1
|
Boddapati S, Gummadi SN. Production and application of purified mutanase from novel Cellulosimicrobium funkei SNG1 in the in vitro biofilm degradation. Biotechnol Appl Biochem 2023. [PMID: 36744530 DOI: 10.1002/bab.2446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023]
Abstract
Mutanase (α-1,3-glucanase) is an inducible extracellular enzyme with potential medical applications in dentistry. A novel Cellulosimicrobium funkei strain SNG1 producing mutanase enzyme using α-1,3-glucans was isolated, and the enzyme was optimized for increased productivity using the one-factor-at-a-time approach. Maximum growth and enzyme-specific activity (2.12 ± 0.4 U/mg) were attained in a production medium with pH 7.0 and 1% α-1,3-glucans as carbon source, incubated at 37°C for 30 h. The result showed a five-fold increase in activity compared to unoptimized conditions (0.40 U/mg). The enzyme was purified by gel-filtration chromatography, and recovered with a yield of 29.03% and a specific activity increase of 10.9-fold. The molecular mass of the monomeric enzyme is 137 kDa. The pH and temperature optima are 6.0 and 45°C with Km of 1.28 ± 0.11 mg for α-1,3-glucans. The enzyme activity was stimulated by adding Co2+ , Ca2+ , Cu2+ , and was entirely inhibited by Hg2+ . On 2-h incubation, the purified enzyme effectively degraded in vitro film with an 82.68% degradation rate and a saccharification yield of 30%.
Collapse
Affiliation(s)
- Sirisha Boddapati
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, Tamil Nadu, India
| | - Sathyanaryana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Boddapati S, Gummadi SN. A comprehensive review on mutan (a mixed linkage of α-1-3 and α-1-6 glucans) from bacterial sources. Biotechnol Genet Eng Rev 2021; 37:208-237. [PMID: 34816783 DOI: 10.1080/02648725.2021.2003072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mutan is an extracellular sticky polymer having α-1-3 and α-1-6 glycosidic linkages with a large diversity in molecular weights and structures depending on the source. These compounds are reported to be highly thermostable and also have potential physiochemical and biological applications. The main aim of this review is to provide an overview of glucosyltransferases and their role in mutan synthesis. The production strategies and structural properties of bacterial mutans are discussed with a goal to improve production efficiency. The physicochemical features, chemical modifications, potential industrial applications and future prospects are also discussed. According to data, mutan and its derivatives will play a larger role in medicinal sectors and as thermoplastics in the near future.Abbreviations: ABTS: 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid; BHI: Brain heart infusion broth; 13C (HSQC) NMR: Heteronuclear Single Quantum Coherence NMR; CBMs: Carbohydrate binding modules; DPPH: 2,2-diphenyl-1-picrylhydrazyl; FTIR: Fourier-transform infrared spectroscopy; GC-MS: Gas chromatography-mass spectrometry; GPC: Gel permeation chromatography; Gtfs: Glucosyltransferases; 1H (DQF-COSY): Double-quantum filtered correlation spectroscopy; HPAEC-PAD: High-performance anion exchange chromatography with pulsed amperometric detection; HPLC: High performance liquid chromatography; HPSEC-RI: High-performance size exclusive chromatography coupled with refractive index; HPSEC-MALLS: High-performance size exclusive chromatography with multi-angle laser light scattering detection; MALDI-TOF: Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometry; Mw: Weight-average molecular weight; MWD: Molecular weight distribution; NMR: Nuclear magnetic resonance spectroscopy; TEM: Transmission electron microscopy; THB: Todd Hewitt Broth; TTY: Tryticase tryptose yeast extract broth.
Collapse
Affiliation(s)
- Sirisha Boddapati
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bjm School of Biosciences, Indian Institute of Technology-Madras, Chennai, India
| | - Sathyanaryana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bjm School of Biosciences, Indian Institute of Technology-Madras, Chennai, India
| |
Collapse
|
3
|
Afzal I, Sabir A, Sikandar S. Trichoderma: Biodiversity, Abundances, and Biotechnological Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Li X, Wang X, Meng X, Dijkhuizen L, Liu W. Structures, physico-chemical properties, production and (potential) applications of sucrose-derived α-d-glucans synthesized by glucansucrases. Carbohydr Polym 2020; 249:116818. [DOI: 10.1016/j.carbpol.2020.116818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
|
5
|
Boddapati S, Rai R, Gummadi SN. Structural analysis and antioxidative properties of mutan (water-insoluble glucan) and carboxymethyl mutan from Streptococcus mutans. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A. Trichoderma: The "Secrets" of a Multitalented Biocontrol Agent. PLANTS 2020; 9:plants9060762. [PMID: 32570799 PMCID: PMC7355703 DOI: 10.3390/plants9060762] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023]
Abstract
The plant-Trichoderma-pathogen triangle is a complicated web of numerous processes. Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being successful plant symbiotic organisms, Trichoderma spp. also behave as a low cost, effective and ecofriendly biocontrol agent. They can set themselves up in various patho-systems, have minimal impact on the soil equilibrium and do not impair useful organisms that contribute to the control of pathogens. This symbiotic association in plants leads to the acquisition of plant resistance to pathogens, improves developmental processes and yields and promotes absorption of nutrient and fertilizer use efficiency. Among other biocontrol mechanisms, antibiosis, competition and mycoparasitism are among the main features through which microorganisms, including Thrichoderma, react to the presence of other competitive pathogenic organisms, thereby preventing or obstructing their development. Stimulation of every process involves the biosynthesis of targeted metabolites like plant growth regulators, enzymes, siderophores, antibiotics, etc. This review summarizes the biological control activity exerted by Trichoderma spp. and sheds light on the recent progress in pinpointing the ecological significance of Trichoderma at the biochemical and molecular level in the rhizosphere as well as the benefits of symbiosis to the plant host in terms of physiological and biochemical mechanisms. From an applicative point of view, the evidence provided herein strongly supports the possibility to use Trichoderma as a safe, ecofriendly and effective biocontrol agent for different crop species.
Collapse
Affiliation(s)
- Monika Sood
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; (M.S.); (D.K.)
| | - Dhriti Kapoor
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; (M.S.); (D.K.)
| | - Vipul Kumar
- School of Agriculture, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, Punjab 144411, India;
| | - Mohamed S. Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Marco Landi
- Department of Agriculture, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Correspondence: (M.L.); (A.S.)
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, Italy;
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
- Correspondence: (M.L.); (A.S.)
| |
Collapse
|
7
|
Sasidharan S, Tuladhar P, Raj S, Saudagar P. Understanding Its Role Bioengineered Trichoderma in Managing Soil-Borne Plant Diseases and Its Other Benefits. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Złotko K, Wiater A, Waśko A, Pleszczyńska M, Paduch R, Jaroszuk-Ściseł J, Bieganowski A. A Report on Fungal (1→3)-α-d-glucans: Properties, Functions and Application. Molecules 2019; 24:E3972. [PMID: 31684030 PMCID: PMC6864487 DOI: 10.3390/molecules24213972] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
The cell walls of fungi are composed of glycoproteins, chitin, and α- and β-glucans. Although there are many reports on β-glucans, α-glucan polysaccharides are not yet fully understood. This review characterizes the physicochemical properties and functions of (1→3)-α-d-glucans. Particular attention has been paid to practical application and the effect of glucans in various respects, taking into account unfavourable effects and potential use. The role of α-glucans in plant infection has been proven, and collected facts have confirmed the characteristics of Aspergillus fumigatus infection associated with the presence of glucan in fungal cell wall. Like β-glucans, there are now evidence that α-glucans can also stimulate the immune system. Moreover, α-d-glucans have the ability to induce mutanases and can thus decompose plaque.
Collapse
Affiliation(s)
- Katarzyna Złotko
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Adam Waśko
- Department of Biotechnology, Human Nutrition and Food Commodity Science, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Małgorzata Pleszczyńska
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Roman Paduch
- Department of Virology and Immunology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland.
- Department of General Ophthalmology, Medical University, Chmielna 1, 20-079 Lublin, Poland.
| | - Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
9
|
(1→3)-α-d-Glucan from Fruiting Body and Mycelium ofCerrena unicolor(Bull.) Murrill: Structural Characterization and Use as a Novel Inducer of Mutanase. INT J POLYM SCI 2017. [DOI: 10.1155/2017/1249134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Water-insoluble, alkali-soluble polysaccharide (marked as ASP) was extracted from the vegetative mycelium and fruiting body ofCerrena unicolorstrain. Monosaccharide examination of ASP demonstrated that the isolated biopolymer was composed mainly of glucose, xylose, and mannose monomers. The methylation investigation of studied polymers indicated that (1→3)-linkedα-D-Glcpis the major chain constituent (92.2% for glucans isolated from fruiting body and 90.1% from mycelium).1H NMR, FT-IR, and immunofluorescent labelling determinations confirmed that the polysaccharides isolated from both fruiting body and mycelium ofC. unicolorare (1→3)-α-d-glucans. The obtained (1→3)-α-d-glucans showed differences in viscosity and similar characteristics in optical rotations. (1→3)-α-d-Glucans extracted from mycelium and fruiting body ofC. unicolorwere also used as potential and specific inducers of mutanase synthesis byTrichoderma harzianum. The highest mutanase activity (0.38 U/mL) was obtained after induction of enzyme by (1→3)-α-d-glucan isolated from the mycelium ofC. unicolor, and this biopolymer has been suggested as a new alternative to streptococcal mutan for the mutanase induction inT. harzianum. (1→3)-α-d-Glucan-induced mutanase showed high hydrolysis potential in reaction with dextranase-pretreated mutan, where maximal degree of saccharification and solubilization of this bacterial homoglucan (83.1% and 78.4%, resp.) was reached in 3 h at 45°C.
Collapse
|
10
|
Xu L, Zhang J. Bacterial glucans: production, properties, and applications. Appl Microbiol Biotechnol 2016; 100:9023-9036. [DOI: 10.1007/s00253-016-7836-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/29/2022]
|
11
|
|
12
|
Pleszczyńska M, Wiater A, Janczarek M, Szczodrak J. (1→3)-α-D-Glucan hydrolases in dental biofilm prevention and control: A review. Int J Biol Macromol 2015; 79:761-78. [PMID: 26047901 DOI: 10.1016/j.ijbiomac.2015.05.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022]
Abstract
Dental plaque is a highly diverse biofilm, which has an important function in maintenance of oral and systemic health but in some conditions becomes a cause of oral diseases. In addition to mechanical plaque removal, current methods of dental plaque control involve the use of chemical agents against biofilm pathogens, which however, given the complexity of the oral microbiome, is not sufficiently effective. Hence, there is a need for development of new anti-biofilm approaches. Polysaccharides, especially (1→3),(1→6)-α-D-glucans, which are key structural and functional constituents of the biofilm matrix, seem to be a good target for future therapeutic strategies. In this review, we have focused on (1→3)-α-glucanases, which can limit the cariogenic properties of the dental plaque extracellular polysaccharides. These enzymes are not widely known and have not been exhaustively described in literature.
Collapse
Affiliation(s)
- Małgorzata Pleszczyńska
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Adrian Wiater
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Monika Janczarek
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Janusz Szczodrak
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
13
|
Water-soluble (1→3),(1→4)-α-d-glucan from mango as a novel inducer of cariogenic biofilm-degrading enzyme. Int J Biol Macromol 2013; 58:199-205. [DOI: 10.1016/j.ijbiomac.2013.03.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/19/2013] [Accepted: 03/26/2013] [Indexed: 11/24/2022]
|
14
|
Wiater A, Pleszczyńska M, Próchniak K, Szczodrak J. Structural diversity of streptococcal mutans synthesized under different culture and environmental conditions and its effect on mutanase synthesis. Molecules 2012; 17:11800-15. [PMID: 23047481 PMCID: PMC6268018 DOI: 10.3390/molecules171011800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 11/16/2022] Open
Abstract
Streptococcal mutans synthesized under different conditions by growing cultures or by their glucosyltransferases were shown to exhibit a great structural and property diversity. Culturing and environmental factors causing structural differences in mutans were specified. All of the obtained biopolymers (76 samples) were water-insoluble and most of them (72) had a structure with a predominance of α-(1→3)-linked glucose (i.e., the content of α-(1→3)-linkages in the glucan was always higher than 50%, but did not exceed 76%). An exception were four glucans containing more than 50% of α-(1→6)-sequences. In these structurally unique mutans, the ratio of α-(1→3)- to α-(1→6)-bonds ranged from 0.75 to 0.97. Aside from one polymer, all others had a heavily branched structures and differed in the number of α-(1→3), α-(1→6), and α-(1→3,6) linkages and their mutual proportion. The induction of mutanase production in shaken flask cultures of Trichoderma harzianum by the structurally diverse mutans resulted in enzyme activities ranging from 0.144 to 1.051 U/mL. No statistical correlation was found between the total percentage content of α-(1→3)-linkages in the α-glucan and mutanase activity. Thus, despite biosynthetic differences causing structural variation in the mutans, it did not matter which mutan structures were used to induce mutanase production.
Collapse
Affiliation(s)
- Adrian Wiater
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | | | | | | |
Collapse
|
15
|
Wiater A, Pleszczyńska M, Szczodrak J, Janusz G. Comparative studies on the induction of Trichoderma harzianum mutanase by α-(1→3)-glucan-rich fruiting bodies and mycelia of Laetiporus sulphureus. Int J Mol Sci 2012; 13:9584-9598. [PMID: 22949817 PMCID: PMC3431815 DOI: 10.3390/ijms13089584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 11/24/2022] Open
Abstract
Mutanase (α-(1→3)-glucanase) is a little-known inductive enzyme that is potentially useful in dentistry. Here, it was shown that the cell wall preparation (CWP) obtained from the fruiting body or vegetative mycelium of polypore fungus Laetiporus sulphureus is rich in α-(1→3)-glucan and can be successfully used for mutanase induction in Trichoderma harzianum. The content of this biopolymer in the CWP depended on the age of fruiting bodies and increased along with their maturation. In the case of CWP prepared from vegetative mycelia, the amount of α-(1→3)-glucan depended on the mycelium age and also on the kind of medium used for its cultivation. All CWPs prepared from the individually harvested fruiting body specimens induced high mutanase activity (0.53–0.82 U/mL) in T. harzianum after 3 days of cultivation. As for the CWPs obtained from the hyphal mycelia of L. sulpureus, the maximal enzyme productivity (0.34 U/mL after 3 days of incubation) was recorded for CWP prepared from the 3 week-old mycelium cultivated in Sabouraud medium. Statistically, a high positive correlation was found between the total percentage content of α-(1→3)-glucan in the CWP and the mutanase activity.
Collapse
Affiliation(s)
- Adrian Wiater
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; E-Mails: (M.P.); (J.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +48-81-537-5960
| | - Małgorzata Pleszczyńska
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; E-Mails: (M.P.); (J.S.)
| | - Janusz Szczodrak
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; E-Mails: (M.P.); (J.S.)
| | - Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; E-Mail:
| |
Collapse
|
16
|
Pleszczyńska M, Wiater A, Skowronek M, Szczodrak J. PURIFICATION AND CHARACTERIZATION OF MUTANASE PRODUCED BYPaenibacillus curdlanolyticusMP-1. Prep Biochem Biotechnol 2012; 42:335-47. [DOI: 10.1080/10826068.2011.622329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Pleszczyńska M, Wiater A, Szczodrak J. Mutanase from Paenibacillus sp. MP-1 produced inductively by fungal α-1,3-glucan and its potential for the degradation of mutan and Streptococcus mutans biofilm. Biotechnol Lett 2010; 32:1699-704. [PMID: 20623316 PMCID: PMC2952102 DOI: 10.1007/s10529-010-0346-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 06/28/2010] [Indexed: 11/26/2022]
Abstract
Laetiporus sulphureus is a source of α-1,3-glucan that can substitute for the commercially-unavailable streptococcal mutan used to induce microbial mutanases. The water-insoluble fraction of its fruiting bodies from 0.15 to 0.2% (w/v) induced mutanase activity in Paenibacillus sp. MP-1 at 0.35 μ ml(-1). The mutanase extensively hydrolyzed streptococcal mutan, giving 23% of saccharification, and 83% of solubilization of glucan after 6 h. It also degraded α-1,3-polymers of biofilms, formed in vitro by Streptococcus mutans, even after only 3 min of contact.
Collapse
Affiliation(s)
- M Pleszczyńska
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | | | | |
Collapse
|
18
|
Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 2010; 87:787-99. [PMID: 20461510 PMCID: PMC2886115 DOI: 10.1007/s00253-010-2632-1] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/16/2010] [Accepted: 04/17/2010] [Indexed: 01/01/2023]
Abstract
Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.
Collapse
|
19
|
Shalom G, Pratten J, Wilson M, Nair SP. Cloning, heterologous gene expression and biochemical characterization of the alpha-1,3-glucanase from the filamentous fungus Penicillium purpurogenum. Protein Expr Purif 2008; 60:170-5. [PMID: 18490176 DOI: 10.1016/j.pep.2008.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/26/2008] [Accepted: 03/31/2008] [Indexed: 11/25/2022]
Abstract
There has been much recent interest in alpha-1,3-glucanases (mutanases) as they have the potential to be used in the treatment of dental caries. Mutanases have been reported in a number of bacteria, yeast and fungi but remain a relatively uncharacterised family of enzymes. In this study we heterologously expressed the mutanase gene from the filamentous fungus Penicillium purpurogenum to enable further characterization of its enzymatic activity. The mutanase cDNA was cloned and expressed in the methylotrophic yeast Pichia pastoris. The molecular mass of the secreted protein was about 102 kDa. The recombinant enzyme hydrolyzed mutan with a specific activity of 3.9 U/mg of protein. The recombinant enzyme was specific for mutan and could not cleave a variety of other polysaccharides demonstrating a specificity for alpha-1,3-glucosidic linkages. The pH and temperature optima were pH 4.6 and 45 degrees C, respectively. Synthetic compounds were also tested as substrates to assess whether the P. purpurogenum mutanase has an exo- or endo-type mechanism of hydrolysis. The results suggest an endo-hydrolytic mode of action. The type of mechanism was confirmed since mutanase activity was not suppressed in the presence of inhibitors of exo-type enzymes.
Collapse
Affiliation(s)
- Gil Shalom
- Division of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK
| | | | | | | |
Collapse
|
20
|
Pleszczyńska M, Marek-Kozaczuk M, Wiater A, Szczodrak J. Paenibacillus strain MP-1: a new source of mutanase. Biotechnol Lett 2007; 29:755-9. [PMID: 17310325 DOI: 10.1007/s10529-007-9311-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
A mutan-degrading bacterium, closely related to Paenibacillus curdlanolyticus, was isolated from soil. It produced 0.4 U mutanase ml(-1 )in 2 days in shake-flask cultures when bacterial mutan was the sole carbon source. Mutanase activity was optimal at pH 6.2 and 45 degrees C over 1 h and was stable between pH 5.8 and 12 at 4 degrees C for 24 h and up to 40 degrees C for 1 h. Mutan produced by Streptococcus mutans was rapidly hydrolyzed by this enzyme. The hydrolysis of mutan (1 g l(-1)) resulted in 17% saccharification over 2 h and, at the same time, glucan was entirely solubilized.
Collapse
Affiliation(s)
- M Pleszczyńska
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | | | | | | |
Collapse
|