1
|
Jyothish L, Kazi S, Gokhale JS. Microfluidics for detection of food pathogens: recent trends and opportunities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2243-2262. [PMID: 39431185 PMCID: PMC11486885 DOI: 10.1007/s13197-024-06058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 10/22/2024]
Abstract
Safe and healthy food is the fundamental right of every citizen. Problems caused by foodborne pathogens have always raised a threat to food safety and human health. Centers for Disease Control and Prevention (CDC) estimates that around 48 million people are affected by food intoxication, and 3000 people succumb to death. Hence, it is inevitable that an approach that is efficient, reliable, sensitive, and rapid approach that can replace the conventional analytical methods such as microbiological and biochemical methods, high throughput next-generation sequence (NGS), polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA), etc. Even though the accuracy of conventional methods is high, it is tedious; increased consumption of reagents/samples, false positives, and complex operations are the drawbacks of these methods. Microfluidic devices have shown remarkable advances in all branches of science. They serve as an alternative to conventional ways to overcome the abovementioned drawbacks. Furthermore, coupling microfluidics can improve the efficiency and accuracy of conventional methods such as surface plasma resonance, loop-mediated isothermal amplification, ELISA, and PCR. This article reviewed the progress of microfluidic devices in the last ten years in detecting foodborne pathogens. Microfluidic technology has opened the research gateway for developing low-cost, on-site, portable, and rapid assay devices. The article includes the application of microfluidic-based devices to identify critical food pathogens and briefly discusses the necessary research in this area.
Collapse
Affiliation(s)
- Lakshmi Jyothish
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Sameera Kazi
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Jyoti S. Gokhale
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| |
Collapse
|
2
|
Sun X, Sun B, Sammani S, Dudek SM, Belvitch P, Camp SM, Zhang D, Bime C, Garcia JGN. Genetic and epigenetic regulation of cortactin (CTTN) by inflammatory factors and mechanical stress in human lung endothelial cells. Biosci Rep 2024; 44:BSR20231934. [PMID: 39162263 PMCID: PMC11405783 DOI: 10.1042/bsr20231934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024] Open
Abstract
RATIONALE Cortactin, an actin-binding cytoskeletal protein, plays a crucial role in maintaining endothelial cell (EC) barrier integrity and regulating vascular permeability. The gene encoding cortactin, CTTN, is implicated in various lung inflammatory disorders. Despite this, the transcriptional regulation of CTTN by inflammatory stimuli and promoter SNPs remains unexplored. METHODS We transfected human lung ECs with a full-length CTTN promoters linked to a luciferase reporter to measure promoter activity. SNP-containing CTTN promoter was created via site-directed mutagenesis. Transfected ECs were exposed to LPS (PAMP), TNF-α (cytokine), cyclic stretch (CS), FG-4592 (HIF-inducer), NRF2 (anti-oxidant modulator), FTY-(S)-phosphate (endothelial barrier enhancer), and 5'-Aza (demethylation inducer). Immunohistochemistry was used to assess cortactin expression in mouse lungs exposed to LPS. RESULTS LPS, TNF-α, and 18%CS significantly increased CTTN promoter activities in a time-dependent manner (P<0.05). The variant rs34612166 (-212T/C) markedly enhanced LPS- and 18%CS- induced CTTN promoter activities (P<0.05). FG-4592 significantly boosted CTTN promoter activities (P<0.01), which were partially inhibited by HIF1α (KC7F2) and HIF2α (PT2385) inhibitors (P<0.05). NRF2 activator Bixin increased CTTN promoter activities, whereas NRF2 inhibitor Brusatol reduced them (P<0.05). 5'-Aza increased CTTN promoter activities by 2.9-fold (P<0.05). NF-κB response element mutations significantly reduced CTTN promoter activities response to LPS and TNFα. FTY-(S)-phosphate significantly increased CTTN promoter activities in 24 h. In vivo, cortactin levels were significantly elevated in inflammatory mouse lungs exposed to LPS for 18 h. CONCLUSION CTTN transcriptional is significantly influenced by inflammatory factors and promoter variants. Cortactin, essential in mitigating inflammatory edema, presents a promising therapeutic target to alleviate severe inflammatory disorders.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Belinda Sun
- Department of Pathology, University of Arizona, Tucson, AZ, U.S.A
| | - Saad Sammani
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Steven M Dudek
- Department of Medicine, University of Illinois Chicago, Chicago IL, U.S.A
| | - Patrick Belvitch
- Department of Medicine, University of Illinois Chicago, Chicago IL, U.S.A
| | - Sara M Camp
- University of Florida, UF Scripps Research Institute, Jupiter, FL, U.S.A
| | - Donna Zhang
- College of Pharmacy, University of Arizona, Tucson, AZ, U.S.A
| | - Christian Bime
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
- University of Florida, UF Scripps Research Institute, Jupiter, FL, U.S.A
| |
Collapse
|
3
|
Sharafutdinov I, Friedrich B, Rottner K, Backert S, Tegtmeyer N. Cortactin: A major cellular target of viral, protozoal, and fungal pathogens. Mol Microbiol 2024; 122:165-183. [PMID: 38868928 DOI: 10.1111/mmi.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Many viral, protozoal, and fungal pathogens represent major human and animal health problems due to their great potential of causing infectious diseases. Research on these pathogens has contributed substantially to our current understanding of both microbial virulence determinants and host key factors during infection. Countless studies have also shed light on the molecular mechanisms of host-pathogen interactions that are employed by these microbes. For example, actin cytoskeletal dynamics play critical roles in effective adhesion, host cell entry, and intracellular movements of intruding pathogens. Cortactin is an eminent host cell protein that stimulates actin polymerization and signal transduction, and recently emerged as fundamental player during host-pathogen crosstalk. Here we review the important role of cortactin as major target for various prominent viral, protozoal and fungal pathogens in humans, and its role in human disease development and cancer progression. Most if not all of these important classes of pathogens have been reported to hijack cortactin during infection through mediating up- or downregulation of cortactin mRNA and protein expression as well as signaling. In particular, pathogen-induced changes in tyrosine and serine phosphorylation status of cortactin at its major phospho-sites (Y-421, Y-470, Y-486, S-113, S-298, S-405, and S-418) are addressed. As has been reported for various Gram-negative and Gram-positive bacteria, many pathogenic viruses, protozoa, and fungi also control these regulatory phospho-sites, for example, by activating kinases such as Src, PAK, ERK1/2, and PKD, which are known to phosphorylate cortactin. In addition, the recruitment of cortactin and its interaction partners, like the Arp2/3 complex and F-actin, to the contact sites between pathogens and host cells is highlighted, as this plays an important role in the infection process and internalization of several pathogens. However, there are also other ways in which the pathogens can exploit the function of cortactin for their needs, as the cortactin-mediated regulation of cellular processes is complex and involves numerous different interaction partners. Here, the current state of knowledge is summarized.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Friedrich
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Lv L, Zhou LX, Jiang FF. Study on the mechanism of 20-hydroxyeicosatetraenoic acid in retinal ischemia-reperfusion injury. Indian J Ophthalmol 2024; 72:S441-S447. [PMID: 38389249 PMCID: PMC467026 DOI: 10.4103/ijo.ijo_1466_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/24/2024] Open
Abstract
PURPOSE To explore the effect of 20-hydroxyeicosatetraenoic acid (20-HETE) on retinal ischemia-reperfusion injury (RIRI) and the protective effect of N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine (HET0016) on RIRI. METHODS Male Sprague-Dawley rats were randomly divided into the normal control group, experimental model group (RIRI group), experimental solvent group (RIRI + solvent group), and experimental treatment group (RIRI + HET0016 group). RESULTS The levels of 20-HETE, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in the retina of rats at 24 h after reperfusion were measured by enzyme-linked immunosorbent assay. Hematoxylin-eosin staining was used to observe the retinal morphological and thickness changes at 24 h, 48 h, and 7 days after reperfusion. The number and localized expression of matrix metalloproteinase-9-positive cells in the retina of the rats at 24 h after reperfusion and the activation and localized expression of retinal microglia at 48 h after reperfusion were measured using an immunohistochemical method. The nuclear metastasis of nuclear factor kappa-B (NF-κB, p65) cells at 24 h after reperfusion was observed using an immunofluorescence method. CONCLUSION Overall, 20-HETE might activate microglia to aggravate RIRI by the NF-κB pathway, but HET0016 has significant protective effects for the retina.
Collapse
Affiliation(s)
- Liang Lv
- Department of Ophthalmology, The Fifth Clinical College of Zhengzhou University, Zhengzhou, China
| | - Li-Xiao Zhou
- Department of Ophthalmology, The Fifth Clinical College of Zhengzhou University, Zhengzhou, China
| | - Fei-Fei Jiang
- Department of Ophthalmology, The Fifth Clinical College of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Ulrich JU, Epping L, Pilz T, Walther B, Stingl K, Semmler T, Renard BY. Nanopore adaptive sampling effectively enriches bacterial plasmids. mSystems 2024; 9:e0094523. [PMID: 38376263 PMCID: PMC10949517 DOI: 10.1128/msystems.00945-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Bacterial plasmids play a major role in the spread of antibiotic resistance genes. However, their characterization via DNA sequencing suffers from the low abundance of plasmid DNA in those samples. Although sample preparation methods can enrich the proportion of plasmid DNA before sequencing, these methods are expensive and laborious, and they might introduce a bias by enriching only for specific plasmid DNA sequences. Nanopore adaptive sampling could overcome these issues by rejecting uninteresting DNA molecules during the sequencing process. In this study, we assess the application of adaptive sampling for the enrichment of low-abundant plasmids in known bacterial isolates using two different adaptive sampling tools. We show that a significant enrichment can be achieved even on expired flow cells. By applying adaptive sampling, we also improve the quality of de novo plasmid assemblies and reduce the sequencing time. However, our experiments also highlight issues with adaptive sampling if target and non-target sequences span similar regions. IMPORTANCE Antimicrobial resistance causes millions of deaths every year. Mobile genetic elements like bacterial plasmids are key drivers for the dissemination of antimicrobial resistance genes. This makes the characterization of plasmids via DNA sequencing an important tool for clinical microbiologists. Since plasmids are often underrepresented in bacterial samples, plasmid sequencing can be challenging and laborious. To accelerate the sequencing process, we evaluate nanopore adaptive sampling as an in silico method for the enrichment of low-abundant plasmids. Our results show the potential of this cost-efficient method for future plasmid research but also indicate issues that arise from using reference sequences.
Collapse
Affiliation(s)
- Jens-Uwe Ulrich
- Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Potsdam, Germany
- Department of Mathematics and Computer Science, Free University of Berlin, Berlin, Germany
- Phylogenomics Unit, Center for Artificial Intelligence in Public Health Research, Robert Koch Institute, Wildau, Germany
| | - Lennard Epping
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Tanja Pilz
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Torsten Semmler
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Bernhard Y. Renard
- Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Potsdam, Germany
| |
Collapse
|
6
|
Naumann M, Ferino L, Sharafutdinov I, Backert S. Gastric Epithelial Barrier Disruption, Inflammation and Oncogenic Signal Transduction by Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:207-238. [PMID: 38231220 DOI: 10.1007/978-3-031-47331-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori exemplifies one of the most favourable bacterial pathogens worldwide. The bacterium colonizes the gastric mucosa in about half of the human population and constitutes a major risk factor for triggering gastric diseases such as stomach cancer. H. pylori infection represents a prime example of chronic inflammation and cancer-inducing bacterial pathogens. The microbe utilizes a remarkable set of virulence factors and strategies to control cellular checkpoints of inflammation and oncogenic signal transduction. This chapter emphasizes on the pathogenicity determinants of H. pylori such as the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system (T4SS), effector protein CagA, lipopolysaccharide (LPS) metabolite ADP-glycero-β-D-manno-heptose (ADP-heptose), cytotoxin VacA, serine protease HtrA, and urease, and how they manipulate various key host cell signaling networks in the gastric epithelium. In particular, we highlight the H. pylori-induced disruption of cell-to-cell junctions, pro-inflammatory activities, as well as proliferative, pro-apoptotic and anti-apoptotic responses. Here we review these hijacked signal transduction events and their impact on gastric disease development.
Collapse
Affiliation(s)
- Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Lorena Ferino
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Irshad Sharafutdinov
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Steffen Backert
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
7
|
Sharafutdinov I, Knorr J, Rottner K, Backert S, Tegtmeyer N. Cortactin: A universal host cytoskeletal target of Gram-negative and Gram-positive bacterial pathogens. Mol Microbiol 2022; 118:623-636. [PMID: 36396951 DOI: 10.1111/mmi.15002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Pathogenic bacteria possess a great potential of causing infectious diseases and represent a serious threat to human and animal health. Understanding the molecular basis of infection development can provide new valuable strategies for disease prevention and better control. In host-pathogen interactions, actin-cytoskeletal dynamics play a crucial role in the successful adherence, invasion, and intracellular motility of many intruding microbial pathogens. Cortactin, a major cellular factor that promotes actin polymerization and other functions, appears as a central regulator of host-pathogen interactions and different human diseases including cancer development. Various important microbes have been reported to hijack cortactin signaling during infection. The primary regulation of cortactin appears to proceed via serine and/or tyrosine phosphorylation events by upstream kinases, acetylation, and interaction with various other host proteins, including the Arp2/3 complex, filamentous actin, the actin nucleation promoting factor N-WASP, focal adhesion kinase FAK, the large GTPase dynamin-2, the guanine nucleotide exchange factor Vav2, and the actin-stabilizing protein CD2AP. Given that many signaling factors can affect cortactin activities, several microbes target certain unique pathways, while also sharing some common features. Here we review our current knowledge of the hallmarks of cortactin as a major target for eminent Gram-negative and Gram-positive bacterial pathogens in humans.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jakob Knorr
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Lartey NL, Vargas-Robles H, Guerrero-Fonseca IM, García-Ponce A, Salinas-Lara C, Rottner K, Schnoor M. The Actin-Binding Protein Cortactin Promotes Sepsis Severity by Supporting Excessive Neutrophil Infiltration into the Lung. Biomedicines 2022; 10:biomedicines10051019. [PMID: 35625756 PMCID: PMC9139066 DOI: 10.3390/biomedicines10051019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a systemic infection that can lead to multi-organ failure. It is characterised by an uncontrolled immune response with massive neutrophil influx into peripheral organs. Neutrophil extravasation into tissues depends on actin remodeling and actin-binding proteins such as cortactin, which is expressed ubiquitously, except for neutrophils. Endothelial cortactin is necessary for proper regulation of neutrophil transendothelial migration and recruitment to sites of infection. We therefore hypothesised that cortactin plays a crucial role in sepsis development by regulating neutrophil trafficking. Using a murine model of sepsis induced by cecal ligation and puncture (CLP), we showed that cortactin-deficient (KO) mice survive better due to reduced lung injury. Histopathological analysis of lungs from septic KO mice revealed absence of oedema, reduced vascular congestion and mucus deposition, and better-preserved alveoli compared to septic wild-type (WT) mice. Additionally, sepsis-induced cytokine storm, excessive neutrophil infiltration into the lung and oxidative stress were significantly reduced in KO mice. Neutrophil depletion 12 h after sepsis improved survival in WT mice by averting lung injury, similar to both neutrophil-depleted and non-depleted KO mice. Our findings highlight a critical role of cortactin for lung neutrophil infiltration and sepsis severity.
Collapse
Affiliation(s)
- Nathaniel L. Lartey
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (N.L.L.); (H.V.-R.); (I.M.G.-F.); (A.G.-P.)
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (N.L.L.); (H.V.-R.); (I.M.G.-F.); (A.G.-P.)
| | - Idaira M. Guerrero-Fonseca
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (N.L.L.); (H.V.-R.); (I.M.G.-F.); (A.G.-P.)
| | - Alexander García-Ponce
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (N.L.L.); (H.V.-R.); (I.M.G.-F.); (A.G.-P.)
| | | | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, 38106 Braunschweig, Germany;
- Helmholtz Centre for Infection Research, Department of Cell Biology, 38124 Braunschweig, Germany
| | - Michael Schnoor
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (N.L.L.); (H.V.-R.); (I.M.G.-F.); (A.G.-P.)
- Correspondence: ; Tel.: +52-55-5747-3321
| |
Collapse
|