamopyrgus antipodarum, a New Zealand snail characterized by mixed sexual/asexual populations. We found that increased mutation accumulation is associated with asexuality and occurs rapidly enough to be detected in recently derived asexual lineages of P. antipodarum. Our results demonstrate that increased mutation accumulation in asexuals can differentially affect coexisting and ecologically similar sexual and asexual lineages. The accelerated rate of mutation accumulation observed in asexual P. antipodarum provides some of the most direct evidence to date for a link between asexuality and mutation accumulation and implies that mutational buildup could be rapid enough to contribute to the short-term evolutionary mechanisms that favor sexual reproduction.
Collapse
Affiliation(s)
- Maurine Neiman
- Department of Biology, Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa, USA.
| | | | | | | | | |
Collapse
|
3
|
Halligan DL, Keightley PD. Spontaneous Mutation Accumulation Studies in Evolutionary Genetics. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.39.110707.173437] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel L. Halligan
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; ,
| | - Peter D. Keightley
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; ,
| |
Collapse
|
4
|
Martin G, Lenormand T. THE FITNESS EFFECT OF MUTATIONS ACROSS ENVIRONMENTS: A SURVEY IN LIGHT OF FITNESS LANDSCAPE MODELS. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01878.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Killick SC, Carlsson AM, West SA, Little TJ. Testing the pluralist approach to sex: the influence of environment on synergistic interactions between mutation load and parasitism in Daphnia magna. J Evol Biol 2006; 19:1603-11. [PMID: 16910989 DOI: 10.1111/j.1420-9101.2006.01123.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both deleterious mutations and parasites have been acknowledged as potential selective forces responsible for the evolutionary maintenance of sexual reproduction. The pluralist approach to sex proposes that these two factors may have to interact synergistically in order to stabilize sex, and one of the simplest ways this could occur is if parasites are capable of causing synergistic epistasis between mutations in their hosts. However, the effects of both deleterious mutations and parasitism are known to be influenced by a range of environmental factors, so the nature of the interaction may depend upon the organisms' environment. Using chemically mutated Daphnia magna lines, we examined the effects of mutation and parasitism under a range of temperature and food regimes. We found that although parasites were capable of causing synergistic epistasis between mutations in their hosts, these effects were dependent upon an interaction between parasite genotype and temperature.
Collapse
Affiliation(s)
- S C Killick
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK.
| | | | | | | |
Collapse
|
6
|
Martin G, Lenormand T. A GENERAL MULTIVARIATE EXTENSION OF FISHER'S GEOMETRICAL MODEL AND THE DISTRIBUTION OF MUTATION FITNESS EFFECTS ACROSS SPECIES. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01169.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Chang SM, Shaw RG. The contribution of spontaneous mutation to variation in environmental response in Arabidopsis thaliana: responses to nutrients. Evolution 2003; 57:984-94. [PMID: 12836817 DOI: 10.1111/j.0014-3820.2003.tb00310.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although the evolutionary importance of spontaneous mutation is evident, its contribution to the evolution of ecological specificity remains unclear, because the environmental sensitivity of effects of new mutations has received little empirical attention. To address this issue, we report a greenhouse in which we grew plants from 20 mutation-accumulation (MA) lines, advanced by selfing and single-seed descent from a single common founder to generation 17, as well as plants from five lines representing the founder, in high and low nutrient conditions. We examined 11 traits throughout life history, including germination, survivorship, bolting date, flowering date, leaf number, leaf size, early and late height, mean fruit size, total seed weight, and reproductive biomass. Comparison of trait means between the two generations did not support the commonly held view that new mutations affecting fitness in these MA lines are strongly biased toward deleterious effects. We detected significant variance among MA lines for one fitness component, mean fruit size, but we did not detect a significant contribution of mutations accumulated in these MA lines to genotype by environment interaction (GEI). These results suggest that other evolutionary mechanisms play a more important role than spontaneous mutation alone in establishing the GEI found for wild collections and lab accessions of Arabidopsis thaliana in previous studies.
Collapse
Affiliation(s)
- Shu-Mei Chang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602-7271, USA.
| | | |
Collapse
|
8
|
Abstract
Deleterious mutation accumulation has been implicated in many biological phenomena and as a potentially significant threat to human health and the persistence of small populations. The vast majority of mutations with effects on fitness are known to be deleterious in a given environment, and their accumulation results in mean population fitness decline. However, whether populations are capable of recovering from negative effects of prolonged genetic bottlenecks via beneficial or compensatory mutation accumulation has not previously been tested. To address this question, long-term mutation-accumulation lines of the nematode Caenorhabditis elegans, previously propagated as single individuals each generation, were maintained in large population sizes under competitive conditions. Fitness assays of these lines and comparison to parallel mutation-accumulation lines and the ancestral control show that, while the process of fitness restoration was incomplete for some lines, full recovery of mean fitness was achieved in fewer than 80 generations. Several lines of evidence indicate that this fitness restoration was at least partially driven by compensatory mutation accumulation rather than a result of a generic form of laboratory adaptation. This surprising result has broad implications for the influence of the mutational process on many issues in evolutionary and conservation biology.
Collapse
Affiliation(s)
- Suzanne Estes
- Department of Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | |
Collapse
|
9
|
Shaw RG, Shaw FH, Geyer C. WHAT FRACTION OF MUTATIONS RED.UCES FITNESS? A REPLY TO KEIGHTLEY AND LYNCH. Evolution 2003. [DOI: 10.1111/j.0014-3820.2003.tb01562.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Abstract
Analysis of a recent mutation accumulation (MA) experiment has led to the suggestion that as many as one-half of spontaneous mutations in Arabidopsis are advantageous for fitness. We evaluate this in the light of data from other MA experiments, along with molecular evidence, that suggest the vast majority of new mutations are deleterious.
Collapse
Affiliation(s)
- Peter D Keightley
- University of Edinburgh, Institute of Cell, Animal and Population Biology, West Mains Road, Edinburgh EH9 3JT, United Kingdom.
| | | |
Collapse
|
11
|
Abstract
Malathion-specific resistance in the red flour beetle, Tribolium castaneum, is widespread and stable in natural populations even in the absence of pesticide exposure. To understand this stability, both resistant and susceptible males were placed in competition for susceptible female fertilization. Females were then isolated and their progeny was tested for malathion susceptibility. Male reproductive success was estimated for populations originating from different geographic areas and for isogenic strains. In most cases, resistant males had a greater reproductive success rate than susceptibles. The results suggest that male reproductive success is not traded against the selection for malathion resistance, even resistant individuals are at an advantage for this fitness trait. This absence of fitness cost may be the result of postselection of (1) modifier gene which ameliorate the fitness of resistant individuals or (2) nondeleterious resistance gene. Resistant phenotype superiority could be due to increased male mating success, improved ability of resistant males in sperm competition, female mate choice, and/or cryptic female choice of resistance gene(s). The effect of male phenotypic frequency on male reproductive success was also examined. We observed that male fertilization success is frequency dependent and inversely related to their frequency. However, this "rare male" advantage did not counteract the superiority of the resistant males.
Collapse
Affiliation(s)
- Ludovic Arnaud
- Department of Pure and Applied Zoology, Gembloux Agricultural University, 2, Passage des déportés, B-5030 Gembloux, Belgium.
| | | |
Collapse
|
12
|
Caballero A, Cusi E, García C, García-Dorado A. Accumulation of deleterious mutations: additional Drosophila melanogaster estimates and a simulation of the effects of selection. Evolution 2002; 56:1150-9. [PMID: 12144016 DOI: 10.1111/j.0014-3820.2002.tb01428.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report an assay of egg-to-adult viability in full-sibling mutation accumulation (MA) lines derived from a completely homozygous population of Drosophila melanogaster and maintained for 210 generations. A simultaneous evaluation was also made of a large population derived from the same origin and maintained as a control for the same period. We also present computer simulations to explore the possible decline in viability of the control population due to mutation accumulation and the possible effect of selection within and between MA lines. For this purpose, we used two mutational models independent from the data analyzed and based on radically different assumptions. The first model implies a large number of mutations of small effect, whereas the second implies a much smaller number of mutations with much larger effects. The observed rate of decline in mean viability was very small but significant (0.077%). The rate of increase in among line variance (0.189 x 10(-3)) was similar to those obtained previously in the same lines. The simulation results indicated that a model of many mutations of small effect is incompatible with the evolution of the mean viability of the control and MA lines over generations, the distribution of line means after 210 generations of mutation accumulation, and the pattern of line extinction over generations. Basically, this model predicted a large drop in viability, both in the control and particularly the MA lines, that is not observed empirically. It also predicted a rate of line extinction too low in the early generations and too high in the later ones. In contrast, the model based on few mutations of large effect was generally consistent with all the observations.
Collapse
Affiliation(s)
- A Caballero
- Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Ciencias, Universidade de Vigo, Spain.
| | | | | | | |
Collapse
|
13
|
Shaw FH, Geyer CJ, Shaw RG. A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana. Evolution 2002; 56:453-63. [PMID: 11989677 DOI: 10.1111/j.0014-3820.2002.tb01358.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As the ultimate source of genetic variation, spontaneous mutation is essential to evolutionary change. Theoretical studies over several decades have revealed the dependence of evolutionary consequences of mutation on specific mutational properties, including genomic mutation rates, U, and the effects of newly arising mutations on individual fitness, s. The recent resurgence of empirical effort to infer these properties for diverse organisms has not achieved consensus. Estimates, which have been obtained by methods that assume mutations are unidirectional in their effects on fitness, are imprecise. Both because a general approach must allow for occurrence of fitness-enhancing mutations, even if these are rare, and because recent evidence demands it, we present a new method for inferring mutational parameters. For the distribution of mutational effects, we retain Keightley's assumption of the gamma distribution, to take advantage of the flexibility of its shape. Because the conventional gamma is one sided, restricting it to unidirectional effects, we include an additional parameter, rho, as an amount it is displaced from zero. Estimation is accomplished by Markov chain Monte Carlo maximum likelihood. Through a limited set of simulations, we verify the accuracy of this approach. We apply it to analyze data on two reproductive fitness components from a 17-generation mutation-accumulation study of a Columbia accession of Arabidopsis thaliana in which 40 lines sampled in three generations were assayed simultaneously. For these traits, U approximately/= 0.1-0.2, with distributions of mutational effects broadly spanning zero, such that roughly half the mutations reduce reproductive fitness. One evolutionary consequence of these results is lower extinction risks of small populations of A. thaliana than expected from the process of mutational meltdown. A comprehensive view of the evolutionary consequences of mutation will depend on quantitatively accounting for fitness-enhancing, as well as fitness-reducing, mutations.
Collapse
Affiliation(s)
- Frank H Shaw
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul 55108, USA.
| | | | | |
Collapse
|
14
|
Abstract
The effects of mutation on phenotypic expression are supposed to be mainly deleterious because mutations disrupt the expression of genes that function relatively well under current environmental conditions. Thus, mutations are assumed to give rise to deviant phenotypes that are generally selected against. Radioactive contamination in the Chernobyl region of Ukraine is associated with a significant increase by a factor two to 10 in mutation rate in microsatellite markers of the barn swallow, Hirundo rustica. Barn swallows from Chernobyl had a temporally constant, elevated frequency of partial albinism compared to the situation before radioactive contamination and compared to birds from a control area. Albinism disproportionately affected the carotenoid-based plumage of the head, suggesting that carotenoid metabolism is particularly susceptible to the effects of radiation. Individuals with partially albinistic plumage had, on average, lower mean phenotypic values than other birds, and this was particularly the case for males. Furthermore, differences in phenotypic variation, as determined using Levene's test, were significantly larger in partial albinos compared to nonalbinos in males, but not in females, even though the null expectation would be the opposite due to the lower mean phenotypic values of partial albinos. Although small phenotypes were commonly associated with germline mutations, there was no general decrease in overall body size during the period 1991-2000, implying that small individuals were selected against. Because partial albinism is disfavored by natural selection, the effects of mutations are deleterious, giving rise to a balance between mutation and selection.
Collapse
Affiliation(s)
- A P Møller
- Laboratoire d'Ecologie Evolutive Parasitaire, Centre National de la Recherche Scientifique, Formation en Recherche de la Evolution 2365, Université Pierre et Marie Curie, Case, Paris, France.
| | | |
Collapse
|