1
|
Bolaños-Martínez OC, Mahendran G, Rosales-Mendoza S, Vimolmangkang S. Current Status and Perspective on the Use of Viral-Based Vectors in Eukaryotic Microalgae. Mar Drugs 2022; 20:md20070434. [PMID: 35877728 PMCID: PMC9318342 DOI: 10.3390/md20070434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
During the last two decades, microalgae have attracted increasing interest, both commercially and scientifically. Commercial potential involves utilizing valuable natural compounds, including carotenoids, polysaccharides, and polyunsaturated fatty acids, which are widely applicable in food, biofuel, and pharmaceutical industries. Conversely, scientific potential focuses on bioreactors for producing recombinant proteins and developing viable technologies to significantly increase the yield and harvest periods. Here, viral-based vectors and transient expression strategies have significantly contributed to improving plant biotechnology. We present an updated outlook covering microalgal biotechnology for pharmaceutical application, transformation techniques for generating recombinant proteins, and genetic engineering tactics for viral-based vector construction. Challenges in industrial application are also discussed.
Collapse
Affiliation(s)
- Omayra C. Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ganesan Mahendran
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico;
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, San Luis Potosí 78210, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-8358
| |
Collapse
|
2
|
Eto Y, Saubi N, Ferrer P, Joseph-Munné J. Expression of Chimeric HPV-HIV Protein L1P18 in Pichia pastoris; Purification and Characterization of the Virus-like Particles. Pharmaceutics 2021; 13:pharmaceutics13111967. [PMID: 34834382 PMCID: PMC8622379 DOI: 10.3390/pharmaceutics13111967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, three human papillomavirus (HPV) vaccines are already licensed and all of them are based on virus-like particles (VLPs) of HPV L1 capsid protein but not worldwide accessible. While about 38.0 million people were living with HIV in 2019, only 68% of HIV-infected individuals were accessing antiretroviral therapy as of the end of June 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against those two viruses are immediately needed. Both HPV and HIV are sexually transmitted infections and one of the main access routes is the mucosal genital tract. Thus, the development of a combined vaccine that would protect against HPV and HIV infections is a logical effort in the fight against these two major global pathogens. In this study, a recombinant Pichia pastoris producing chimeric HPV-HIV L1P18 protein intracellularly was constructed. After cell disruption, the supernatant was collected, and the VLPs were purified by a combination of ammonium sulfate precipitation, size exclusion chromatography, ultracentrifugation, and ultrafiltration. At the end of purification process, the chimeric VLPs were recovered with 96% purity and 9.23% overall yield, and the morphology of VLPs were confirmed by transmission electron microscopy. This work contributes towards the development of an alternative platform for production of a bivalent vaccine against HPV and HIV in P. pastoris.
Collapse
Affiliation(s)
- Yoshiki Eto
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (Y.E.); (N.S.)
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Narcís Saubi
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (Y.E.); (N.S.)
- Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Joan Joseph-Munné
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (Y.E.); (N.S.)
- Correspondence:
| |
Collapse
|
3
|
Srinivasa Reddy Y, Narendra Babu K, Qadri SSYH, Surekha MV, Dinesh Kumar B. An innovative method of nonclinical efficacy and toxicological evaluation of recombinant Salmonella typhi Ty21a expressing HPV16 and 18 L1 proteins. MethodsX 2021; 8:101219. [PMID: 34434742 PMCID: PMC8374194 DOI: 10.1016/j.mex.2021.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/04/2021] [Indexed: 12/01/2022] Open
Abstract
Advancement in technology led to development of live attenuated Salmonella typhi Ty21a as enteric vector for expression of foreign proteins. Such vector platform is inevitable for development of vaccine candidate against human papilloma virus (HPV), the etiological agent of cervical cancer with high prevalence in developing nations. The high risk HPVs like type 16 and 18 contributes to 70% of cervical cancer, hence Indian Immunologicals Limited (IIL), Hyderabad, India developed a recombinant HPV vaccine by introducing HPV 16 and 18 L1 protein coding genes into attenuated S. typhi Ty21a vector. Being a genetically engineered enteric vector vaccine, it would be less expensive, with an ease of oral administration, instead of injectable that needs trained personale, is an added advantage for low socioeconomic setup compared to existing HPV vaccines. Establishing the nonclinical efficacy and safety/toxicity as per the national/international regulatory guidelines has become major constrain for such recombinant S. typhi HPV (rSt.HPV) vaccine. Since, the intended clinical mode of rSt.HPV is through oral route, whereas the live attenuated S. typhi Ty21a doesn't colonize in gut of laboratory animals to be used for nonclinical experiments. Hence, an alternate and unconventional method of ‘intranasal drug testing’, was followed for nonclinical efficacy and toxicity evaluations. An array of parameters specified by regulatory agencies were investigated in mice, rat and rabbits administered with rSt.HPV through, intra-peritoneal, intranasal and oral routes, the intended clinical route.Current unconventional and innovative nonclinical testing procedures helps in exploring the alternate methods by pharmacologist/toxicologist. Ultimately, such new drugs developed through technology must serve the humankind justifying the guidelines of regulatory agencies.
Collapse
Affiliation(s)
- Yathapu Srinivasa Reddy
- Advanced Centre for Preclinical Toxicology Studies, ICMR-National Institute of Nutrition, Jamai-Osmania, Hyderabad - 500007
| | - K Narendra Babu
- Department of Microbiology and Immunology, ICMR-National Institute of Nutrition, Jamai-Osmania, Hyderabad - 500007
| | - S S Y H Qadri
- Animal Facility, ICMR-National Institute of Nutrition, Jamai-Osmania, Hyderabad - 500007
| | - M V Surekha
- Department of Pathology, ICMR-National Institute of Nutrition, Jamai-Osmania, Hyderabad - 500007
| | - B Dinesh Kumar
- Advanced Centre for Preclinical Toxicology Studies, ICMR-National Institute of Nutrition, Jamai-Osmania, Hyderabad - 500007
| |
Collapse
|
4
|
Bettonville V, Nicol JTJ, Furst T, Thelen N, Piel G, Thiry M, Fillet M, Jacobs N, Servais AC. Quantitation and biospecific identification of virus-like particles of human papillomavirus by capillary electrophoresis. Talanta 2017; 175:325-330. [PMID: 28841998 DOI: 10.1016/j.talanta.2017.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 01/28/2023]
Abstract
Capillary electrophoresis (CE) for HPV-VLP quantitation is a very interesting alternative technique compared to those currently used in viral analysis, such as SDS-PAGE, Western blot or protein assay that are destructive and semi-quantitative or non specific. In this study, the quantitative performance of the CE method was evaluated. A main issue in virus quantitation is the absence of reference material. Therefore, the concentration of a HPV16-VLP sample produced in the laboratory was determined using ELISA with Gardasil®, after adjuvant dissolution, as reference material and conformational H16.V5 antibody. HPV16-VLP concentration was found to influence particles electrophoretic mobility until a plateau was reached for concentrations ≤ 50µgml-1. As zeta potential is directly proportional to the electrophoretic mobility, it was measured at different HPV-VLP concentrations and the results were in complete accordance with the measured electrophoretic mobilities. The concentration dependence of the electrophoretic mobility could be explained by an overlap of the electrical double layers of adjacent particles. The HPV16-VLP peak identity was demonstrated unequivocally by the study of HPV16-VLP/H16.V5 antibody complex formation using affinity CE. Finally, the CE method was successfully validated following the ICH Q2R1 guidelines. To overcome the sample heterogeneity issue, a well-designed sample preparation was used. Considering sample complexity, validation results were satisfactory with maximum repeatability and intermediate precision RSD of 12.2% and a maximum relative bias of 1.4%.
Collapse
Affiliation(s)
- Virginie Bettonville
- Laboratory for the Analysis of Medicines (LAM), Dept. of Pharmaceutical Sciences, CIRM, University of Liège, Liège, Belgium
| | - Jérôme T J Nicol
- Cellular and Molecular Immunology, GIGA-Research University of Liège, Liège, Belgium
| | - Tania Furst
- Laboratory of Pharmaceutical Technology and Biopharmacy, Dept. of Pharmaceutical Sciences, CIRM, University of Liège, Liège, Belgium
| | - Nicolas Thelen
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Dept. of Pharmaceutical Sciences, CIRM, University of Liège, Liège, Belgium
| | - Marc Thiry
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Dept. of Pharmaceutical Sciences, CIRM, University of Liège, Liège, Belgium
| | - Nathalie Jacobs
- Cellular and Molecular Immunology, GIGA-Research University of Liège, Liège, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines (LAM), Dept. of Pharmaceutical Sciences, CIRM, University of Liège, Liège, Belgium.
| |
Collapse
|
5
|
Wahid B, Ali A, Idrees M, Rafique S. Immunotherapeutic strategies for sexually transmitted viral infections: HIV, HSV and HPV. Cell Immunol 2016; 310:1-13. [PMID: 27514252 PMCID: PMC7124316 DOI: 10.1016/j.cellimm.2016.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
More than 1 million sexually transmitted infections (STIs) are acquired each day globally. Etiotropic drugs cannot effectively control infectious diseases therefore, there is a dire need to explore alternative strategies especially those based on the regulation of immune system. The review discusses all rational approaches to develop better understanding towards immunotherapeutic strategies based on modulation of immune system in an attempt to curb the elevating risk of infectious diseases such as HIV, HPV and HSV because of their high prevalence. Development of monoclonal antibodies, vaccines and several other immune based treatments are promising alternative strategies that are offering new opportunities to eradicate pathogens.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Vice Chancellor Hazara University Mansehra, Pakistan.
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
6
|
Li M, Wang X, Cao L, Lin Z, Wei M, Fang M, Li S, Zhang J, Xia N, Zhao Q. Quantitative and epitope-specific antigenicity analysis of the human papillomavirus 6 capsid protein in aqueous solution or when adsorbed on particulate adjuvants. Vaccine 2016; 34:4422-8. [PMID: 27426626 DOI: 10.1016/j.vaccine.2016.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 12/16/2022]
Abstract
Human papillomavirus (HPV) 6 is a human pathogen which causes genital warts. Recombinant virus-like particle (VLP) based antigens are the active components in prophylactic vaccines to elicit functional antibodies. The binding and functional characteristics of a panel of 15 murine monoclonal antibodies (mAbs) against HPV6 was quantitatively assessed. Elite conformational indicators, recognizing the conformational epitopes, are also elite viral neutralizers as demonstrated with their viral neutralization efficiency (5 mAbs with neutralization titer below 4ng/mL) in a pseudovirion (PsV)-based system. The functionality of a given mAb is closely related to the nature of the corresponding epitope, rather than the apparent binding affinity to antigen. The epitope-specific antigenicity assays can be used to assess the binding activity of PsV or VLP preparations to neutralizing mAbs. These mAb-based assays can be used for process monitoring and for product release and characterization to confirm the existence of functional epitopes in purified antigen preparations. Due to the particulate nature of the alum adjuvants, the vaccine antigen adsorbed on adjuvants was considered largely as "a black box" due to the difficulty in analysis and visualization. Here, a novel method with fluorescence-based high content imaging for visualization and quantitating the immunoreactivity of adjuvant-adsorbed VLPs with neutralizing mAbs was developed, in which antigen desorption was not needed. The facile and quantitative in situ antigenicity analysis was amendable for automation. The integrity of a given epitope or two non-overlapping epitopes on the recombinant VLPs in their adjuvanted form can be assessed in a quantitative manner for cross-lot or cross-product comparative analysis with minimal manipulation of samples.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Lu Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Zhijie Lin
- Innovax Corporation, Xiamen, Fujian 361000, PR China.
| | - Minxi Wei
- Innovax Corporation, Xiamen, Fujian 361000, PR China.
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
7
|
Chen D, Zou J, Zong Y, Meng H, An G, Yang L. Anti-human CD138 monoclonal antibodies and their bispecific formats: generation and characterization. Immunopharmacol Immunotoxicol 2016; 38:175-83. [PMID: 26954291 DOI: 10.3109/08923973.2016.1153110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Syndecan-1 (CD138), a heparan sulfate proteoglycan, acts as a co-receptor for growth factors and chemokines and is a molecular marker associated with the epithelial-mesenchymal transition during development and carcinogenesis. In this study, we generated two specific mouse anti-human CD138 monoclonal antibodies (mAbs, clone ID: 480CT5.4.3, 587CT7.3.6.5) using hybridoma technology and identified their immunological characteristics. After hybridoma sequencing, the single-chain variable fragments (ScFvs) cloned from two hybridoma cells were combined with anti-CD3 OKT-3 ScFv to generate two recombinant bispecific antibodies (h-STL002, m-STL002) against CD138 and CD3 molecules, respectively. The bispecific antibodies were able to specifically target CD138 + multiple myeloma (MM) cells and CD3 + T cells, and showed the potent cytotoxicity against MM RPMI-8226 cell line through T cell activation. However, these bispecific antibodies without T cells did not cause toxic side effect on MM cells. Overall, the two hybridoma clones and their bispecific formats have great potential to promote diagnosis and immunotherapy of plasma cell malignancy.
Collapse
Affiliation(s)
- Dan Chen
- a The Cyrus Tang Hematology Center , Soochow University , Suzhou , Jiangsu , PR China ;,b Collaborative Innovation Center of Hematology , Soochow University , Suzhou , Jiangsu , PR China
| | - Jianxuan Zou
- a The Cyrus Tang Hematology Center , Soochow University , Suzhou , Jiangsu , PR China ;,b Collaborative Innovation Center of Hematology , Soochow University , Suzhou , Jiangsu , PR China ;,c Abgent (Suzhou) Biotechnology Co., Ltd. , Suzhou , Jiangsu , PR China
| | - Yunhui Zong
- a The Cyrus Tang Hematology Center , Soochow University , Suzhou , Jiangsu , PR China ;,b Collaborative Innovation Center of Hematology , Soochow University , Suzhou , Jiangsu , PR China ;,d Persongen Biomedicine (Suzhou) Co., Ltd. , Suzhou , Jiangsu , PR China
| | - Huimin Meng
- a The Cyrus Tang Hematology Center , Soochow University , Suzhou , Jiangsu , PR China ;,b Collaborative Innovation Center of Hematology , Soochow University , Suzhou , Jiangsu , PR China
| | - Gangli An
- a The Cyrus Tang Hematology Center , Soochow University , Suzhou , Jiangsu , PR China ;,b Collaborative Innovation Center of Hematology , Soochow University , Suzhou , Jiangsu , PR China
| | - Lin Yang
- a The Cyrus Tang Hematology Center , Soochow University , Suzhou , Jiangsu , PR China ;,b Collaborative Innovation Center of Hematology , Soochow University , Suzhou , Jiangsu , PR China ;,e Suzhou Cancer Immunotherapy-Diagnosis and Nanomedicine Engineering Technology Center , Suzhou , Jiangsu , PR China
| |
Collapse
|
8
|
The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol 2015; 99:10415-32. [PMID: 26454868 PMCID: PMC7080154 DOI: 10.1007/s00253-015-7000-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023]
Abstract
Virus-like particles (VLPs) can be spontaneously self-assembled by viral structural proteins under appropriate conditions in vitro while excluding the genetic material and potential replication probability. In addition, VLPs possess several features including can be rapidly produced in large quantities through existing expression systems, highly resembling native viruses in terms of conformation and appearance, and displaying repeated cluster of epitopes. Their capsids can be modified via genetic insertion or chemical conjugation which facilitating the multivalent display of a homologous or heterogeneous epitope antigen. Therefore, VLPs are considered as a safe and effective candidate of prophylactic and therapeutic vaccines. VLPs, with a diameter of approximately 20 to 150 nm, also have the characteristics of nanometer materials, such as large surface area, surface-accessible amino acids with reactive moieties (e.g., lysine and glutamic acid residues), inerratic spatial structure, and good biocompatibility. Therefore, assembled VLPs have great potential as a delivery system for specifically carrying a variety of materials. This review summarized recent researches on VLP development as vaccines and biological vehicles, which demonstrated the advantages and potential of VLPs in disease control and prevention and diagnosis. Then, the prospect of VLP biology application in the future is discussed as well.
Collapse
|