1
|
Nkhebenyane SJ, Khasapane NG, Lekota KE, Thekisoe O, Ramatla T. Insight into the Prevalence of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Vegetables: A Systematic Review and Meta-Analysis. Foods 2024; 13:3961. [PMID: 39683033 DOI: 10.3390/foods13233961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The occurrence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in vegetables is an escalating global problem. This study aimed to document the global prevalence of ESBL-producing Enterobacteriaceae in vegetables using a comprehensive meta-analysis. A web-based search of electronic databases such as ScienceDirect, Google Scholar, and PubMed was conducted using studies published between 2014 and 2024. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed for the systematic review and meta-analysis. The Comprehensive Meta-Analysis (CMA) Ver 4.0 software was used to analyse the data. The pooled prevalence estimate (PPE) with a 95% confidence interval (CI) was calculated using the random effects model. After reviewing 1802 articles, 63 studies were carefully analyzed and were part of the comprehensive meta-analysis. The overall PPE of ESBL-producing Enterobacteriaceae (ESBL-E) was 11.9% (95% CI: 0.091-0.155), with high heterogeneity (I2 = 96.8%, p < 0.001) from 2762 isolates. The blaSHV ESBL-encoding gene was the most prevalent, showing a PPE of 42.8% (95% CI: 0.269-0.603), while the PPE of blaampC-beta-lactamase-producing Enterobacteriaceae was 4.3% (95% CI: 0.025-0.71). Spain had a high ESBL-E PPE of 28.4% (0.284; 95% CI: 0.057-0.723, I2 = 98.2%), while China had the lowest PPE at 6.4% (0.064; 95% CI: 0.013-0.259, I2 = 95.6%). Continentally, the PPE of ESBL-E was significantly higher in reports from South America at 19.4% (95% CI: 0.043-0.560). This meta-analysis showed that ESBL-E in vegetables increased by 9.0%, 9.8%, and 15.9% in 2018-2019, 2020-2021, and 2022-2024, respectively. The findings emphasize the potential risks of consuming raw or inadequately cleaned produce and the importance of vegetables as ESBL-E reservoirs. Our work calls for immediate attention to food safety procedures and more thorough surveillance as antibiotic resistance rises to reduce antimicrobial resistance risks in food systems.
Collapse
Affiliation(s)
- Sebolelo Jane Nkhebenyane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa
| | - Ntelekwane George Khasapane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa
| | - Kgaugelo Edward Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Tsepo Ramatla
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
2
|
Shamsuzzaman M, Kim S, Choi YJ, Kim B, Dahal RH, Shin M, Kim J. Therapeutic Phage Candidates for Targeting Prevalent Sequence Types of Carbapenem-Resistant Escherichia coli. Foodborne Pathog Dis 2024; 21:681-688. [PMID: 39045774 DOI: 10.1089/fpd.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Carbapenem-resistant Escherichia coli (CREC) is a global threat to public health; therefore, alternative treatment options are urgently needed. Bacteriophages have emerged as promising candidates for combating CREC infections. This study aimed to investigate the genetic basis of phage sensitivity in CREC by evaluating carbapenem resistance among multidrug-resistant (MDR) E. coli isolated in Daegu, South Korea and analyzing their sequence types (STs) with phage susceptibility spectra. Among the 60 MDR E. coli isolates, 80.4% were identified as CREC, with 77.0% demonstrating resistance to imipenem and 66.6% to meropenem. Moreover, 70 lytic E. coli bacteriophages were isolated from hospital sewage water and evaluated against those 60 E. coli isolates. The phages exhibited lytic activity of 33%-60%, with average titers ranging from 5.6 × 1012 to 2.4 × 1013 PFU/mL (Plaque-Forming Unit). Furthermore, multilocus sequence typing (MLST) analysis of the bacterial isolates revealed 14 distinct STs, mostly belonging to ST131, ST410, and ST648. Notably, the phage susceptibility spectra of ST73, ST13003, ST648, ST2311, ST167, ST405, ST607, ST7962, and ST131 were significantly different. Thus, the isolated phages can effectively lyse CREC isolates, particularly those with clinically dominant STs. Conversely, ST410 exhibited a 14.2%-87.14% susceptibility spectrum, whereas ST1139, ST1487, ST10, and ST206 did not lyse, suggesting the presence of more resistant STs. Future studies are warranted to identify the reasons behind this resistance and address it. Ultimately, this study will aid in developing focused treatments to address these pressing global health issues.
Collapse
Affiliation(s)
- Md Shamsuzzaman
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shukho Kim
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon-Jung Choi
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Bokyung Kim
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ram Hari Dahal
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Minsang Shin
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jungmin Kim
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Sharmila L, Pal A, Biswas R, Batabyal K, Dey S, Joardar SN, Dutta TK, Bandyopadhyay S, Pal S, Samanta I. In-silico insights of ESBL variants and tracking the probable sources of ESBL-producing Escherichia coli in a small-scale poultry farm. Microb Pathog 2024; 192:106710. [PMID: 38801865 DOI: 10.1016/j.micpath.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Commercial broiler farms face challenges of extended spectrum beta-lactamase (ESBL)-producing Escherichia coli transmitted from both vertical and horizontal routes. Understanding the dynamics of ESBL-E. coli transmission in compromised biosecurity settings of small-scale rural poultry farms is essential. This study aimed to elucidate the probable transmission pathways of ESBL-E. coli in such settings, employing phylogenetic analysis and molecular docking simulations to explore the catalytic properties of β-lactamase variants. Sampling was conducted on a small-scale poultry farm in West Bengal, India, collecting 120 samples at three intervals during the broiler production cycle. E. coli isolates underwent resistance testing against eight antimicrobials, with confirmation of ESBL production. Genotypic analysis of ESBL genes and sequencing were performed, alongside molecular docking analyses and phylogenetic comparisons with publicly available sequences. Among 173 E. coli isolates, varying resistance profiles were observed, with complete resistance to cefixime and high resistance to amoxicillin and tetracycline. The incidence of ESBL-E. coli fluctuated over the production cycle, with dynamic changes in the prevalence of blaCTX-M-type and blaSHV-type genes. Phylogenetic analysis indicated partial clonal relationships with human clinical strains and poultry strains from the Indian subcontinent. Molecular docking confirmed the catalytic efficiencies of these ESBL variants. The study highlights probable vertical transmission of ESBL-E. coli and emphasizes drinking water as a potential source of horizontal transmission in small-scale poultry farms. Strict biosecurity measures could prevent the spread of antimicrobial-resistant bacteria in birds and their products in a small scale poultry farm.
Collapse
Affiliation(s)
- Latchubhukta Sharmila
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Belgachia, Kolkata, India
| | - Arijit Pal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India; Department of Zoology, Raiganj Surendranath Mahavidyalaya, Sudarshanpur, Raiganj, Uttar Dinajpur, West Bengal, 733134, India
| | - Ripan Biswas
- Department of Veterinary Public Health, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Belgachia, Kolkata, India
| | - Kunal Batabyal
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Belgachia, Kolkata, India
| | - Samir Dey
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Belgachia, Kolkata, India
| | - Siddhartha Narayan Joardar
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Belgachia, Kolkata, India
| | - Tapan Kumar Dutta
- Department of Veterinary Microbiology, Central Agricultural University, Aizawl, Mizoram, India
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Belgachia, Kolkata, India
| | - Surajit Pal
- Evolutionary Ecology and Genetics Research Group, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany; Max Planck Fellow Group on Antibiotic Resistance Evolution, Max Planck Institute for Evolutionary Biology, Ploen, Germany.
| | - Indranil Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Belgachia, Kolkata, India.
| |
Collapse
|
4
|
Pustam A, Jayaraman J, Ramsubhag A. Whole genome sequencing reveals complex resistome features of Klebsiella pneumoniae isolated from patients at major hospitals in Trinidad, West Indies. J Glob Antimicrob Resist 2024; 37:141-149. [PMID: 38608934 DOI: 10.1016/j.jgar.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVES Antibiotic-resistant Klebsiella pneumoniae is a human pathogen of major global concern due to its ability to cause multiple severe diseases that are often difficult to treat therapeutically. This study aimed to investigate the resistome of local clinical K. pneumoniae isolates. METHODS Herein, we used a whole genome sequencing approach and bioinformatics tools to reconstruct the resistome of 10 clinical K. pneumoniae isolates and one clinical isolate of the closely related Klebsiella quasipneumoniae obtained from patients from three major hospitals in Trinidad, West Indies. RESULTS The results of the study revealed the presence of a complex antibiotic-resistant armoury among the local isolates with multiple resistance mechanisms involving (i) inactivation of antibiotics, (ii) efflux pumps, (iii) antibiotic target alteration, protection, and replacement against antibiotics, and (iv) altered porin protein that reduced the permeability to antibiotics. Several resistance genes such as blaCTX-M-15, blaTEM-1B, blaSHV-28, blaKPC-2, oqxA, sul1, tetD, aac(6')-Ib-cr5, aph(6)-Id, and fosA6, which are known to confer resistance to antibiotics used to treat K. pneumoniae infections. In most cases, the resistance genes were flanked by mobile elements, including insertion sequences and transposons, which facilitate the spread of these genetic features among related organisms. CONCLUSION This is the first comprehensive study to thoroughly investigate the resistome of clinical K. pneumoniae isolates and K. quasipneumoniae from Trinidad, West Indies. These findings suggest that monitoring K. pneumoniae and its genome-wide antibiotic resistance features in clinical strains would be of critical importance for guiding antibiotic stewardship programs and improving regional disease management systems for this pathogen.
Collapse
Affiliation(s)
- Aarti Pustam
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Jayaraj Jayaraman
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
5
|
Hefetz I, Bardenstein R, Rotem S, Zaide G, Bilinsky G, Shifman O, Zimhony O, Aloni-Grinstein R. Rapid Phenotypic Antibiotic Susceptibility Profiling of Clinical Escherichia coli and Klebsiella pneumoniae Blood Cultures. Antibiotics (Basel) 2024; 13:231. [PMID: 38534666 DOI: 10.3390/antibiotics13030231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Bloodstream infections (BSI) are defined by the presence of viable bacteria or fungi, accompanied by systemic signs of infection. Choosing empirical therapy based solely on patient risk factors and prior antibiotic susceptibility test (AST) may lead to either ineffective treatment or unnecessarily broad-spectrum antibiotic exposure. In general, Clinical & Laboratory Standards Institute guideline-approved ASTs have a turnaround time of 48-72 h from sample to answer, a period that may result in a critical delay in the appropriate selection of therapy. Therefore, reducing the time required for AST is highly advantageous. We have previously shown that our novel rapid AST method, MAPt (Micro-Agar-PCR-test), accurately identifies susceptibility profiles for spiked bioterrorism agents like Bacillus anthracis, Yersinia pestis and Francisella tularensis directly from whole-blood and blood culture samples, even at low bacterial levels (500 CFU/mL). This study evaluated the performance of MAPt on routine bloodstream infection (BSI), focusing on Escherichia coli and Klebsiella pneumoniae isolates from clinical cultures, including resistant strains to some of the six tested antibiotics. Notably, MAPt yielded results exceeding 95% agreement with the standard hospital method within a significantly shorter timeframe of 6 h. These findings suggest significant potential for MAPt as a rapid and reliable BSI management tool.
Collapse
Affiliation(s)
- Idan Hefetz
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Rita Bardenstein
- Infectious Diseases Unit, Kaplan Medical Center Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 7661041, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Galia Zaide
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Gal Bilinsky
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Ohad Shifman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Oren Zimhony
- Infectious Diseases Unit, Kaplan Medical Center Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 7661041, Israel
| | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| |
Collapse
|
6
|
Soni K, Kothamasi D, Chandra R. Municipal wastewater treatment plant showing a potential reservoir for clinically relevant MDR bacterial strains co-occurrence of ESBL genes and integron-integrase genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119938. [PMID: 38171124 DOI: 10.1016/j.jenvman.2023.119938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Municipal wastewater treatment plants (MWWTPs) are a milieu for co-occurrence of multiple antibiotic resistance genes (ARGs). This facilitates mixing and genetic exchange; and promotes dissemination of multidrug resistance (MDR) to wastewater bacterial communities which is hazardous for the effluent receiving environment. This study investigated the co-occurrence of extended-spectrum beta-lactamase (ESBL) genes (blaTEM, blaCTX-M, blaSHV, blaOXA), and integron-integrase genes (intI1, intI2, intI3) in MDR bacteria isolated from the Bharwara MWWTP in Lucknow, India. Thirty-one MDR bacterial colonies resistant to three or more antibiotics were isolated from three treatment stages of this MWWTP. Six of these: Staphylococcus aureus, Serratia marcescens, Salmonella enterica, Shigella sonnei, Escherichia coli, and Bacillus sp. Had co-occurrence of ESBL and integron-integrase genes. These six isolates were examined for the occurrence of MDR efflux genes (qacA, acrB) and ARGs (aac(3)-1, qnrA1, tetA, vanA) and tested for resistance against 12 different antibiotics. The highest resistance was against penicillin-G (100%) and lowest for chloramphenicol (16.66%). Bacillus sp. Isolate BWKRC6 had the highest co-occurrence of antibiotic resistance-determining genes and was resistant to all the 12 antibiotics tested. The co-occurrence of ESBL, integron-integrase, antibiotic resistance-determining and MDR efflux genes in bacteria isolated from the Bharwara MWWTP indicates that the wastewaters of this treatment plant may have become a hotspot for MDR bacteria and may present human and environmental health hazards. Therefore, there is need for a rapid action to limit the spread of this threat. Public regulatory authorities must urgently implement measures to prevent MWWTPs becoming reservoirs for evolution of antibiotic resistance genes and development of antibiotic resistance.
Collapse
Affiliation(s)
- Kuldeep Soni
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - David Kothamasi
- Laboratory of Soil Biology and Microbial Ecology, Department of Environmental Studies, University of Delhi, Delhi, 110007, India; Strathclyde Centre for Environmental Law and Governance, University of Strathclyde, Glasgow, G4 0LT, United Kingdom
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
7
|
Kawa DE, Tickler IA, Tenover FC, Shettima SA. Characterization of Beta-Lactamase and Fluoroquinolone Resistance Determinants in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa Isolates from a Tertiary Hospital in Yola, Nigeria. Trop Med Infect Dis 2023; 8:500. [PMID: 37999619 PMCID: PMC10675496 DOI: 10.3390/tropicalmed8110500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Infections due to antimicrobial resistant gram-negative bacteria cause significant morbidity and mortality in sub-Saharan Africa. To elucidate the molecular epidemiology of antimicrobial resistance in gram-negative bacteria, we characterized beta-lactam and fluoroquinolone resistance determinants in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates collected from November 2017 to February 2018 (Period 1) and October 2021 to January 2022 (Period 2) in a tertiary medical center in north-eastern Nigeria. Whole genome sequencing (WGS) was used to identify sequence types and resistance determinants in 52 non-duplicate, phenotypically resistant isolates. Antimicrobial susceptibility was determined using broth microdilution and modified Kirby-Bauer disk diffusion methods. Twenty sequence types (STs) were identified among isolates from both periods using WGS, with increased strain diversity observed in Period 2. Common ESBL genes identified included blaCTX-M, blaSHV, and blaTEM in both E. coli and K. pneumoniae. Notably, 50% of the E. coli in Period 2 harbored either blaCTX-M-15 or blaCTX-M-1 4 and phenotypically produced ESBLs. The blaNDM-7 and blaVIM-5 metallo-beta-lactamase genes were dominant in E. coli and P. aeruginosa in Period 1, but in Period 2, only K. pneumoniae contained blaNDM-7, while blaNDM-1 was predominant in P. aeruginosa. The overall rate of fluoroquinolone resistance was 77% in Period 1 but decreased to 47.8% in Period 2. Various plasmid-mediated quinolone resistance (PMQR) genes were identified in both periods, including aac(6')-Ib-cr, oqxA/oqxB, qnrA1, qnrB1, qnrB6, qnrB18, qnrVC1, as well as mutations in the chromosomal gyrA, parC and parE genes. One E. coli isolate in Period 2, which was phenotypically multidrug resistant, had ESBL blaCTX-M-15, the serine carbapenemase, blaOXA-181 and mutations in the gyrA gene. The co-existence of beta-lactam and fluoroquinolone resistance markers observed in this study is consistent with widespread use of these antimicrobial agents in Nigeria. The presence of multidrug resistant isolates is concerning and highlights the importance of continued surveillance to support antimicrobial stewardship programs and curb the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Diane E. Kawa
- Department of Medical and Scientific Affairs, Cepheid, Sunnyvale, CA 94089, USA
| | | | - Fred C. Tenover
- College of Arts and Sciences, University of Dayton, Dayton, OH 45469, USA;
| | - Shuwaram A. Shettima
- Department of Medical Microbiology, Parasitology and Immunology, Modibbo Adama University Teaching Hospital, Yola 640001, Adamawa State, Nigeria;
| |
Collapse
|
8
|
Edet ML, Hemalatha S. Identification of natural CTXM-15 inhibitors from aqueous extract of endophytic bacteria Cronobactersakazaki. Braz J Microbiol 2023; 54:827-839. [PMID: 36899290 PMCID: PMC10234978 DOI: 10.1007/s42770-023-00945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Nyctanthes arbor-tristis is one of India's valuable and populous medicinal plants which belongs to the family Oleaceae, and widely recognize as night jasmine. Over the years till date, different parts of the plant are used to treat or cure different ailments via various means of traditional medicine. Endophytes are organisms that live in the cell or body of other organisms with no apparent negative impact on the host which they inhabit and are of great source of novel bioactive compounds possessing important economic value. Secondary metabolites were identified in the aqueous extract of Cronobactersakazakii through quantitative phytochemical and GC-MS analysis. Antibacterial activity of the extract against clinical and ATCC strains of E. coli was assessed. Biological activity spectra of these compounds were predicted and categorized either as probably active (Pa) or probably inactive (Pi). Drug-likeness of bioactive compounds was determined as well as their ability to target protein (CTXM-15) responsible for antibiotic resistance in Gram-negative bacteria. Results revealed the presence of active compounds with pharmacological activities and considerable pharmacokinetics parameters. In addition, ligand-protein interactions of compounds with CTXM-15 proteins were identified. These results suggest that bioactive compounds of endophytic Cronobactersakazakii could contain novel chemical entities for the development of antibiotics against pathogenic microbes and other drugs for the amelioration of several infections.
Collapse
Affiliation(s)
- M Love Edet
- School of Life Sciences, B. S Abdul Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, India
| | - S Hemalatha
- School of Life Sciences, B. S Abdul Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, India.
| |
Collapse
|
9
|
Venne DM, Hartley DM, Malchione MD, Koch M, Britto AY, Goodman JL. Review and analysis of the overlapping threats of carbapenem and polymyxin resistant E. coli and Klebsiella in Africa. Antimicrob Resist Infect Control 2023; 12:29. [PMID: 37013626 PMCID: PMC10071777 DOI: 10.1186/s13756-023-01220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/18/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacterales are among the most serious antimicrobial resistance (AMR) threats. Emerging resistance to polymyxins raises the specter of untreatable infections. These resistant organisms have spread globally but, as indicated in WHO reports, the surveillance needed to identify and track them is insufficient, particularly in less resourced countries. This study employs comprehensive search strategies with data extraction, meta-analysis and mapping to help address gaps in the understanding of the risks of carbapenem and polymyxin resistance in the nations of Africa. METHODS Three comprehensive Boolean searches were constructed and utilized to query scientific and medical databases as well as grey literature sources through the end of 2019. Search results were screened to exclude irrelevant results and remaining studies were examined for relevant information regarding carbapenem and/or polymyxin(s) susceptibility and/or resistance amongst E. coli and Klebsiella isolates from humans. Such data and study characteristics were extracted and coded, and the resulting data was analyzed and geographically mapped. RESULTS Our analysis yielded 1341 reports documenting carbapenem resistance in 40 of 54 nations. Resistance among E. coli was estimated as high (> 5%) in 3, moderate (1-5%) in 8 and low (< 1%) in 14 nations with at least 100 representative isolates from 2010 to 2019, while present in 9 others with insufficient isolates to support estimates. Carbapenem resistance was generally higher among Klebsiella: high in 10 nations, moderate in 6, low in 6, and present in 11 with insufficient isolates for estimates. While much less information was available concerning polymyxins, we found 341 reports from 33 of 54 nations, documenting resistance in 23. Resistance among E. coli was high in 2 nations, moderate in 1 and low in 6, while present in 10 with insufficient isolates for estimates. Among Klebsiella, resistance was low in 8 nations and present in 8 with insufficient isolates for estimates. The most widespread associated genotypes were, for carbapenems, blaOXA-48, blaNDM-1 and blaOXA-181 and, for polymyxins, mcr-1, mgrB, and phoPQ/pmrAB. Overlapping carbapenem and polymyxin resistance was documented in 23 nations. CONCLUSIONS While numerous data gaps remain, these data show that significant carbapenem resistance is widespread in Africa and polymyxin resistance is also widely distributed, indicating the need to support robust AMR surveillance, antimicrobial stewardship and infection control in a manner that also addresses broader animal and environmental health dimensions.
Collapse
Affiliation(s)
- Danielle M Venne
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - David M Hartley
- James M. Anderson Center for Health Systems Excellence, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Marissa D Malchione
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA
- Sabin Vaccine Institute, Influenza Vaccine Innovation, 2175 K St NW, Washington, DC, 20037, USA
| | - Michala Koch
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Anjali Y Britto
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Jesse L Goodman
- Center on Medical Product Access, Safety and Stewardship, Georgetown University, 3900 Reservoir Road, Washington, DC, 20057, USA.
| |
Collapse
|
10
|
Bastidas-Caldes C, Romero-Alvarez D, Valdez-Vélez V, Morales RD, Montalvo-Hernández A, Gomes-Dias C, Calvopiña M. Extended-Spectrum Beta-Lactamases Producing Escherichia coli in South America: A Systematic Review with a One Health Perspective. Infect Drug Resist 2022; 15:5759-5779. [PMID: 36204394 PMCID: PMC9531622 DOI: 10.2147/idr.s371845] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Carlos Bastidas-Caldes
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
- Doctoral Program in Public and Animal Health, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
- Correspondence: Carlos Bastidas-Caldes, One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, 170124, Ecuador, Tel +593 983 174949, Email
| | - Daniel Romero-Alvarez
- One Health Reserch Group, Faculty of Medicine, Universidad de las Américas, Quito, Ecuador
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, The University of Kansas, Lawrence, KS, USA
| | - Victor Valdez-Vélez
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Roberto D Morales
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Andrés Montalvo-Hernández
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Cicero Gomes-Dias
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Manuel Calvopiña
- One Health Reserch Group, Faculty of Medicine, Universidad de las Américas, Quito, Ecuador
| |
Collapse
|
11
|
Gantasala E, Bhat S, Saralaya V, Jayaram M, Udayalaxmi J. Genotypic and Phenotypic Expression of Antibiotic Resistance Patterns of Uropathogenic Enterobacteriaceae. Infect Drug Resist 2022; 15:3991-3999. [PMID: 35924024 PMCID: PMC9341051 DOI: 10.2147/idr.s362445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Elizabeth Gantasala
- Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sevitha Bhat
- Department of Microbiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vishwas Saralaya
- Department of Microbiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhumitha Jayaram
- Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jeppu Udayalaxmi
- Department of Microbiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Correspondence: Jeppu Udayalaxmi, Department of Microbiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India, Tel +91 824-2423452, Email
| |
Collapse
|
12
|
Awosile BB, Agbaje M, Adebowale O, Kehinde O, Omoshaba E. Beta-lactamase resistance genes in Enterobacteriaceae from Nigeria. Afr J Lab Med 2022; 11:1371. [PMID: 35282396 PMCID: PMC8905388 DOI: 10.4102/ajlm.v11i1.1371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
Background Beta-lactamase genes are one of the most important groups of antimicrobial resistance genes in human and animal health. Therefore, continuous surveillance of this group of resistance genes is needed for a better understanding of the local epidemiology within a country and global dissemination. Aim This review was carried out to identify different beta-lactamase resistance genes reported in published literature from Nigeria. Methods Systematic review and meta-analysis was carried out on eligible Nigerian articles retrieved from electronic literature searches of PubMed®, African Journals Online, and Google Scholar published between January 1990 and December 2019. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses method was adopted to facilitate clarity and transparency in reporting review findings. Results Fifty-seven articles were included. All beta-lactamases reported were detected from Gram-negative bacteria, particularly from Enterobacteriaceae. Thirty-six different beta-lactamase genes were reported in Nigeria. These genes belong to the narrow-spectrum, AmpC, extended-spectrum and carbapenemase beta-lactamase resistance genes. The pooled proportion estimate of extended-spectrum beta-lactamase genes in Nigeria was 31% (95% confidence interval [CI]: 26% – 36%, p < 0.0001), while the estimate of the blaCTX-M-15 gene in Nigeria was 46% (95% CI: 36% – 57%, p < 0.0001). The proportion estimate of AmpC genes was 32% (95% CI: 11% – 52%, p < 0.001), while the estimate for carbapenemases was 8% (95% CI: 5% – 12%, p < 0.001). Conclusion This study provides information on beta-lactamase distribution in Nigeria. This is necessary for a better understanding of molecular epidemiology of clinically important beta-lactamases, especially the extended-spectrum beta-lactamases and carbapenemases in Nigeria.
Collapse
Affiliation(s)
- Babafela B Awosile
- Texas Tech University School of Veterinary Medicine, Amarillo, Texas, United States
| | - Michael Agbaje
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oluwawemimo Adebowale
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olugbenga Kehinde
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ezekiel Omoshaba
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
13
|
Lynch JP, Zhanel GG. Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy. Semin Respir Crit Care Med 2022; 43:191-218. [PMID: 35062038 DOI: 10.1055/s-0041-1740109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA), a non-lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant "epidemic" clones. We discuss the importance of PA as a cause of pneumonia including health care-associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Baghal Asghari F, Dehghani MH, Dehghanzadeh R, Farajzadeh D, Yaghmaeian K, Mahvi AH, Rajabi A. Antibiotic resistance and antibiotic-resistance genes of Pseudomonas spp. and Escherichia coli isolated from untreated hospital wastewater. WATER SCIENCE AND TECHNOLOGY 2021; 84:172-181. [PMID: 34280162 DOI: 10.2166/wst.2021.207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hospitals are considered an important factor in the spread of antibiotic-resistant bacteria (ARBs) and antibiotic-resistance genes (ARGs). The purpose of this research was to characterize the microbial populations in hospital wastewater and investigated the prevalence of β-lactamase, SulІ and QnrS resistance genes. In the first step, culture method was used to isolate Pseudomonas aeruginosa and Escherichia coli. In the next step, accurate identification of isolated bacteria was carried out using the polymerase chain reaction (PCR) method, then the resistance of the bacteria at different concentrations of antibiotics (8-128 μg/mL) was examined. Finally the ARGs were detected using the PCR method. The averages of heterotrophic plate count (HPC) and ARB concentration in wastewater samples were 1.8 × 108 and 4.3 × 106 CFU/100 mL, respectively. The highest resistance rates were found for sulfamethoxazole and the highest resistance rates in the β-lactamase group were for ceftazidime, while highest sensitivity was for gentamicin and there was no isolate that was sensitive to the studied antibiotics. SulІ and QnrS were the highest and lowest abundance of all ARGs in samples respectively and blaSHV was the highest β-lactam resistance gene. Our results indicated an increase in the resistance of identified bacteria to several antibiotics. So it can be concluded that numerous antibiotic-resistant pathogens and vast numbers of ARGs exist in the human body so that their release from hospitals without effective treatment can cause many dangers to the environment and human health.
Collapse
Affiliation(s)
- Farzaneh Baghal Asghari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Dehghanzadeh
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Farajzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Rajabi
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
The Carbapenemase BKC-1 from Klebsiella pneumoniae Is Adapted for Translocation by Both the Tat and Sec Translocons. mBio 2021; 12:e0130221. [PMID: 34154411 PMCID: PMC8262980 DOI: 10.1128/mbio.01302-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell envelope of Gram-negative bacteria consists of two membranes surrounding the periplasm and peptidoglycan layer. β-Lactam antibiotics target the periplasmic penicillin-binding proteins that synthesize peptidoglycan, resulting in cell death. The primary means by which bacterial species resist the effects of β-lactam drugs is to populate the periplasmic space with β-lactamases. Resistance to β-lactam drugs is spread by lateral transfer of genes encoding β-lactamases from one species of bacteria to another. However, the resistance phenotype depends in turn on these “alien” protein sequences being recognized and exported across the cytoplasmic membrane by either the Sec or Tat protein translocation machinery of the new bacterial host. Here, we examine BKC-1, a carbapenemase from an unknown bacterial source that has been identified in a single clinical isolate of Klebsiella pneumoniae. BKC-1 was shown to be located in the periplasm, and functional in both K. pneumoniae and Escherichia coli. Sequence analysis revealed the presence of an unusual signal peptide with a twin arginine motif and a duplicated hydrophobic region. Biochemical assays showed this signal peptide directs BKC-1 for translocation by both Sec and Tat translocons. This is one of the few descriptions of a periplasmic protein that is functionally translocated by both export pathways in the same organism, and we suggest it represents a snapshot of evolution for a β-lactamase adapting to functionality in a new host.
Collapse
|
16
|
Bandyopadhyay S, Bhattacharyya D, Samanta I, Banerjee J, Habib M, Dutta TK, Dutt T. Characterization of Multidrug-Resistant Biofilm-Producing Escherichia coli and Klebsiella pneumoniae in Healthy Cattle and Cattle with Diarrhea. Microb Drug Resist 2021; 27:1457-1469. [PMID: 33913759 DOI: 10.1089/mdr.2020.0298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This study describes comparative occurrence and characterization of multidrug-resistant (MDR) Escherichia coli and Klebsiella pneumoniae (KP) in healthy cattle (HC) and cattle with diarrhea (DC) in India. During 2018-2020, 72 MDR isolates, including 35 E. coli (DC: 27; HC 8) and 37 K. pneumoniae (DC: 34; HC: 3), from 251 rectal swabs (DC: 219; HC: 32) were investigated for extended-spectrum beta-lactamase (ESBL), AmpC type β-lactamase and carbapenemase production, antimicrobial susceptibility profile, biofilm production, and efflux pump activity. Fifty-five MDR isolates were ESBL producers (ESBLPs) (DC: 50; HC: 5) and ESBLPs from DC were coresistant to multiple antibiotics. The blaCTX-M gene (50) was the most frequently detected β-lactamases followed by blaAmpC (22), blaTEM1 (13), blaCMY-6 (6), blaOXA1 (5), blaPER (2), blaDHA, and blaFOX and blaSHV12 (1 each). Plasmid-mediated quinolone resistance determinants qnrB, qnrS, qnrA, and qepA were detected in 18, 16, 2, and 3 isolates, respectively. Twenty three isolates revealed mutation in gyrA and parC genes. Tetracycline-resistance markers tetA, tetB, tetC, and tetE were detected in 33, 10, 3, and 2 isolates, respectively. Only one of the 41 imipenem-resistant isolates harbored blaNDM-5 and two were colistin-resistant. Altogether, 20 MDR isolates were strong biofilm producers and 19 harbored different virulence factors. This is the first ever report from India on the presence of MDR Enterobacteriaceae with resistance to even last-resort antimicrobials in the bovine diarrhea.
Collapse
Affiliation(s)
| | | | - Indranil Samanta
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Jaydeep Banerjee
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | - Md Habib
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | - Tapan K Dutta
- C.V.Sc. & A.H, Central Agricultural University, Aizawl, India
| | - Triveni Dutt
- Division of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
17
|
Obodoechi LO, Carvalho I, Chenouf NS, Martínez-Álvarez S, Sadi M, Nwanta JA, Chah KF, Torres C. Antimicrobial resistance in Escherichia coli isolates from frugivorous (Eidolon helvum) and insectivorous (Nycteris hispida) bats in Southeast Nigeria, with detection of CTX-M-15 producing isolates. Comp Immunol Microbiol Infect Dis 2021; 75:101613. [PMID: 33465673 DOI: 10.1016/j.cimid.2021.101613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 12/16/2022]
Abstract
Thirty-five Escherichia coli isolates obtained from the liver, spleen and intestines of 180 frugivorous and insectivorous bats were investigated for antimicrobial resistance phenotypes/genotypes, prevalence of Extended-Spectrum beta-lactamase (ESBL) production, virulence gene detection and molecular typing. Eight (22.9 %) of the isolates were multidrug resistant (MDR). Two isolates were cefotaxime-resistant, ESBL-producers and harbored the blaCTX-M-15 gene; they belonged to ST10184-D and ST2178-B1 lineages. tet(A) gene was detected in all tetracycline-resistant isolates while int1 (n = 8) and blaTEM (n = 7) genes were also found. Thirty-three of the E. coli isolates were assigned to seven phylogenetic groups, with B1 (45.7 %) being predominant. Three isolates were enteropathogenic E. coli (EPEC) pathovars, containing the eae gene (with the variants gamma and iota), and lacking stx1/stx2 genes. Bats in Nigeria are possible reservoirs of potentially pathogenic MDR E. coli isolates which may be important in the ecology of antimicrobial resistance at the human-livestock-wildlife-environment interfaces. The study reinforces the importance of including wildlife in national antimicrobial resistance monitoring programmes.
Collapse
Affiliation(s)
- Lynda O Obodoechi
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka, Nigeria
| | - Isabel Carvalho
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain; Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Nadia Safia Chenouf
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain; Laboratory of Exploration and Valuation of the Steppe Ecosystem, University of Djelfa, Algeria
| | | | - Madjid Sadi
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain; Institute of Veterinary Sciences, University of Saad Dahlab Blida1, Blida, Algeria; Laboratory of Biotechnology Related to Animals Reproduction, Blida, Algeria
| | - John A Nwanta
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka, Nigeria
| | - Kennedy F Chah
- University of Nigeria Veterinary Antimicrobial Resistance Research Group, Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria.
| | - Carmen Torres
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| |
Collapse
|
18
|
S. R, Das R, Ahmed M S, Esther Lalnunmawii, Nachimuthu S, K. R, S. H. Myco-nanocolloids manipulate growth, biofilm formation and virulence genes in UTI causing E. coli. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1852426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ranjani S.
- School of Life Sciences, B.S. Abdur Rahman Crescent institute of Science and Technology, Chennai, India
| | - Rumelee Das
- School of Life Sciences, B.S. Abdur Rahman Crescent institute of Science and Technology, Chennai, India
| | - Shariq Ahmed M
- School of Life Sciences, B.S. Abdur Rahman Crescent institute of Science and Technology, Chennai, India
| | | | | | - Ruckmani K.
- Department of Pharmaceutical Technology, University College of Engineering, Anna University BIT Campus, Tiruchirappalli, Tamilnadu, India
| | - Hemalatha S.
- School of Life Sciences, B.S. Abdur Rahman Crescent institute of Science and Technology, Chennai, India
| |
Collapse
|
19
|
Genotypic antimicrobial resistance characterization of E. coli from dairy calves at high risk of respiratory disease administered enrofloxacin or tulathromycin. Sci Rep 2020; 10:19327. [PMID: 33168881 PMCID: PMC7653923 DOI: 10.1038/s41598-020-76232-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/26/2020] [Indexed: 01/15/2023] Open
Abstract
The objective of this study was to evaluate the longitudinal effect of enrofloxacin or tulathromycin use in calves at high risk of bovine respiratory disease (BRD) on antimicrobial resistance genes and mutation in quinolone resistance-determining regions (QRDR) in fecal E. coli. Calves at high risk of developing BRD were randomly enrolled in one of three groups receiving: (1) enrofloxacin (ENR; n = 22); (2) tulathromycin (TUL; n = 24); or (3) no treatment (CTL; n = 21). Fecal samples were collected at enrollment and at 7, 28, and 56 days after beginning treatment, cultured for Escherichiacoli (EC) and DNA extracted. Isolates were screened for cephalosporin, quinolone and tetracycline resistance genes using PCR. QRDR screening was conducted using Sanger sequencing. The only resistance genes detected were aac(6′)Ib-cr (n = 13), bla-CTX-M (n = 51), bla-TEM (n = 117), tetA (n = 142) and tetB (n = 101). A significantly higher detection of gyrA mutated at position 248 at time points 7 (OR = 11.5; P value = 0.03) and 28 (OR = 9.0; P value = 0.05) was observed in the ENR group when compared to calves in the control group. Our findings support a better understanding of the potential impacts from the use of enrofloxacin in calves on the selection and persistence of resistance.
Collapse
|
20
|
Phage-Antibiotic Synergy Is Driven by a Unique Combination of Antibacterial Mechanism of Action and Stoichiometry. mBio 2020; 11:mBio.01462-20. [PMID: 32753497 PMCID: PMC7407087 DOI: 10.1128/mbio.01462-20] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The continued rise in antibiotic resistance is precipitating a medical crisis. Bacteriophage (phage) has been hailed as one possible therapeutic option to augment the efficacy of antibiotics. However, only a few studies have addressed the synergistic relationship between phage and antibiotics. Here, we report a comprehensive analysis of phage-antibiotic interaction that evaluates synergism, additivism, and antagonism for all classes of antibiotics across clinically achievable stoichiometries. We combined an optically based real-time microtiter plate readout with a matrix-like heat map of treatment potencies to measure phage and antibiotic synergy (PAS), a process we term synography. Phage-antibiotic synography was performed against a pandemic drug-resistant clonal group of extraintestinal pathogenic Escherichia coli (ExPEC) with antibiotic levels blanketing the MIC across seven orders of viral titers. Our results suggest that, under certain conditions, phages provide an adjuvating effect by lowering the MIC for drug-resistant strains. Furthermore, synergistic and antagonistic interactions are highly dependent on the mechanism of bacterial inhibition by the class of antibiotic paired to the phage, and when synergism is observed, it suppresses the emergence of resistant cells. Host conditions that simulate the infection environment, including serum and urine, suppress PAS in a bacterial growth-dependent manner. Lastly, two different related phages that differed in their burst sizes produced drastically different synograms. Collectively, these data suggest lytic phages can resuscitate an ineffective antibiotic for previously resistant bacteria while also synergizing with antibiotics in a class-dependent manner, processes that may be dampened by lower bacterial growth rates found in host environments.IMPORTANCE Bacteriophage (phage) therapy is a promising approach to combat the rise of multidrug-resistant bacteria. Currently, the preferred clinical modality is to pair phage with an antibiotic, a practice thought to improve efficacy. However, antagonism between phage and antibiotics has been reported, the choice of phage and antibiotic is not often empirically determined, and the effect of the host factors on the effectiveness is unknown. Here, we interrogate phage-antibiotic interactions across antibiotics with different mechanisms of action. Our results suggest that phage can lower the working MIC for bacterial strains already resistant to the antibiotic, is dependent on the antibiotic class and stoichiometry of the pairing, and is dramatically influenced by the host microenvironment.
Collapse
|
21
|
Jesumirhewe C, Springer B, Allerberger F, Ruppitsch W. Whole genome sequencing of extended-spectrum β-lactamase genes in Enterobacteriaceae isolates from Nigeria. PLoS One 2020; 15:e0231146. [PMID: 32287306 PMCID: PMC7156064 DOI: 10.1371/journal.pone.0231146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/17/2020] [Indexed: 01/22/2023] Open
Abstract
Extended Spectrum β-lactamase (ESBL)-producing Enterobacteriaceae are of major concern as they are implicated in multidrug resistant nosocomial infections. They are listed on a recently published global priority list of antibiotic-resistant bacteria by the World Health Organization which raises concern in both healthcare and community settings. This study aimed at determining the frequency of ESBL genes in multidrug resistant human clinical Enterobacteriaceae isolates from Edo state Nigeria and to characterize the resistance mechanisms using whole genome sequencing. A total of 217 consecutive clinical isolates of Enterobacteriaceae, selection based on inclusion criteria, were collected from March-May 2015 from three medical microbiology laboratories of hospitals in Edo state Nigeria. All isolates were analyzed using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Antibiotic susceptibility testing was performed by Kirby-Bauer method and minimum inhibitory concentration (MIC) determination by E-test method. Double disc synergy test was used to screen for the production of ESBL. Whole genome sequencing (WGS) was performed for isolate characterization and identification of resistance determinants. Out of 217 consecutive clinical Enterobacteriaceae isolates, 148 (68.2%) were multi-drug resistant. Of these multi-drug resistant isolates, 60 (40.5%) were positive for the ESBL phenotypic test and carried ESBL genes. CTX-M-15 was the predominant ESBL found, among 93.3% (n = 56/60). Thirty-two plasmid incompatibility groups and 28 known and two new sequence types were identified among the ESBL isolates. The high occurrence of CTX-M-15 with associated resistant determinants in multidrug resistant Enterobacteriaceae harboring different plasmid incompatibility groups and sequence types calls for the need of continuous monitoring of this resistance threat to reduce its public health impact. To our knowledge, this study presents the first genomic characterization of ESBL production mediated by blaCTX-M-15 in human clinical isolates of Enterobacter hormaechei, Citrobacter werkmanii and Atlantibacter hermannii from Nigeria.
Collapse
Affiliation(s)
- Christiana Jesumirhewe
- Department of Pharmaceutical Microbiology, Prof Dora Akunyili College of Pharmacy, Igbinedion University, Okada, Nigeria
- * E-mail:
| | - Burkhard Springer
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Franz Allerberger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| |
Collapse
|
22
|
Phenotypic and Genotypic Characterization of Extended-Spectrum Beta-Lactamases Produced by Escherichia coli Colonizing Pregnant Women. Infect Dis Obstet Gynecol 2020; 2020:4190306. [PMID: 32327921 PMCID: PMC7168714 DOI: 10.1155/2020/4190306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction Infections caused by extended spectrum beta lactamase (ESBL) producing bacteria continue to be a challenge for choosing the appropriate therapy since they may exhibit coresistance to many other classes of antibiotics. The aim of the study was to screen pregnant women for ESBL producing bacteria in Beirut, Lebanon, to examine their phenotypic and genotypic characterization and to study the association between ESBL colonization with adverse neonatal outcomes. Method In this cross-sectional study, vaginal samples from 308 pregnant women at 35–37 weeks of gestation were studied during a one-year period. The samples were plated on MacConkey agar and selective MacConkey agar supplemented with ceftazidime. Phenotypic confirmation of ESBL production was performed by double-disc synergy test and all isolates were screened by PCR for the resistance genes blaSHV, blaTEM, and blaCTX-M. Clonal relatedness of Escherichia coli isolates was investigated by pulsed-field gel electrophoresis. Results In total, 59 women out of 308 (19.1%) were colonized by ESBL producing gram negative bacteria. Two babies born to mothers colonized with ESBL were diagnosed with sepsis. The susceptibility rates of isolates to other antibiotics were 39% to co-trimoxazole, 49.2% to ciprofloxacin, 91.5% to gentamicin, 18.6% to aztreonam and 35.6% to cefepime. Most of isolates were highly sensitive to meropenem and imipenem, with a susceptibility of 93.2%. PCR was performed on all E. coli isolates to detect the most common ESBL producing genes; blaCTX-M was the predominant gene (90.7%), followed by blaTEM (88.4%) and finally blaSHV (44.2%). PFGE analysis of 34 E. coli isolates revealed 22 distinct clusters showing more than 85% similarity. Conclusion In conclusion, this study showed that Lebanon has a high prevalence of ESBL carriage in pregnant women. Further studies that include a continuous screening of pregnant women and follow up of their newborn clinical status should be conducted to foresee the risk of transmission.
Collapse
|
23
|
Musa BM, Imam H, Lendel A, Abdulkadir I, Gumi HS, Aliyu MH, Habib AG. The burden of extended-spectrum β-lactamase-producing Enterobacteriaceae in Nigeria: a systematic review and meta-analysis. Trans R Soc Trop Med Hyg 2020; 114:241-248. [PMID: 31925440 DOI: 10.1093/trstmh/trz125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Antibiotic resistance on account of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) has become a major public health concern in developing countries. The presence of ESBL-PE is associated with increased morbidity, mortality and healthcare costs. There is no active antimicrobial surveillance mechanism in Nigeria. The aim of this study is to determine a precise estimate of the burden of ESBL-PE in Nigeria. We employed Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and searched electronic databases for suitable studies. We derived pooled prevalence estimates using random effects models and assessed trends with meta-regression. We found 208 studies, with 38 satisfying our inclusion criteria. The overall pooled prevalence of ESBL-PE in Nigeria was 34.6% (95% CI 26.8 to 42.3%) and increased at a rate of 0.22% per year (p for trend=0.837). In summary, we found the prevalence of ESBL-PE in Nigeria to be high and recommend a robust national survey to provide a more detailed picture of the epidemiology of ESBL-PE in Nigeria.
Collapse
Affiliation(s)
- Baba M Musa
- Department of Medicine, Bayero University/Aminu Kano Teaching Hospital, Kano, Nigeria. 700241
- Africa Center of Excellence of Population Health and Policy (ACEPHAP) Bayero University, Kano, Nigeria
| | - Hassana Imam
- Department of Medicine, Bayero University/Aminu Kano Teaching Hospital, Kano, Nigeria. 700241
| | - Anastasia Lendel
- Center for Medicine, Health and Society 300 Calhoun Hall, Vanderbilt University, Nashville, TN 37240, USA
| | - Isa Abdulkadir
- Department of Pediatrics, Ahmadu Bello University Teaching Hospital,Zaria, Nigeria
| | - Halima S Gumi
- North Devon District Hospital, Barnstable, EX31 1NR, UK
| | - Muktar H Aliyu
- Vanderbilt Institute for Global Health, 2525 West End Avenue, Suite 725, Nashville, Tennessee, 37203-1738, USA
| | - Abdulrazaq G Habib
- Department of Medicine, Bayero University/Aminu Kano Teaching Hospital, Kano, Nigeria. 700241
- Africa Center of Excellence of Population Health and Policy (ACEPHAP) Bayero University, Kano, Nigeria
| |
Collapse
|
24
|
Influence of the α-Methoxy Group on the Reaction of Temocillin with Pseudomonas aeruginosa PBP3 and CTX-M-14 β-Lactamase. Antimicrob Agents Chemother 2019; 64:AAC.01473-19. [PMID: 31685462 DOI: 10.1128/aac.01473-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022] Open
Abstract
The prevalence of multidrug-resistant Pseudomonas aeruginosa has led to the reexamination of older "forgotten" drugs, such as temocillin, for their ability to combat resistant microbes. Temocillin is the 6-α-methoxy analogue of ticarcillin, a carboxypenicillin with well-characterized antipseudomonal properties. The α-methoxy modification confers resistance to serine β-lactamases, yet temocillin is ineffective against P. aeruginosa growth. The origins of temocillin's inferior antibacterial properties against P. aeruginosa have remained relatively unexplored. Here, we analyze the reaction kinetics, protein stability, and binding conformations of temocillin and ticarcillin with penicillin-binding protein 3 (PBP3), an essential PBP in P. aeruginosa We show that the 6-α-methoxy group perturbs the stability of the PBP3 acyl-enzyme, which manifests in an elevated off-rate constant (k off) in biochemical assays comparing temocillin with ticarcillin. Complex crystal structures with PBP3 reveal similar binding modes of the two drugs but with important differences. Most notably, the 6-α-methoxy group disrupts a high-quality hydrogen bond with a conserved residue important for ligand binding while also being inserted into a crowded active site, possibly destabilizing the active site and enabling water molecule from bulk solvent to access and cleave the acyl-enzyme bond. This hypothesis is supported by the observation that the acyl-enzyme complex of temocillin has reduced thermal stability compared with ticarcillin. Furthermore, we explore temocillin's mechanism of β-lactamase inhibition with a high-resolution complex structure of CTX-M-14 class A serine β-lactamase. The results suggest that the α-methoxy group prevents hydrolysis by locking the compound into an unexpected conformation that impedes access of the catalytic water to the acyl-enzyme adduct.
Collapse
|
25
|
Singha M, Kumar G, Jain D, Kumar N G, Ray D, Ghosh AS, Basak A. Rapid Fluorescent-Based Detection of New Delhi Metallo-β-Lactamases by Photo-Cross-Linking Using Conjugates of Azidonaphthalimide and Zinc(II)-Chelating Motifs. ACS OMEGA 2019; 4:10891-10898. [PMID: 31460186 PMCID: PMC6648899 DOI: 10.1021/acsomega.9b01145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
A method for rapid detection of metallo-β-lactamases NDM-5 and NDM-7 using conjugates of azidonaphthalimide and Zn(II) chelating motifs (like sulfonamides, hydroxamate, and terpyridine) is described. Incubation and irradiation, followed by gel electrophoresis, clearly show the presence of NDMs. The o-sulfonamide-based probe has the highest efficiency of detection for both the NDMs. The proteins are detectable at nM concentrations, and the method is also selective, works both in vitro and in vivo, as revealed by cellular imaging and also with clinical isolates.
Collapse
Affiliation(s)
- Monisha Singha
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Gaurav Kumar
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Diamond Jain
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Ganesh Kumar N
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Debashis Ray
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Anindya S. Ghosh
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Amit Basak
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| |
Collapse
|