1
|
Jakabfi-Csepregi R, Alberti Á, Felegyi-Tóth CA, Kőszegi T, Czigle S, Papp N. A Comprehensive Study on Lathyrus tuberosus L.: Insights into Phytochemical Composition, Antimicrobial Activity, Antioxidant Capacity, Cytotoxic, and Cell Migration Effects. PLANTS (BASEL, SWITZERLAND) 2024; 13:232. [PMID: 38256785 PMCID: PMC10821300 DOI: 10.3390/plants13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
In this study, in vitro antioxidant, antimicrobial, cytotoxic, and cell migration effects of phenolic compounds of Lathyrus tuberosus leaves, known in the Transylvanian ethnomedicine, were investigated. Ultra-high-performance liquid chromatography-tandem mass spectrometry was employed for the analysis of the ethanolic and aqueous extracts. The antimicrobial properties were determined using a conventional microdilution technique. Total antioxidant capacity techniques were used using cell-free methods and cell-based investigations. Cytotoxic effects were conducted on 3T3 mouse fibroblasts and HaCaT human keratinocytes using a multiparametric method, assessing intracellular ATP, total nucleic acid, and protein levels. Cell migration was visualized by phase-contrast microscopy, employing conventional culture inserts to make cell-free areas. Together, 93 polyphenolic and monoterpenoid compounds were characterized, including flavonoid glycosides, lignans, hydroxycinnamic acid, and hydroxybenzoic acid derivatives, as well as iridoids and secoiridoids. The ethanolic extract showed high antioxidant capacity and strong antimicrobial activity against Bacillus subtilis (MIC80 value: 354.37 ± 4.58 µg/mL) and Streptococcus pyogenes (MIC80 value: 488.89 ± 4.75 µg/mL). The abundance of phenolic compounds and the results of biological tests indicate the potential for L. tuberosus to serve as reservoirs of bioactive compounds and to be used in the development of novel nutraceuticals.
Collapse
Affiliation(s)
- Rita Jakabfi-Csepregi
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, HU-7624 Pécs, Hungary; (R.J.-C.); (T.K.)
- János Szentágothai Research Center, University of Pécs, Ifjúság u. 20, HU-7624 Pécs, Hungary
| | - Ágnes Alberti
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői út 26, HU-1085 Budapest, Hungary; (Á.A.); (C.A.F.-T.)
| | - Csenge Anna Felegyi-Tóth
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői út 26, HU-1085 Budapest, Hungary; (Á.A.); (C.A.F.-T.)
| | - Tamás Kőszegi
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, HU-7624 Pécs, Hungary; (R.J.-C.); (T.K.)
- János Szentágothai Research Center, University of Pécs, Ifjúság u. 20, HU-7624 Pécs, Hungary
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
| | - Nóra Papp
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2., HU-7624 Pécs, Hungary;
| |
Collapse
|
2
|
Mohamed ME, El-Shafae AM, Fikry E, Elbaramawi SS, Elbatreek MH, Tawfeek N. Casuarina glauca branchlets' extract as a potential treatment for ulcerative colitis: chemical composition, in silico and in vivo studies. Front Pharmacol 2023; 14:1322181. [PMID: 38196993 PMCID: PMC10774231 DOI: 10.3389/fphar.2023.1322181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that is often resistant to current treatment options, leading to a need for alternative therapies. Herbal products have shown promise in managing various conditions, including UC. However, the potential of Casuarina glauca branchlets ethanolic extract (CGBRE) in treating UC has not been explored. This study aimed to analyze the chemical composition of CGBRE and evaluate its efficacy in UC treatment through in silico and in vivo experiments. LC-ESI-MS/MS was used to identify 86 compounds in CGBRE, with 21 potential bioactive compounds determined through pharmacokinetic analysis. Network pharmacology analysis revealed 171 potential UC targets for the bioactive compounds, including EGFR, LRRK2, and HSP90 as top targets, which were found to bind to key CGBRE compounds through molecular docking. Molecular docking findings suggested that CGBRE may be effective in the prevention or treatment of ulcerative colitis mediated by these proteins, where key CGBRE compounds exhibited good binding affinities through formation of numerous interactions. In vivo studies in rats with acetic acid-induced UC demonstrated that oral administration of 300 mg/kg CGBRE for 6 days reduced UC symptoms and colonic expression of EGFR, LRRK2, and HSP90. These findings supported the therapeutic potential of CGBRE in UC and suggested the need for further preclinical and clinical investigation.
Collapse
Affiliation(s)
- Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Azza M. El-Shafae
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Fikry
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar S. Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mahmoud H. Elbatreek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Zhou L, Duan X, Li K, Hill DRA, Martin GJO, Suleria HAR. Extraction and Characterization of Bioactive Compounds from Diverse Marine Microalgae and Their Potential Antioxidant Activities. Chem Biodivers 2023; 20:e202300602. [PMID: 37798811 DOI: 10.1002/cbdv.202300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
This study compared free and bound phenolic compounds in various marine microalgae species. It assessed total phenolic content (TPC), total flavonoid content (TFC) and total condensed tannin content (TCT) and their antioxidant capacities using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS⋅+ ) radical cation-based assay and ferric ion reducing antioxidant power assay. Liquid chromatography-mass spectrometry (LC-MS) was also employed to characterize the phenolic profiling. Results showed that free phenolic compounds ranged from 1.83-6.45 mg GAE/g d. w., while bound phenolic compounds ranged from 4.03-26.03 mg GAE/g d. w., indicating significant differences. These variations were consistent across assays, highlining unique profiles in different species. A total 10 phenolics were found in these seven microalgae, including 1 phenolic acid, 6 flavonoids, 1 other polyphenol and 2 lignans. 4'-O-methyl-(-)-epigallocatechin 7-O-glucuronide and chrysoeriol 7-O-glucoside in microalgae were firstly reported in microalgal samples. These findings have implications for future applications in industries.
Collapse
Affiliation(s)
- Linhui Zhou
- School of Agriculture, Food and Ecosystem, Faculty of Sciences, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Xinyu Duan
- School of Agriculture, Food and Ecosystem, Faculty of Sciences, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Kunning Li
- School of Agriculture, Food and Ecosystem, Faculty of Sciences, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - David R A Hill
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem, Faculty of Sciences, The University of Melbourne, Parkville, 3010, VIC, Australia
| |
Collapse
|
4
|
Hegazy MM, Afifi WM, Metwaly AM, Radwan MM, Abd-Elraouf M, Mehany ABM, Ahmed E, Enany S, Ezzeldin S, Ibrahim AE, El Deeb S, Mostafa AE. Antitrypanosomal, Antitopoisomerase-I, and Cytotoxic Biological Evaluation of Some African Plants Belonging to Crassulaceae; Chemical Profiling of Extract Using UHPLC/QTOF-MS/MS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248809. [PMID: 36557948 PMCID: PMC9785725 DOI: 10.3390/molecules27248809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
In our continuous study for some African plants as a source for antitrypanosomally and cytotoxic active drugs, nine different plants belonging to the Crassulaceae family have been selected for the present study. Sedum sieboldii leaves extract showed an antitrypanosomal activity against Trypanosoma brucei with an IC50 value of 8.5 µg/mL. In addition, they have cytotoxic activities against (HCT-116), (HEPG-2) and (MCF-7), with IC50 values of 28.18 ± 0.24, 22.05 ± 0.66, and 26.47 ± 0.85 µg/mL, respectively. Furthermore, the extract displayed inhibition against Topoisomerase-1 with an IC50 value of 1.31 µg/mL. It showed the highest phenolics and flavonoids content among the other plants' extracts. In order to identify the secondary metabolites which may be responsible for such activities, profiling of the polar secondary metabolites of S. sieboldii extract via Ultra-Performance Liquid Chromatography coupled to High-Resolution QTOF-MS operated in negative and positive ionization modes, which revealed the presence of 46 metabolites, including flavonoids, phenolic acids, anthocyanidins, coumarin, and other metabolites.
Collapse
Affiliation(s)
- Mostafa M. Hegazy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Wael M. Afifi
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University—Kantara Branch, Ismailia 41636, Egypt
| | - Ahmed M. Metwaly
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed M. Radwan
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
- Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria, Alexandria 21521, Egypt
| | - Muhamad Abd-Elraouf
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Eman Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo 11441, Egypt
| | - Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shahd Ezzeldin
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Adel E. Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt
| | - Sami El Deeb
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany
- Correspondence:
| | - Ahmad E. Mostafa
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
5
|
El-Hela AA, Hegazy MM, Abbass HS, Ahmed AH, Bakr MSA, Elkousy RH, Ibrahim AE, El Deeb S, Sayed OM, Gad ES. Dinebra retroflexa Herbal Phytotherapy: A Simulation Study Based on Bleomycin-Induced Pulmonary Fibrosis Retraction Potential in Swiss Albino Rats. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1719. [PMID: 36556921 PMCID: PMC9782064 DOI: 10.3390/medicina58121719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Background and Objectives: Fibrotic lung disease is one of the main complications of many medical conditions. Therefore, the use of anti-fibrotic agents may provide a chance to prevent, or at least modify, such complication. The aim of this study was to evaluate the protective pulmonary anti-fibrotic and anti-inflammatory effects of Dinebra retroflexa. Materials and methods: Dinebra retroflexa methanolic extract and its synthesized silver nanoparticles were tested on bleomycin-induced pulmonary fibrosis. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/5 mL/kg-Saline) as a supposed model for induced lung fibrosis. The weed evaluation was performed by intratracheal instillation of Dinebra retroflexa methanolic extract and its silver nanoparticles (35 mg/100 mL/kg-DMSO, single dose). Results: The results showed that both Dinebra retroflexa methanolic extract and its silver nanoparticles had a significant pulmonary fibrosis retraction potential, with Ashcroft scores of three and one, respectively, and degrees of collagen deposition reduction of 33.8 and 46.1%, respectively. High-resolution UHPLC/Q-TOF-MS/MS metabolic profiling and colorimetrically polyphenolic quantification were performed for further confirmation and explanation of the represented effects. Such activity was believed to be due to the tentative identification of twenty-seven flavonoids and one phenolic acid along with a phenolic content of 57.8 mg/gm (gallic acid equivalent) and flavonoid content of 22.5 mg/gm (quercetin equivalent). Conclusion: Dinebra retroflexa may be considered as a promising anti-fibrotic agent for people at high risk of complicated lung fibrosis. The results proved that further clinical trials would be recommended to confirm the proposed findings.
Collapse
Affiliation(s)
- Atef A. El-Hela
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo 11884, Egypt
| | - Mostafa M. Hegazy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo 11884, Egypt
| | - Hatem S. Abbass
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo 11884, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University—Kantara Branch, Ismailia 41636, Egypt
| | - Amal H. Ahmed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo 11884, Egypt
| | - Marwa S. Abu Bakr
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo 11884, Egypt
| | - Rawah H. Elkousy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo 11884, Egypt
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt
| | - Sami El Deeb
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, 38092 Braunschweig, Germany
| | - Ossama M. Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University—Kantara Branch, Ismailia 41636, Egypt
| | - Enas S. Gad
- Department of Pharmaceutical Sciences, King Faisal University, Al-Hofuf 13890, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University—Kantara Branch, Ismailia 41636, Egypt
| |
Collapse
|
6
|
Tan J, Li X, Zhu Y, Sullivan MA, Deng B, Zhai X, Lu Y. Antidepressant Shugan Jieyu Capsule Alters Gut Microbiota and Intestinal Microbiome Function in Rats With Chronic Unpredictable Mild Stress -Induced Depression. Front Pharmacol 2022; 13:828595. [PMID: 35770090 PMCID: PMC9234866 DOI: 10.3389/fphar.2022.828595] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Shugan Jieyu Capsule (SG) has been widely used in China to treat mild to moderate depression. Hypericum perforatum L. (St John’s Wort, SJW) is the main ingredient of SG and has been used as herbal medicine to treat depression in western countries. However, it is known that SJW has low bioavailability and does not easily get through the blood-brain barrier. Therefore, how SG plays an antidepressant effect in the central nervous system (CNS) remains an urgent problem to be solved. Mounting research has described the relationship between antidepressants and intestinal microbiota to illuminate antidepressive mechanisms in the CNS. We aimed to investigate the effects of therapy with SG on the function of gut microbiota and intestinal microbiota in rats with chronic unpredictable mild stress (CUMS)-induced depression. The psychophysiological state and the hypothalamic-pituitary-adrenal axis function of rats are evaluated through behavioral experiments, corticosterone levels, serotonin levels, and adrenal index measurements. 16S rDNA amplicon sequencing is used to test the changes in gut microbiota and make functional predictions of genes. With treatment of SG, the depression-like behaviors of CUMS-induced rats were reversed; the corticosterone levels and the adrenal index decreased significantly; the level of serotonin increased significantly; and the alpha and beta diversity analysis of microbiota showed an increase in the richness and uniformity of the flora were increased. SG regulated the relative abundance of Actinobacteria, Erysipelotrichaceae, Bifidobacteriaceae, Atopobiaceae, Dubosiella, and Bifidobacterium; Linear discriminant analysis effect size analysis demonstrated that Lactobacillaceae (family level), Lactobacillus (genus level), Lactobacillales (order level), Bacilli (class level), and Lactobacillus-reuteri (species level) were biomarkers in the SG group samples, and also likely to modulate metabolic pathways, such as those involved in carbohydrate metabolism, amino acid metabolism, and signal transduction. These data clearly illustrated the effect of SG on gut microbiome, thus laying the foundation for uncovering more insights on the therapeutic function of the traditional Chinese antidepressants. The potential of SG on mechanisms of antidepression to alter gut microbiota and intestinal microbiome function exposed to CUMS can be explored.
Collapse
Affiliation(s)
- Jingxuan Tan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xixuan Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mitchell A. Sullivan
- Glycation and Diabetes Group, Mater Research Institute- University of Queensland, The Translational Research Institute, Brisbane, QLD, Australia
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Centre of Precision Drug Use for Major Diseases, Wuhan, China
| | - Xuejia Zhai
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Centre of Precision Drug Use for Major Diseases, Wuhan, China
- *Correspondence: Xuejia Zhai, ; Yongning Lu,
| | - Yongning Lu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Centre of Precision Drug Use for Major Diseases, Wuhan, China
- *Correspondence: Xuejia Zhai, ; Yongning Lu,
| |
Collapse
|
7
|
Hameed A, Liu Z, Wu H, Zhong B, Ciborowski M, Suleria HAR. A Comparative and Comprehensive Characterization of Polyphenols of Selected Fruits from the Rosaceae Family. Metabolites 2022; 12:metabo12030271. [PMID: 35323714 PMCID: PMC8950050 DOI: 10.3390/metabo12030271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
The present research presents a comprehensive characterization of polyphenols from peach, pear, and plum using liquid chromatography coupled with electrospray ionization quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS), followed by the determination of their antioxidant potential. Plums showed the highest total phenolic content (TPC; 0.62 mg GAE/g), while peaches showed the highest total flavonoid content (TFC; 0.29 mg QE/g), also corresponding to their high scavenging activities (i.e., DPPH, ABTS, FRAP, and TAC). In all three fruit samples, a total of 51 polyphenolic compounds were tentatively identified and were mainly characterized from hydroxybenzoic acids, hydroxycinnamic acids, hydroxyphenylpentanoic acids, flavanols, flavonols, and isoflavonoids subclasses. Twenty targeted phenolic compounds were quantified using high-performance liquid chromatography with photodiode array detection (HPLC-PDA). The plum cultivar showed the highest content of phenolic acids (chlorogenic acid, 11.86 mg/100 g), whereas peach samples showed the highest concentration of flavonoids (catechin, 7.31 mg/100 g), as compared to pear. Based on these findings, the present research contributes and complements the current characterization data of these fruits presented in the literature, as well as ensures and encourages the utilization of these fruits in different food, feed, and nutraceutical industries.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, Jana Kilińskiego Street 1, 15-089 Bialystok, Poland; (A.H.); (M.C.)
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Ziyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Biming Zhong
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, Jana Kilińskiego Street 1, 15-089 Bialystok, Poland; (A.H.); (M.C.)
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Z.L.); (H.W.); (B.Z.)
- Correspondence: ; Tel.: +61-3-834-44984
| |
Collapse
|
8
|
Povydysh MN, Titova MV, Ivanov IM, Klushin AG, Kochkin DV, Galishev BA, Popova EV, Ivkin DY, Luzhanin VG, Krasnova MV, Demakova NV, Nosov AM. Effect of Phytopreparations Based on Bioreactor-Grown Cell Biomass of Dioscorea deltoidea, Tribulus terrestris and Panax japonicus on Carbohydrate and Lipid Metabolism in Type 2 Diabetes Mellitus. Nutrients 2021; 13:nu13113811. [PMID: 34836067 PMCID: PMC8617789 DOI: 10.3390/nu13113811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
In the present study, we explored the therapeutic potential of bioreactor-grown cell cultures of the medicinal plant species Dioscorea deltoidea, Tribulus terrestris and Panax japonicus to treat carbohydrate metabolism disorders (CMDs) in laboratory rats. In the adrenaline model of hyperglycemia, aqueous suspensions of cell biomass pre-administered at a dose of 100 mg dry biomass/kg significantly reduced glucose level in animal blood 1–2.5 h (D. deltoidea and T. terrestris) or 1 h (P. japonicus) after adrenaline hydrochloride administration. In a streptozotocin-induced model of type 2 diabetes mellitus, the cell biomass of D. deltoidea and T. terrestris acted towards normalization of carbohydrate and lipid metabolism, as evidenced by a significant reduction of daily diuresis (by 39–57%), blood-glucose level (by 46–51%), blood content in urine (by 78–80%) and total cholesterol (25–36%) compared to animals without treatment. Bioactive secondary metabolites identified in the cell cultures and potentially responsible for their actions were deltoside, 25(S)-protodioscin and protodioscin in D. deltoidea; furostanol-type steroidal glycosides and quinic acid derivatives in T. terrestris; and ginsenosides and malonyl-ginsenosides in P. japonicus. These results evidenced for high potential of bioreactor-grown cell suspensions of these species for prevention and treatment of CMD, which requires further investigation.
Collapse
Affiliation(s)
- Maria N. Povydysh
- Faculty of Pharmacy, Saint Petersburg State Chemical Pharmaceutical University, 14, Prof. Popov Str., 197376 Saint-Petersburg, Russia; (D.Y.I.); (V.G.L.); (M.V.K.); (N.V.D.)
- Correspondence: (M.N.P.); (M.V.T.); Tel.: +7-(499)-678-54-00 (M.N.P.); +7-(812)-499-39-00 (M.V.T.)
| | - Maria V. Titova
- K.A. Tymyryazev Institute of Plant Physiology, Russian Academy of Sciences, 35, ul. Botanicheskaya, 127276 Moscow, Russia; (I.M.I.); (A.G.K.); (D.V.K.); (E.V.P.); (A.M.N.)
- Correspondence: (M.N.P.); (M.V.T.); Tel.: +7-(499)-678-54-00 (M.N.P.); +7-(812)-499-39-00 (M.V.T.)
| | - Igor M. Ivanov
- K.A. Tymyryazev Institute of Plant Physiology, Russian Academy of Sciences, 35, ul. Botanicheskaya, 127276 Moscow, Russia; (I.M.I.); (A.G.K.); (D.V.K.); (E.V.P.); (A.M.N.)
| | - Andrey G. Klushin
- K.A. Tymyryazev Institute of Plant Physiology, Russian Academy of Sciences, 35, ul. Botanicheskaya, 127276 Moscow, Russia; (I.M.I.); (A.G.K.); (D.V.K.); (E.V.P.); (A.M.N.)
| | - Dmitry V. Kochkin
- K.A. Tymyryazev Institute of Plant Physiology, Russian Academy of Sciences, 35, ul. Botanicheskaya, 127276 Moscow, Russia; (I.M.I.); (A.G.K.); (D.V.K.); (E.V.P.); (A.M.N.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| | - Boris A. Galishev
- Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620026 Ekaterinburg, Russia;
| | - Elena V. Popova
- K.A. Tymyryazev Institute of Plant Physiology, Russian Academy of Sciences, 35, ul. Botanicheskaya, 127276 Moscow, Russia; (I.M.I.); (A.G.K.); (D.V.K.); (E.V.P.); (A.M.N.)
| | - Dmitry Yu. Ivkin
- Faculty of Pharmacy, Saint Petersburg State Chemical Pharmaceutical University, 14, Prof. Popov Str., 197376 Saint-Petersburg, Russia; (D.Y.I.); (V.G.L.); (M.V.K.); (N.V.D.)
| | - Vladimir G. Luzhanin
- Faculty of Pharmacy, Saint Petersburg State Chemical Pharmaceutical University, 14, Prof. Popov Str., 197376 Saint-Petersburg, Russia; (D.Y.I.); (V.G.L.); (M.V.K.); (N.V.D.)
| | - Marina V. Krasnova
- Faculty of Pharmacy, Saint Petersburg State Chemical Pharmaceutical University, 14, Prof. Popov Str., 197376 Saint-Petersburg, Russia; (D.Y.I.); (V.G.L.); (M.V.K.); (N.V.D.)
| | - Natalia V. Demakova
- Faculty of Pharmacy, Saint Petersburg State Chemical Pharmaceutical University, 14, Prof. Popov Str., 197376 Saint-Petersburg, Russia; (D.Y.I.); (V.G.L.); (M.V.K.); (N.V.D.)
| | - Alexander M. Nosov
- K.A. Tymyryazev Institute of Plant Physiology, Russian Academy of Sciences, 35, ul. Botanicheskaya, 127276 Moscow, Russia; (I.M.I.); (A.G.K.); (D.V.K.); (E.V.P.); (A.M.N.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| |
Collapse
|
9
|
Lee FY, Vo GT, Barrow CJ, Dunshea FR, Suleria HAR. Mango rejects and mango waste: Characterization and quantification of phenolic compounds and their antioxidant potential. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Fung Ying Lee
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville VIC Australia
| | - Gia Toan Vo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville VIC Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology School of Life and Environmental Sciences Deakin University Geelong VIC Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville VIC Australia
- Faculty of Biological Sciences The University of Leeds Leeds UK
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville VIC Australia
- Centre for Chemistry and Biotechnology School of Life and Environmental Sciences Deakin University Geelong VIC Australia
| |
Collapse
|
10
|
Abstract
Apples (Malus domestica) are one of the most widely grown and consumed fruits in the world that contain abundant phenolic compounds that possess remarkable antioxidant potential. The current study characterised phenolic compounds from five different varieties of Australian grown apples (Royal Gala, Pink Lady, Red Delicious, Fuji and Smitten) using LC-ESI-QTOF-MS/MS and quantified through HPLC-PDA. The phenolic content and antioxidant potential were determined using various assays. Red Delicious had the highest total phenolic (121.78 ± 3.45 mg/g fw) and total flavonoid content (101.23 ± 3.75 mg/g fw) among the five apple samples. In LC-ESI-QTOF-MS/MS analysis, a total of 97 different phenolic compounds were characterised in five apple samples, including Royal Gala (37), Pink Lady (54), Red Delicious (17), Fuji (67) and Smitten (46). In the HPLC quantification, phenolic acid (chlorogenic acid, 15.69 ± 0.09 mg/g fw) and flavonoid (quercetin, 18.96 ± 0.08 mg/g fw) were most abundant in Royal Gala. The obtained results highlight the importance of Australian apple varieties as a rich source of functional compounds with potential bioactivity.
Collapse
|
11
|
Afifi W, Hegazy M, Metwaly A, Mostafa A, Radwan M, M. Mehany A, Ahmed E, Enany S, Magdeldin S, ElSohly M. Biological and chemical evaluation of some African plants belonging to Kalanchoe species: Antitrypanosomal, cytotoxic, antitopoisomerase I activities and chemical profiling using ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometer. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_232_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Morcol TB, Wysocki K, Sankaran RP, Matthews PD, Kennelly EJ. UPLC-QTof-MS E Metabolomics Reveals Changes in Leaf Primary and Secondary Metabolism of Hop ( Humulus lupulus L.) Plants under Drought Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14698-14708. [PMID: 33236890 DOI: 10.1021/acs.jafc.0c05987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The hop (Humulus lupulus L.) is an important specialty crop used in beer production. Untargeted UPLC-QTof-MSE metabolomics was used to determine metabolite changes in the leaves of hop plants under varying degrees of drought stress. Principal component analysis revealed that drought treatments produced qualitatively distinct changes in the overall chemical composition of three out of four genotypes tested (i.e., Cascade, Sultana, and a wild var. neomexicanus accession but not Aurora), although differences among treatments were smaller than differences among genotypes. A total of 14 compounds consistently increased or decreased in response to drought stress, and this effect was generally progressive as the severity of drought increased. A total of 10 of these marker compounds were tentatively identified as follows: five glycerolipids, glutaric acid, pheophorbide A, abscisic acid, roseoside, and dihydromyricetin. Some of the observed metabolite changes likely occur across all plants under drought conditions, while others may be specific to hops or to the type of drought treatments performed.
Collapse
Affiliation(s)
- Taylan B Morcol
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Konrad Wysocki
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
| | - Renuka P Sankaran
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Paul D Matthews
- Department of Research and Development, Hopsteiner, S.S. Steiner, Inc., 1 West Washington Avenue, Yakima, Washington 98903, United States
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
13
|
Water Extract of Agastache rugosa Prevents Ovariectomy-Induced Bone Loss by Inhibiting Osteoclastogenesis. Foods 2020; 9:foods9091181. [PMID: 32858922 PMCID: PMC7555585 DOI: 10.3390/foods9091181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Estrogen deficiency in postmenopausal women causes homeostatic imbalance of bone, resulting in bone loss and osteoporosis. Agastache rugosa, a plant belonging to the Lamiaceae family, is an aromatic herb, and the leaves of this herb are widely used as food ingredients. Extracts of A. rugosa have various bioactivities including anti-HIV integration, anti-inflammatory, and anti-atherogenic properties. However, the beneficial effect of A. rugosa on bone has not been studied. Therefore, we investigated the effects of water extract of A. rugosa (WEAR) on osteoclast differentiation and estrogen deficiency-induced bone loss in ovariectomized (OVX) mice as an animal model for postmenopausal osteoporosis. The oral administration of WEAR remarkably improved OVX-induced trabecular bone loss and fat accumulation in the bone marrow. WEAR suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in osteoclast precursor cells, subsequently inhibiting resorption activity on a bone mimetic surface. WEAR inhibited the expression of cellular oncogene fos (c-Fos) and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), key osteoclastogenic transcription factors, by decreasing RANKL-induced activation of mitogen-activated protein kinases (MAPKs), and nuclear factor-κB (NF-κB) pathways. We also identified seventeen phytochemicals present in WEAR, including five phenols and twelve flavonoids, and found eleven bioactive constituents that have anti-osteoclastogenic effects. Collectively, these results suggest that WEAR could be used to treat and prevent postmenopausal osteoporosis by suppressing osteoclastogenesis.
Collapse
|
14
|
Santos MC, Toson NSB, Pimentel MCB, Bordignon SAL, Mendez ASL, Henriques AT. Polyphenols composition from leaves of Cuphea spp. and inhibitor potential, in vitro, of angiotensin I-converting enzyme (ACE). JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112781. [PMID: 32209389 DOI: 10.1016/j.jep.2020.112781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cuphea is the largest genus of the Lythraceae family. It is popularly known as "sete-sangrias" in Brazil used in folk medicine as a diuretic, antipyretic, anti-inflammatory, laxative and antihypertensive agent. The raw material of Cuphea has shown promising results in the production of fitotherapics, which are chemically characterized by quercetin core flavonoids. AIMS OF THE STUDY Present work aims to investigate the chemical composition of Cuphea calophylla, Cuphea carthagenensis, Cuphea glutinosa and Cuphea racemosa by UHPLC-MS using ESI-Q-TOF, and also to investigate the inhibition of angiotensin-converting enzyme (ACE) in vitro. MATERIALS AND METHODS Leaves extraction was conducted by an ultrasound-assisted system under the following conditions: 40% ethanol, particle size ≤180 μm, plant:solvent ratio 1:20 (w/v) for 30 min. The leaf extracts were analyzed by UHPLC-MS positive mode ionization. For the inhibition of ACE, the leaf extracts used were obtained from different Cuphea species collected from several regions of Rio Grande do Sul (Brazil). RESULTS In total 26 polyphenolic compounds were proposed, which were mostly derived from quercetin, myricetin, and kaempferol. Of these compounds, ten are described in the genus for the first time. The ACE-inhibiting activities are presented in descending order: miquelianin (32.41%), C. glutinosa 1 (31.66%), C. glutinosa 5 (26.32%) and C. carthagenensis 1 (26.12%). CONCLUSION The obtained results suggest that the ACE-inhibiting potential may be increased by the interactions among the different phytoconstituents present in the crude extract. These results corroborate with the popular usage of Cuphea genus as diuretic and antihypertensive agents in folk medicine.
Collapse
Affiliation(s)
- Marí C Santos
- Pharmacognosy Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Natally S B Toson
- Pharmacognosy Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil
| | - Maria C B Pimentel
- Keizo-Asami Immunopathology Laboratory, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Sérgio A L Bordignon
- Department of Environmental Impact Assessment, Unilasalle, Canoas, Rio Grande do Sul, Brazil
| | - Andreas S L Mendez
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Amélia T Henriques
- Pharmacognosy Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|