1
|
López-Gatius F, Ganau S, Mora-García M, Garcia-Ispierto I. Melatonin Treatment at Dry-off Reduces Postpartum Shedding of Coccidia in Primiparous Dairy Cows and Their Calves. Animals (Basel) 2024; 14:3534. [PMID: 39682499 DOI: 10.3390/ani14233534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Coccidiosis is a protozoan disease that causes diarrhea in cattle. This study examines the impact of treating pregnant cows at dry-off with melatonin on postpartum coccidia excretion in dams and their calves. The study population comprised 106 primiparous lactating dairy cows: 53 controls and 53 receiving melatonin on days 220-226 of gestation, plus 99 calves: 52 born from control and 47 from treated dams. Feces samples were collected from each dam on gestation days 220-226 and on days 10-16 and 30-36 postpartum; and from each calf on days 10-16 and 30-36 of age. Postpartum rates of high excretion of oocysts per gram (OPG) (feces counts > 5000) were significantly lower (p < 0.01) in treated than control dams. Low excretion rates of OPG (<2000) were significantly higher (p < 0.01) in the melatonin treatment than control groups in dams on days 30-36 of lactation and in calves at 10-16 and 30-36 days of life. In conclusion, melatonin treatment in lactating cows at dry-off reduced coccidia shedding in dams and their calves during the early postpartum period.
Collapse
Affiliation(s)
- Fernando López-Gatius
- Agrotecnio Centre, 25198 Lleida, Spain
- Transfer in Bovine Reproduction SLu, 22300 Barbastro, Spain
| | - Sergi Ganau
- Granja Sant Josep, La Melusa, 22549 Tamarite, Spain
| | - María Mora-García
- Department of Animal Science, University of Lleida, 25198 Lleida, Spain
| | - Irina Garcia-Ispierto
- Agrotecnio Centre, 25198 Lleida, Spain
- Department of Animal Science, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
2
|
Rezzani R, Franco C, Hardeland R, Rodella LF. Thymus-Pineal Gland Axis: Revisiting Its Role in Human Life and Ageing. Int J Mol Sci 2020; 21:E8806. [PMID: 33233845 PMCID: PMC7699871 DOI: 10.3390/ijms21228806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
For years the thymus gland (TG) and the pineal gland (PG) have been subject of increasingly in-depth studies, but only recently a link that can associate the activities of the two organs has been identified. Considering, on the one hand, the well-known immune activity of thymus and, on the other, the increasingly emerging immunological roles of circadian oscillators and the rhythmically secreted main pineal product, melatonin, many studies aimed to analyse the possible existence of an interaction between these two systems. Moreover, data confirmed that the immune system is functionally associated with the nervous and endocrine systems determining an integrated dynamic network. In addition, recent researches showed a similar, characteristic involution process both in TG and PG. Since the second half of the 20th century, evidence led to the definition of an effectively interacting thymus-pineal axis (TG-PG axis), but much has to be done. In this sense, the aim of this review is to summarize what is actually known about this topic, focusing on the impact of the TG-PG axis on human life and ageing. We would like to give more emphasis to the implications of this dynamical interaction in a possible therapeutic strategy for human health. Moreover, we focused on all the products of TG and PG in order to collect what is known about the role of peptides other than melatonin. The results available today are often unclear and not linear. These peptides have not been well studied and defined over the years. In this review we hope to awake the interest of the scientific community in them and in their future pharmacological applications.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.R.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.R.)
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Lower Saxony, D-37073 Göttingen, Germany;
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.R.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
3
|
Reiter RJ, Rosales-Corral S, Sharma R. Circadian disruption, melatonin rhythm perturbations and their contributions to chaotic physiology. Adv Med Sci 2020; 65:394-402. [PMID: 32763813 DOI: 10.1016/j.advms.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
The aim of this report is to summarize the data documenting the vital nature of well-regulated cellular and organismal circadian rhythms, which are also reflected in a stable melatonin cycle, in supporting optimal health. Cellular fluctuations in physiology exist in most cells of multicellular organisms with their stability relying on the prevailing light:dark cycle, since it regulates, via specialized intrinsically-photoreceptive retinal ganglion cells (ipRGC) and the retinohypothalamic tract, the master circadian oscillator, i.e., the suprachiasmatic nuclei (SCN). The output message of the SCN, as determined by the light:dark cycle, is transferred to peripheral oscillators, so-called slave cellular oscillators, directly via the autonomic nervous system with its limited distribution. and indirectly via the pineal-derived circulating melatonin rhythm, which contacts every cell. Via its regulatory effects on the neuroendocrine system, particularly the hypothalamo-pituitary-adrenal axis, the SCN also has a major influence on the adrenal glucocorticoid rhythm which impacts neurological diseases and psychological behaviors. Moreover, the SCN regulates the circadian production and secretion of melatonin. When the central circadian oscillator is disturbed, such as by light at night, it passes misinformation to all organs in the body. When this occurs the physiology of cells becomes altered and normal cellular functions are compromised. This physiological upheaval is a precursor to pathologies. The deterioration of the SCN/pineal network is often a normal consequence of aging and its related diseases, but in today's societies where manufactured light is becoming progressively more common worldwide, the associated pathologies may also be occurring at an earlier age.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| |
Collapse
|
4
|
Abstract
This review concerns the current knowledge of melatonin and alcohol-related disorders. Chronobiological effects of ethanol are related to melatonin suppression and in relation to inflammation, stress, free radical scavenging, autophagy and cancer risk. It is postulated that both alcohol- and inflammation-induced production of reactive oxygen species (ROS) alters cell membrane properties leading to tissue dysfunction and, subsequent further ROS production. Lysosomal enzymes are often used to assess the relationships between intensified inflammation states caused by alcohol abuse and oxidative stress as well as level of tissue damage estimated by the increased release of cellular enzymes into the extracellular space. Studies have established a link between alcoholism and desynchronosis (circadian disruption). Desynchronosis results from the disorganization of the body's circadian time structure and is an aspect of the pathology of chronic alcohol intoxication. The inflammatory conditions and the activity of lysosomal enzymes in acute alcohol poisoning or chronic alcohol-dependent diseases are in most cases interrelated. Inflammation can increase the activity of lysosomal enzymes, which can be regarded as a marker of lysosomal dysfunction and abnormal cellular integrity. Studies show alcohol toxicity is modulated by the melatonin (Mel) circadian rhythm. This hormone, produced by the pineal gland, is the main regulator of 24 h (sleep-wake cycle) and seasonal biorhythms. Mel exhibits antioxidant properties and may be useful in the prevention of oxidative stress reactions known to be responsible for alcohol-related diseases. Naturally produced Mel and exogenous sources in food can act in free radical reactions and activate the endogenous defense system. Mel plays an important role in the normalization of the post-stress state by its influence on neurotransmitter systems and the synchronization of circadian rhythms. Acting simultaneously on the neuroendocrine and immune systems, Mel optimizes homeostasis and provides protection against stress. Abbreviations: ROS, reactive oxygen species; Mel, melatonin; SRV, resveratrol; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; ANT, arylalkylamine-N-acetyltransferase; EC cells, gastrointestinal enterochromaffin cells; MT1, melatonin high-affinity nanomolecular receptor site; MT2, melatonin low-affinity nanomolecular receptor site; ROR/RZR, orphan nuclear retinoid receptors; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, reduced form of glutathione; GSSG, oxidized form of glutathione; TAC, total antioxidant capacity; ONOO∙-, peroxynitrite radical; NCAM, neural cell adhesion molecules; LPO, lipid peroxidation; α-KG, α-ketoglutarate, HIF-1α, Hypoxia-inducible factor 1-α, IL-2, interleukin-2; HPA axis, hypothalamic-pituitary-adrenal axis; Tph1, tryptophan hydroxylase 1; AA-NAT, arylalkylamine-N-acetyltransferase; AS-MT, acetylserotonin O-methyltransferase; NAG, N-acetyl-beta-D-glucosaminidase; HBA1c glycated hemoglobin; LPS, lipopolysaccharide; AAP, alanyl-aminopeptidase; β-GR, β-glucuronidase; β-GD, β-galactosidase; LAP, leucine aminopeptidase.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk , Słupsk, Poland
| | - Halyna Tkachenko
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk , Słupsk, Poland
| |
Collapse
|
5
|
Abstract
The role of immune system is to protect the organism from the not built-in program-like alterations inside and against the agents penetrating from outside (bacteria, viruses, and protozoa). These functions were developed and formed during the evolution. Considering these functions, the immune system promotes the lengthening of lifespan and helps longevity. However, some immune functions have been conveyed by men to medical tools (e.g., pharmaceuticals, antibiotics, and prevention), especially in our modern age, which help the struggle against microbes, but evolutionarily weaken the immune system. Aging is a gradual slow attrition by autoimmunity, directed by the thymus and regulated by the central nervous system and pineal gland. Considering this, thymus could be a pacemaker of aging. The remodeling of the immune system, which can be observed in elderly people and centenarians, is probably not a cause of aging, but a consequence of it, which helps to suit immunity to the requirements. Oxidative stress also helps the attrition of the immune cells and antioxidants help to prolong lifespan. There are gender differences in the aging of the immune system as well as in the longevity. There is an advantage for women in both cases. This can be explained by hormonal differences (estrogens positively influences both processes); however, social factors are also not excluded. The endocrine disruptor chemicals act similar to estrogens, like stimulating or suppressing immunity and provoking autoimmunity; however, their role in longevity is controversial. There are some drugs (rapamycin, metformin, and selegiline) and antioxidants (as vitamins C and E) that prolong lifespan and also improve immunity. It is difficult to declare that longevity is exclusively dependent on the state of the immune system; however, there is a parallelism between the state of immune system and lifespan. It seems likely that there is not a real decline of immunity during aging, but there is a remodeling of the system according to the claims of senescence. This is manifested in the remaining (sometimes stronger) function of memory cells in contrast to the production and number of the new antigen-reactive naive T-cells.
Collapse
Affiliation(s)
- György Csaba
- 1 Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Brazão V, Colato RP, Santello FH, Vale GTD, Gonzaga NDA, Tirapelli CR, Prado JCD. Effects of melatonin on thymic and oxidative stress dysfunctions during Trypanosoma cruzi infection. J Pineal Res 2018; 65:e12510. [PMID: 29781553 DOI: 10.1111/jpi.12510] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
Abstract
Although the exact etiology of Chagas disease is not completely elucidated, thymic atrophy and oxidative stress are believed to be important contributors to the pathogenesis during acute Trypanosoma cruzi (T. cruzi) infection. We hypothesized that exogenous melatonin, administered by gavage (5 mg/kg, p.o., gavage) to young (5 weeks old) and middle-aged (18 months old) male Wistar rats, would modulate thymic oxidative damage and reverse the age-related thymus regression during T. cruzi acute infection. Increased levels of superoxide anion (O2- ) were detected in the thymus of infected animals, and treatment with melatonin reverted this response. We found reduced TBARS levels as well as a significant increase in superoxide dismutase (SOD) activity in the thymus of all middle-aged melatonin-treated animals, infected or not with T. cruzi. Furthermore, melatonin increased the thymic expression of SOD1 and SOD2 in middle-aged control animals. Nox2 expression was not affected by melatonin treatment in young or middle-aged animals. Melatonin reverted the age-related thymic regression as revealed by the increase in thymus weight, total number of thymocytes, and reduction in age-related accumulation of double-negative thymocytes. This is the first report to directly examine the effects of melatonin treatment on the thymic antioxidant/oxidant status and thymic changes during T. cruzi infection. Our results revealed new antioxidant features that turn melatonin a potentially useful compound for the treatment of Chagas disease, a condition in which an excessive oxidative damage occurs.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriel Tavares do Vale
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Natália de Almeida Gonzaga
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Susko I, Alicelebic S, Cosovic E, Sahinovic M, Kapic D, Custovic S, Muzika V. Gender-related Histological Changes in the Thymus Gland After Pinealectomy and Short-term Melatonin Treatment in Rats. Med Arch 2018; 71:385-390. [PMID: 29416196 PMCID: PMC5764609 DOI: 10.5455/medarh.2017.71.385-390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objectives The aim of this study was to investigate the effects of pinealectomy and melatonin treatment on the rat thymus gland characteristics, taking into consideration possible gender differences. Materials and methods Thirty adult Wistar rats of both sexes were divided into three groups. Group C and group PX served as control groups and included sham-pinealectomized and pinealectomized animals that were treated with 10% ethanol solution (0,1ml/daily, subcutaneous). Animals from third group (group PXM) underwent pinealectomy and seven days after surgery started receiving melatonin dissolved in 10% ethanol solution (3mg/kg/daily, subcutaneous). All animals were treated for 4 weeks. Results Volume density of the thymus cortex showed statistically significant (p<0,05) decrease while the volume density of the thymus medulla was increased in the pinealectomized compared to the sham-pinealectomized female rats. Numerical density of macrophages as well as the distribution of blood vessels showed no gender differences. The numerical density of lymphocytes was statistically significantly decreased in female in comparison to the male pinealectomized rats. Melatonin treatment was proved to cause reverse effects in the sense that the results from the melatonin treated group corresponded to the results obtained from the control group of animals. Conclusion The results of this study suggest that the pinealectomy causes gender-related changes in the rat thymus. Short-term melatonin treatment showed reverse effect, equally in both sexes.
Collapse
Affiliation(s)
- Irfan Susko
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Selma Alicelebic
- Department of Histology and Embryology, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Esad Cosovic
- Department of Histology and Embryology, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Maida Sahinovic
- Department of Histology and Embryology, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Dina Kapic
- Department of Histology and Embryology, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Samra Custovic
- Department of Histology and Embryology, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Visnja Muzika
- Department of Histology and Embryology, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
8
|
Lee JH, Moon JH, Nazim UM, Lee YJ, Seol JW, Eo SK, Lee JH, Park SY. Melatonin protects skin keratinocyte from hydrogen peroxide-mediated cell death via the SIRT1 pathway. Oncotarget 2017; 7:12075-88. [PMID: 26918354 PMCID: PMC4914270 DOI: 10.18632/oncotarget.7679] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/13/2016] [Indexed: 12/29/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), which is primarily synthesized in and secreted from the pineal gland, plays a pivotal role in cell proliferation as well as in the regulation of cell metastasis and cell survival in a diverse range of cells. The aim of this study is to investigate protection effect of melatonin on H2O2-induced cell damage and the mechanisms of melatonin in human keratinocytes. Hydrogen peroxide dose-dependently induced cell damages in human keratinocytes and co-treatment of melatonin protected the keratinocytes against H2O2-induced cell damage. Melatonin treatment activated the autophagy flux signals, which were identified by the decreased levels of p62 protein. Inhibition of autophagy flux via an autophagy inhibitor and ATG5 siRNA technique blocked the protective effects of melatonin against H2O2-induced cell death in human keratinocytes. And we found the inhibition of sirt1 using sirtinol and sirt1 siRNA reversed the protective effects of melatonin and induces the autophagy process in H2O2-treated cells. This is the first report demonstrating that autophagy flux activated by melatonin protects human keratinocytes through sirt1 pathway against hydrogen peroxide-induced damages. And this study also suggest that melatonin could potentially be utilized as a therapeutic agent in skin disease.
Collapse
Affiliation(s)
- Ju-Hee Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Uddin Md Nazim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - You-Jin Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Seong-Kug Eo
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - John-Hwa Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | | |
Collapse
|
9
|
Paltsev MA, Polyakova VO, Kvetnoy IM, Anderson G, Kvetnaia TV, Linkova NS, Paltseva EM, Rubino R, De Cosmo S, De Cata A, Mazzoccoli G. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging. Oncotarget 2017; 7:11972-83. [PMID: 26943046 PMCID: PMC4914262 DOI: 10.18632/oncotarget.7863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/23/2016] [Indexed: 12/02/2022] Open
Abstract
Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin A); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland. A further similarity is the increased MMPs levels evident over age in both glands. Significant differences are evident in cell renovation processes, which deteriorate more quickly in the aged thymus versus the pineal gland. Decreases in the number of pineal B-cells and thymic T-cells were also observed over aging. Collected data indicate that cellular involution of the pineal gland and thymus show many commonalities, but also significant changes in aging-associated proteins. It is proposed that such ageing-associated alterations in these two glands provide novel pharmaceutical targets for the wide array of medical conditions that are more likely to emerge over the course of ageing.
Collapse
Affiliation(s)
| | - Victoria O Polyakova
- Department of Pathology, Ott Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation, Russia.,Laboratory of Cell Biology and Pathology, Institute of Bioregulation and Gerontology, St. Petersburg, Russian Federation, Russia
| | - Igor M Kvetnoy
- Department of Pathology, Ott Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation, Russia.,Laboratory of Cell Biology and Pathology, Institute of Bioregulation and Gerontology, St. Petersburg, Russian Federation, Russia
| | | | - Tatiana V Kvetnaia
- Department of Pathology, Ott Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation, Russia
| | - Natalia S Linkova
- Department of Pathology, Ott Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russian Federation, Russia
| | - Ekaterina M Paltseva
- Division of Immuhistochemistry, B.V. Petrovsky Russian Surgery Research Center, Moscow, Russian Federation, Russia
| | - Rosa Rubino
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo (FG), Italy
| | - Salvatore De Cosmo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo (FG), Italy
| | - Angelo De Cata
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo (FG), Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo (FG), Italy
| |
Collapse
|
10
|
Csaba G. The Role of Brain –Pineal –Thymus System in the Determination of Lifespan: The Autoimmune Aging Theory. ACTA ACUST UNITED AC 2017. [DOI: 10.3233/nib-160118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- G. Csaba
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Abstract
The thymus develops from an endocrine area of the foregut, and retains the ancient potencies of this region. However, later it is populated by bone marrow originated lymphatic elements and forms a combined organ, which is a central part of the immune system as well as an influential element of the endocrine orchestra. Thymus produces self-hormones (thymulin, thymosin, thymopentin, and thymus humoral factor), which are participating in the regulation of immune cell transformation and selection, and also synthesizes hormones similar to that of the other endocrine glands such as melatonin, neuropeptides, and insulin, which are transported by the immune cells to the sites of requests (packed transport). Thymic (epithelial and immune) cells also have receptors for hormones which regulate them. This combined organ, which is continuously changing from birth to senescence seems to be a pacemaker of life. This function is basically regulated by the selection of self-responsive thymocytes as their complete destruction helps the development (up to puberty) and their gradual release in case of weakened control (after puberty) causes the erosion of cells and intercellular material, named aging. This means that during aging, self-destructive and non-protective immune activities are manifested under the guidance of the involuting thymus, causing the continuous irritation of cells and organs. Possibly the pineal body is the main regulator of the pacemaker, the neonatal removal of which results in atrophy of thymus and wasting disease and its later corrosion causes the insufficiency of thymus. The co-involution of pineal and thymus could determine the aging and the time of death without external intervention; however, external factors can negatively influence both of them.
Collapse
Affiliation(s)
- György Csaba
- Department of Genetics, Cell and Immunobiology, Semmelweis University , Budapest, Hungary
| |
Collapse
|
12
|
Anderson G, Maes M, Markus RP, Rodriguez M. Ebola virus: Melatonin as a readily available treatment option. J Med Virol 2015; 87:537-43. [DOI: 10.1002/jmv.24130] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 01/10/2023]
Affiliation(s)
- George Anderson
- CRC Scotland and London; Eccleston Square; London United Kingdom
| | - Michael Maes
- Impact Strategic Treatment Center; Deakin University; Geelong Australia
- Department of Psychiatry; Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
- Health Sciences Graduate Program; Health Sciences Center; State University of Londrina; Brazil
| | - Regina P. Markus
- Lab Chronopharmacology; Department of Physiology; Institute of Bioscience; University de S; ã; o Paulo; Brazil
| | - Moses Rodriguez
- Department of Immunology; Department of Neurology; Mayo Clinic; Rochester New York
| |
Collapse
|
13
|
Pállinger É, Csaba G. In vivo effect of insulin on the hormone production of immune cells in mice - gender differences. Acta Microbiol Immunol Hung 2014; 61:417-23. [PMID: 25496970 DOI: 10.1556/amicr.61.2014.4.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immune cells of rat and man synthesize, store and secrete hormones, characteristic to the endocrine glands. In the present experiments female and male CD1 mice were treated with 10 IU/kg insulin sc. (the controls with normal saline) and after 30 min peritoneal fluid was gained. The cells of the peritoneal fluid (lymphocytes and the monocyte-granulocyte group) were studied by immunocytochemical flow-cytometry to adrenocorticotropic hormone (ACTH), triiodothyronine (T3), histamine and serotonin content. In the female mice each hormone level was significantly lower in the insulin-treated animals, except histamine in the monocyte-granulocyte group. In the insulin-treated male animals, the hormone levels were similar to the control. The results 1) support the previously hypothesized hormonal network in the immune system, 2) justify that the insulin effect is not species dependent and 3) call attention to the sex, species and organ differences in the response.
Collapse
Affiliation(s)
- Éva Pállinger
- 1 Semmelweis University Department of Genetics, Cell and Immunobiology Budapest Hungary
| | - György Csaba
- 1 Semmelweis University Department of Genetics, Cell and Immunobiology Budapest Hungary
| |
Collapse
|
14
|
Fernando S, Rombauts L. Melatonin: shedding light on infertility?--A review of the recent literature. J Ovarian Res 2014; 7:98. [PMID: 25330986 PMCID: PMC4209073 DOI: 10.1186/s13048-014-0098-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/11/2014] [Indexed: 12/31/2022] Open
Abstract
In recent years, the negative impact of oxidative stress on fertility has become widely recognised. Several studies have demonstrated its negative effect on the number and quality of retrieved oocytes and embryos following in-vitro fertilisation (IVF). Melatonin, a pineal hormone that regulates circadian rhythms, has also been shown to exhibit unique oxygen scavenging abilities. Some studies have suggested a role for melatonin in gamete biology. Clinical studies also suggest that melatonin supplementation in IVF may lead to better pregnancy rates. Here we present a critical review and summary of the current literature and provide suggestions for future well designed clinical trials.
Collapse
Affiliation(s)
- Shavi Fernando
- MIMR-PHI Institute of Medical Research, 246 Clayton Rd, Clayton, 3168, , Victoria, Australia. .,Monash University, Department of Obstetrics and Gynaecology, Level 5 Monash Medical Centre, 246 Clayton Rd, Clayton, 3168, , Victoria, Australia.
| | - Luk Rombauts
- MIMR-PHI Institute of Medical Research, 246 Clayton Rd, Clayton, 3168, , Victoria, Australia. .,Monash IVF, 252 Clayton rd, Clayton, 3168, , Victoria, Australia.
| |
Collapse
|
15
|
Csaba G. Hormones in the immune system and their possible role. A critical review. Acta Microbiol Immunol Hung 2014; 61:241-60. [PMID: 25261940 DOI: 10.1556/amicr.61.2014.3.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune cells synthesize, store and secrete hormones, which are identical with the hormones of the endocrine glands. These are: the POMC hormones (ACTH, endorphin), the thyroid system hormones (TRH, TSH, T3), growth hormone (GH), prolactin, melatonin, histamine, serotonin, catecholamines, GnRH, LHRH, hCG, renin, VIP, ANG II. This means that the immune cells contain all of the hormones, which were searched at all and they also have receptors for these hormones. From this point of view the immune cells are similar to the unicells (Tetrahymena), so it can be supposed that these cells retained the properties characteristic at a low level of phylogeny while other cells during the evolution accumulated to form endocrine glands. In contrast to the glandular endocrine cells, immune cells are polyproducers and polyreceivers. As they are mobile cells, they are able to transport the stored hormone to different places (packed transport) or attracted by local factors, accumulate in the neighborhood of the target, synthesizing and secreting hormones locally. This is taking place, e.g. in the case of endorphin, where the accumulating immune cells calms pain caused by the inflammation. The targeted packed transport is more economical than the hormone-pouring to the blood circulation of glandular endocrines and the targeting also cares the other receptor-bearing cells timely not needed the effect. Mostly the immune-effects of immune-cell derived hormones were studied (except endorphin), however, it is not exactly cleared, while the system could have scarcely studied important roles in other cases. The evolutionary aspects and the known as well, as possible roles of immune-endocrine system and their hormones are listed and discussed.
Collapse
Affiliation(s)
- György Csaba
- 1 Semmelweis University Department of Genetics, Cell and Immunobiology Budapest Hungary
| |
Collapse
|
16
|
Abstract
Hormonal imprinting is an epigenetic process which is taking place perinatally at the first encounter between the developing hormone receptors and their target hormones. The hormonal imprinting influences the binding capacity of receptors, the hormone synthesis of the cells, and other hormonally regulated functions, as sexual behavior, aggressivity, empathy, etc. However, during the critical period, when the window for imprinting is open, molecules similar to the physiological imprinters as synthetic hormone analogs, other members of the hormone families, environmental pollutants, etc. can cause faulty imprinting with life-long consequences. The developing immune system, the cells of which also have receptors for hormones, is very sensitive to faulty imprinting, which causes alterations in the antibody and cytokine production, in the ratio of immune cells, in the defense against bacterial and viral infections as well as against malignant tumors. Immune cells (lymphocytes, monocytes, granulocytes and mast cells) are also producing hormones which are secreted into the blood circulation as well as are transported locally (packed transport). This process is also disturbed by faulty imprinting. As immune cells are differentiating during the whole life, faulty imprinting could develop any time, however, the most decisive is the perinatal imprinting. The faulty imprinting is inherited to the progenies in general and especially in the case of immune system. In our modern world the number and amount of artificial imprinters (e.g. endocrine disruptors and drugs) are enormously increasing. The effects of the faulty imprinters most dangerous to the immune system are shown in the paper. The present and future consequences of the flood of faulty imprintings are unpredictable however, it is discussed.
Collapse
Affiliation(s)
- György Csaba
- 1 Semmelweis University Department of Genetics, Cell and Immunobiology Budapest Hungary
| |
Collapse
|
17
|
Pállinger E, Kovács G, Horváth Z, Müller J, Csaba G. Changes in the hormone (ACTH, insulin,epinephrine) content of immune cells in children having acute lymphocytic leukemia (ALL). Acta Microbiol Immunol Hung 2013; 60:423-31. [PMID: 24292086 DOI: 10.1556/amicr.60.2013.4.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune cells synthesize, store and secrete hormones, the level of which changes in ALL. In previous experiments the level of histamine, serotonin and triiodothyronine (T3)was studied, while at present that of ACTH, insulin and epinephrine, using flow cytometric analysis for the determination of cell subsets and detection of hormone content. The measurements were done in children at the time of diagnosis. ACTH was significantly elevated in each T cell subsets (total T, Th, Tc, activated T), while B and NK cells were not touched. The alterations in the insulin content (decrease in Tc and activated T cells) were uncertain, and NK cells contained significantly less insulin. The disease did not influence the cells' epinephrine content. There is not clear explanation for the importance of changes in the cells' hormone content, however, it is discussed in the text.
Collapse
Affiliation(s)
- Eva Pállinger
- Semmelweis University Department of Genetics, Cell and Immunobiology Budapest Hungary
| | | | | | | | | |
Collapse
|