1
|
Chieffi D, Fanelli F, Fusco V. Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Compr Rev Food Sci Food Saf 2020; 19:2071-2109. [PMID: 33337088 DOI: 10.1111/1541-4337.12577] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022]
Abstract
Arcobacter butzleri, recently emended to the Aliarcobacter butzleri comb. nov., is an emerging pathogen causing enteritis, severe diarrhea, septicaemia, and bacteraemia in humans and enteritis, stillbirth, and abortion in animals. Since its recognition as emerging pathogen on 2002, advancements have been made in elucidating its pathogenicity and epidemiology, also thanks to advent of genomics, which, moreover, contributed in emending its taxonomy. In this review, we provide an overview of the up-to-date taxonomy, ecology, and pathogenicity of this emerging pathogen. Moreover, the implication of A. butzleri in the safety of foods is pinpointed, and culture-dependent and independent detection, identification, and typing methods as well as strategies to control and prevent the survival and growth of this pathogen are provided.
Collapse
Affiliation(s)
- Daniele Chieffi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| |
Collapse
|
2
|
Ramees TP, Dhama K, Karthik K, Rathore RS, Kumar A, Saminathan M, Tiwari R, Malik YS, Singh RK. Arcobacter: an emerging food-borne zoonotic pathogen, its public health concerns and advances in diagnosis and control - a comprehensive review. Vet Q 2017; 37:136-161. [PMID: 28438095 DOI: 10.1080/01652176.2017.1323355] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Arcobacter has emerged as an important food-borne zoonotic pathogen, causing sometimes serious infections in humans and animals. Newer species of Arcobacter are being incessantly emerging (presently 25 species have been identified) with novel information on the evolutionary mechanisms and genetic diversity among different Arcobacter species. These have been reported from chickens, domestic animals (cattle, pigs, sheep, horses, dogs), reptiles (lizards, snakes and chelonians), meat (poultry, pork, goat, lamb, beef, rabbit), vegetables and from humans in different countries. Arcobacters are implicated as causative agents of diarrhea, mastitis and abortion in animals, while causing bacteremia, endocarditis, peritonitis, gastroenteritis and diarrhea in humans. Three species including A. butzleri, A. cryaerophilus and A. skirrowii are predominantly associated with clinical conditions. Arcobacters are primarily transmitted through contaminated food and water sources. Identification of Arcobacter by biochemical tests is difficult and isolation remains the gold standard method. Current diagnostic advances have provided various molecular methods for efficient detection and differentiation of the Arcobacters at genus and species level. To overcome the emerging antibiotic resistance problem there is an essential need to explore the potential of novel and alternative therapies. Strengthening of the diagnostic aspects is also suggested as in most cases Arcobacters goes unnoticed and hence the exact epidemiological status remains uncertain. This review updates the current knowledge and many aspects of this important food-borne pathogen, namely etiology, evolution and emergence, genetic diversity, epidemiology, the disease in animals and humans, public health concerns, and advances in its diagnosis, prevention and control.
Collapse
Affiliation(s)
- Thadiyam Puram Ramees
- a Division of Veterinary Public Health , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Kumaragurubaran Karthik
- c Central University Laboratory , Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - Ramswaroop Singh Rathore
- a Division of Veterinary Public Health , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Ashok Kumar
- a Division of Veterinary Public Health , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Mani Saminathan
- b Division of Pathology , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Ruchi Tiwari
- d Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences , UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Yashpal Singh Malik
- e Division of Biological Standardization , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Raj Kumar Singh
- f ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| |
Collapse
|
3
|
Heimesaat MM, Grundmann U, Alutis ME, Fischer A, Göbel UB, Bereswill S. The IL-23/IL-22/IL-18 axis in murine Campylobacter jejuni infection. Gut Pathog 2016; 8:21. [PMID: 27385977 PMCID: PMC4934010 DOI: 10.1186/s13099-016-0106-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023] Open
Abstract
Background Human Campylobacter jejuni infections are worldwide on the rise. Information about the distinct molecular mechanisms underlying campylobacteriosis, however, are scarce. In the present study we investigated whether cytokines including IL-23, IL-22 and IL-18 sharing pivotal functions in host immunity were involved in mediating immunopathological responses upon C. jejuni infection. Results To address this, conventionally colonized IL-23p19−/−, IL-22−/− and IL-18−/− mice were perorally infected with C. jejuni strain ATCC 43431. Respective gene-deficient, but not wildtype mice were susceptible to C. jejuni infection and could be readily colonized with highest pathogenic loads in the terminal ileum and colon at day 14 postinfection (p.i.). In IL-23p19−/−, IL-22−/− and IL-18−/− mice viable C. jejuni were detected in MLNs, but did not translocate to spleen, liver, kidney and blood in the majority of cases. Susceptible IL-22−/−, but neither IL-23p19−/−, nor IL-18−/− mice harbored higher intestinal commensal E. coli loads when compared to resistant wildtype mice. Alike C. jejuni, commensal E. coli did not translocate from the intestinal to extra-intestinal tissue sites. Despite C. jejuni infection, mice lacking IL-23p19, IL-22 or IL-18 exhibited less apoptotic cells, but higher numbers of proliferating cells in their colonic epithelium as compared to wildtype mice at day 14 p.i. Less pronounced apoptosis was parallelled by lower abundance of neutrophils within the colonic mucosa and lamina propria of infected IL-23p19−/− and IL-22−/− as compared to wildtype control mice, whereas less distinct colonic TNF secretion could be measured in IL-22−/− and IL-18−/− than in wildtype mice at day 14 p.i. Notably, in infected IL-22−/− mice, colonic IL-23p19 mRNA levels were lower, whereas the other way round, colonic IL-22 expression rates were lower in IL-23p19−/− mice as compared to wildtype controls. Moreover, IL-18 mRNA was less distinctly expressed in large intestines of naive and infected IL-22−/− mice, but not vice versa, given that IL-22 mRNA levels did not differ between in IL-18−/− and wildtype mice. Conclusion Cytokines belonging to the IL-23/IL-22/IL-18 axis mediate immunopathological responses upon murine C. jejuni infection in a differentially orchestrated manner. Future studies need to further unravel the underlying regulatory mechanisms orchestrating pathogenic-host interaction. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0106-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
4
|
Bereswill S, Alutis ME, Grundmann U, Fischer A, Göbel UB, Heimesaat MM. Interleukin-18 Mediates Immune Responses to Campylobacter jejuni Infection in Gnotobiotic Mice. PLoS One 2016; 11:e0158020. [PMID: 27322540 PMCID: PMC4913948 DOI: 10.1371/journal.pone.0158020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/08/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Human Campylobacter jejuni infections are progressively rising worldwide. Information about the molecular mechanisms underlying campylobacteriosis, however, are limited. In the present study we investigated whether cytokines such as IL-23, IL-22 and IL-18, which share pivotal functions in host immunity, were involved in mediating intestinal and systemic immunopathological responses upon C. jejuni infection. METHODOLOGY/PRINCIPAL FINDINGS To assure stable infection, gnotobiotic (i.e. secondary abiotic) IL-23p19-/-, IL-22-/- and IL-18-/- mice were generated by broad-spectrum antibiotic treatment. Following peroral C. jejuni strain 81-176 infection, mice of all genotypes harbored comparably high pathogenic loads in their intestines. As compared to wildtype controls, however, IL-18-/- mice displayed less distinct C. jejuni induced sequelae as indicated by less pronounced large intestinal shrinkage and lower numbers of apoptotic cells in the colonic epithelial layer at day 8 postinfection (p.i.). Furthermore, lower colonic numbers of adaptive immune cells including regulatory T cells and B lymphocytes were accompanied by less distinct secretion of pro-inflammatory cytokines such as TNF and IFN-γ and lower IL-17A mRNA expression levels in colonic ex vivo biopsies of infected IL-18-/- as compared to wildtype mice. Upon C. jejuni infection, colonic IL-23p19 expression was up-regulated in IL-18-/- mice only, whereas IL-22 mRNA levels were lower in uninfected and infected IL-23p19-/- as well as infected IL-18-/- as compared to respective wildtype control mice. Remarkably, not only intestinal, but also systemic infection-induced immune responses were less pronounced in IL-18-/- mice as indicated by lower TNF, IFN-γ and IL-6 serum levels as compared to wildtype mice. CONCLUSION/SIGNIFICANCE We here show for the first time that IL-18 is essentially involved in mediating C. jejuni infection in the gnotobiotic mouse model. Future studies need to further unravel the underlying regulatory mechanisms orchestrating pathogen-host interaction.
Collapse
Affiliation(s)
- Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Marie E. Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ulf B. Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
5
|
Heimesaat MM, Grundmann U, Alutis ME, Fischer A, Göbel UB, Bereswill S. Colonic Expression of Genes Encoding Inflammatory Mediators and Gelatinases During Campylobacter Jejuni Infection of Conventional Infant Mice. Eur J Microbiol Immunol (Bp) 2016; 6:137-46. [PMID: 27429796 PMCID: PMC4936336 DOI: 10.1556/1886.2016.00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022] Open
Abstract
Within 1 week following peroral Campylobacter jejuni infection, infant mice develop acute enteritis resolving thereafter. We here assessed colonic expression profiles of mediators belonging to the IL-23/IL-22/IL-18 axis and of matrix-degrading gelatinases MMP-2 and MMP-9 at day 6 post C. jejuni strain 81-176 infection. Whereas the pathogen readily colonized the intestines of infant IL-18–/– mice only, colonic mucin-2 mRNA, a pivotal mucus constituent, was downregulated in IL-22–/– mice and accompanied by increased expression of pro-inflammatory cytokines including IFN-γ, TNF, IL-17A, and IL-1β. Furthermore, in both naive and infected IL-22–/– mice, colonic expression of IL-23p19 and IL-18 was lower as compared to wildtype mice, whereas, conversely, colonic IL-22 mRNA levels were lower in IL-18–/– and colonic IL-18 expression lower in IL-23p19–/– as compared to wildtype mice. Moreover, colonic expression of MMP-2 and MMP-9 and their endogenous inhibitor TIMP-1 were lower in IL-22–/– as compared to wildtype mice at day 6 postinfection. In conclusion, mediators belonging of the IL-23/IL-22/IL-18 axis as well as the gelatinases MMP-2 and MMP-9 are involved in mediating campylobacteriosis of infant mice in a differentially regulated fashion.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|