1
|
Modern Concepts in Melanocytic Tumors. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:402-412. [PMID: 36649787 DOI: 10.1016/j.ad.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
The advent of molecular pathology has fueled unprecedented advances in the diagnosis and understanding of melanocytic tumors. These advances, however, have also generated concepts that may be difficult to grasp for clinical practitioners, who are not always conversant with the array of genetic techniques employed in the laboratory. These same practitioners, however, are being increasingly called on to provide treatments that are often based on the latest molecular findings for melanocytic tumors. We review the most recent concepts in the pathway classification of melanocytic tumors, including intermediate lesions known as melanocytomas. We examine the genetic and molecular techniques used to study these tumors, look at where they overlap, and discuss their limitations and some of the most difficult-to-interpret results.
Collapse
|
2
|
Sikkink SK, Mine S, Freis O, Danoux L, Tobin DJ. Stress-sensing in the human greying hair follicle: Ataxia Telangiectasia Mutated (ATM) depletion in hair bulb melanocytes in canities-prone scalp. Sci Rep 2020; 10:18711. [PMID: 33128003 PMCID: PMC7603349 DOI: 10.1038/s41598-020-75334-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Canities (or hair greying) is an age-linked loss of the natural pigment called melanin from hair. While the specific cause(s) underlying the loss of melanogenically-active melanocytes from the anagen hair bulbs of affected human scalp remains unclear, oxidative stress sensing appears to be a key factor involved. In this study, we examined the follicular melanin unit in variably pigmented follicles from the aging human scalp of healthy individuals (22-70 years). Over 20 markers were selected within the following categories: melanocyte-specific, apoptosis, cell cycle, DNA repair/damage, senescence and oxidative stress. As expected, a reduction in melanocyte-specific markers in proportion to the extent of canities was observed. A major finding of our study was the intense and highly specific nuclear expression of Ataxia Telangiectasia Mutated (ATM) protein within melanocytes in anagen hair follicle bulbs. ATM is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks and functions as an important sensor of reactive oxygen species (ROS) in human cells. The incidence and expression level of ATM correlated with pigmentary status in canities-affected hair follicles. Moreover, increased staining of the redox-associated markers 8-OHdG, GADD45 and GP-1 were also detected within isolated bulbar melanocytes, although this change was not clearly associated with donor age or canities extent. Surprisingly, we were unable to detect any specific change in the expression of other markers of oxidative stress, senescence or DNA damage/repair in the canities-affected melanocytes compared to surrounding bulbar keratinocytes. By contrast, several markers showed distinct expression of markers for oxidative stress and apoptosis/differentiation in the inner root sheath (IRS) as well as other parts of the hair follicle. Using our in vitro model of primary human scalp hair follicle melanocytes, we showed that ATM expression increased after incubation with the pro-oxidant hydrogen peroxide (H2O2). In addition, this ATM increase was prevented by pre-incubation of cells with antioxidants. The relationship between ATM and redox stress sensing was further evidenced as we observed that the inhibition of ATM expression by chemical inhibition promoted the loss of melanocyte viability induced by oxidative stress. Taken together these new findings illustrate the key role of ATM in the protection of human hair follicle melanocytes from oxidative stress/damage within the human scalp hair bulb. In conclusion, these results highlight the remarkable complexity and role of redox sensing in the status of human hair follicle growth, differentiation and pigmentation.
Collapse
Affiliation(s)
- Stephen K Sikkink
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford, BD7 1DP, West Yorkshire, UK.
| | - Solene Mine
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Olga Freis
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Louis Danoux
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Desmond J Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford, BD7 1DP, West Yorkshire, UK. .,The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
3
|
Davis GE, Lowell WE. Solar energy at birth and human lifespan. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:59-68. [DOI: 10.1016/j.jphotobiol.2018.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 01/03/2023]
|
4
|
Qutob SS, Chauhan V, Kuo B, Williams A, Yauk CL, McNamee JP, Gollapudi B. The application of transcriptional benchmark dose modeling for deriving thresholds of effects associated with solar-simulated ultraviolet radiation exposure. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:502-515. [PMID: 29761935 PMCID: PMC6099464 DOI: 10.1002/em.22196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/02/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Considerable data has been generated to elucidate the transcriptional response of cells to ultraviolet radiation (UVR) exposure providing a mechanistic understanding of UVR-induced cellular responses. However, using these data to support standards development has been challenging. In this study, we apply benchmark dose (BMD) modeling of transcriptional data to derive thresholds of gene responsiveness following exposure to solar-simulated UVR. Human epidermal keratinocytes were exposed to three doses (10, 20, 150 kJ/m2 ) of solar simulated UVR and assessed for gene expression changes 6 and 24 hr postexposure. The dose-response curves for genes with p-fit values (≥ 0.1) were used to derive BMD values for genes and pathways. Gene BMDs were bi-modally distributed, with a peak at ∼16 kJ/m2 and ∼108 kJ/m2 UVR exposure. Genes/pathways within Mode 1 were involved in cell signaling and DNA damage response, while genes/pathways in the higher Mode 2 were associated with immune response and cancer development. The median value of each Mode coincides with the current human exposure limits for UVR and for the minimal erythemal dose, respectively. Such concordance implies that the use of transcriptional BMD data may represent a promising new approach for deriving thresholds of actinic effects. Environ. Mol. Mutagen. 59:502-515, 2018. © 2018 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Sami S. Qutob
- Consumer and Clinical Radiation Protection BureauHealth CanadaOttawaOntarioK1A 1C1Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection BureauHealth CanadaOttawaOntarioK1A 1C1Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - James P. McNamee
- Consumer and Clinical Radiation Protection BureauHealth CanadaOttawaOntarioK1A 1C1Canada
| | | |
Collapse
|
5
|
Molecular effects of 1-naphthyl-methylcarbamate and solar radiation exposures on human melanocytes. Toxicol In Vitro 2016; 38:67-76. [PMID: 27829164 DOI: 10.1016/j.tiv.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/30/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022]
Abstract
Carbaryl (1-naphthyl-methylcarbamate), a broad-spectrum insecticide, has recently been associated with the development of cutaneous melanoma in an epidemiological cohort study with U.S. farm workers also exposed to ultraviolet radiation, the main etiologic factor for skin carcinogenesis. We hypothesized that carbaryl exposure may increase deleterious effects of UV solar radiation on skin melanocytes. This study aimed to characterize human melanocytes after individual or combined exposure to carbaryl (100μM) and solar radiation (375mJ/cm2). In a microarray analysis, carbaryl, but not solar radiation, induced an oxidative stress response, evidenced by the upregulation of antioxidant genes, such as Hemeoxygenase-1 (HMOX1), and downregulation of Microphtalmia-associated Transcription Factor (MITF), the main regulator of melanocytic activity; results were confirmed by qRT-PCR. Carbaryl and solar radiation induced a gene response suggestive of DNA damage and cell cycle alteration. The expression of CDKN1A, BRCA1/2 and MDM2 genes was notably more intense in the combined treatment group, in a synergistic manner. Flow cytometry assays demonstrated S-phase cell cycle arrest, reduced apoptosis levels and faster induction of cyclobutane pyrimidine dimers (CPD) lesions in carbaryl treated groups. Our data suggests that carbaryl is genotoxic to human melanocytes, especially when associated with solar radiation.
Collapse
|
6
|
Interaction between omega 3 PUFA and UVB radiation: Photoprotective effect in normal and tumoral murine melanocytes? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:361-368. [DOI: 10.1016/j.jphotobiol.2016.09.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/23/2022]
|
7
|
Lim HS, Jin S, Yun SJ. Modulation of Melanogenesis by Heme Oxygenase-1 via p53 in Normal Human Melanocytes. Chonnam Med J 2016; 52:45-52. [PMID: 26865999 PMCID: PMC4742609 DOI: 10.4068/cmj.2016.52.1.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 11/25/2022] Open
Abstract
As a key regulator of melanogenesis, p53 controls microphthalmia-associated transcription factor (MITF) and tyrosinase expression. The anti-oxidant enzyme heme oxygenase-1 (HO-1) is induced by various forms of cellular stress and diverse oxidative stimuli. However, few studies have examined the role of HO-1 in melanogenesis. Therefore, the aim of this study was to determine the role of HO-1 in melanogenesis and the mechanism underlying this relationship. Cultures of normal human melanocytes were treated with the HO-1 inducer cobalt protoporphyrin (CoPP) or the HO-1 inhibitor zinc protoporphyrin (ZnPP). We then measured the melanin content of the cells. Additional analyses consisted of Western blotting and RT-PCR. The results showed that the cellular melanin content was increased by CoPP and decreased by ZnPP. The Western blot and RT-PCR analyses showed that CoPP increased p53, MITF and tyrosinase levels, and ZnPP reduced all of them. The knockdown of p53 by siRNA transfection was followed by large decreases in the expression levels of p53, MITF and tyrosinase at 3 h of transfection. The presence of CoPP or ZnPP had no significant increased or decreased effects on MITF and tyrosinase levels from 15 h in the siRNA transfectants. Our results suggest that HO-1 modulates melanogenesis in human melanocytes via a p53-dependent pathway.
Collapse
Affiliation(s)
- Hee-Sun Lim
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Suna Jin
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Sook Jung Yun
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
8
|
Ultraviolet Radiation-Induced Cytogenetic Damage in White, Hispanic and Black Skin Melanocytes: A Risk for Cutaneous Melanoma. Cancers (Basel) 2015; 7:1586-604. [PMID: 26287245 PMCID: PMC4586785 DOI: 10.3390/cancers7030852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/15/2015] [Accepted: 08/10/2015] [Indexed: 01/10/2023] Open
Abstract
Cutaneous Melanoma (CM) is a leading cause of cancer deaths, with reports indicating a rising trend in the incidence rate of melanoma among Hispanics in certain U.S. states. The level of melanin pigmentation in the skin is suggested to render photoprotection from the DNA-damaging effects of Ultraviolet Radiation (UVR). UVR-induced DNA damage leads to cytogenetic defects visualized as the formation of micronuclei, multinuclei and polymorphic nuclei in cells, and a hallmark of cancer risk. The causative relationship between Sun exposure and CM is controversial, especially in Hispanics and needs further evaluation. This study was initiated with melanocytes from White, Hispanic and Black neonatal foreskins which were exposed to UVR to assess their susceptibility to UVR-induced modulation of cellular growth, cytogenetic damage, intracellular and released melanin. Our results show that White and Hispanic skin melanocytes with similar levels of constitutive melanin are susceptible to UVR-induced cytogenetic damage, whereas Black skin melanocytes are not. Our data suggest that the risk of developing UVR-induced CM in a skin type is correlated with the level of cutaneous pigmentation and its ethnic background. This study provides a benchmark for further investigation on the damaging effects of UVR as risk for CM in Hispanics.
Collapse
|
9
|
López S, Alonso S, García de Galdeano A, Smith-Zubiaga I. Melanocytes from dark and light skin respond differently after ultraviolet B irradiation: effect of keratinocyte-conditioned medium. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2015; 31:149-58. [PMID: 25740555 DOI: 10.1111/phpp.12169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND/PURPOSE The response to the damage provoked by exposure to UV radiation is mediated by melanocytes and a network of paracrine factors produced by keratinocytes, and it varies among individuals of different geographical origin and skin colour. The mechanisms underlying this differential response, however, have not been completely elucidated. METHODS We characterized the differential behaviour of melanocytes (proliferation and differentiation/melanogenesis) from both dark- and light-skinned individuals in response to ultraviolet B (UVB) irradiation, cultured with and without keratinocyte-conditioned medium (KCM). ELISA assays and real-time quantitative PCR were used to assess the production of keratinocyte-derived factors. RESULTS After UVB irradiation, dark melanocytes showed a decreased proliferation consistent with the highly differentiated state inferred by the increased dendricity of the cells and higher levels of melanogenic genes expression, whereas light melanocytes showed an increase in proliferation in accord with a less differentiated state and decreased melanogenesis levels. KCM induced melanogenesis in dark melanocytes after UVB irradiation, but not in light-pigmented melanocytes. CONCLUSION Proliferation and differentiation are coordinated in response to UVB. A lower proliferative rate and a higher differentiation state in dark melanocytes could account for more effective photoprotective mechanisms that would prevent from cell damage against UVB irradiation.
Collapse
Affiliation(s)
- Saioa López
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | | | | | | |
Collapse
|
10
|
Fuller AM, Giardina C, Hightower LE, Perdrizet GA, Tierney CA. Hyperbaric oxygen preconditioning protects skin from UV-A damage. Cell Stress Chaperones 2013; 18:97-107. [PMID: 22855227 PMCID: PMC3508122 DOI: 10.1007/s12192-012-0362-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 12/11/2022] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is used for a number of applications, including the treatment of diabetic foot ulcers and CO poisoning. However, we and others have shown that HBOT can mobilize cellular antioxidant defenses, suggesting that it may also be useful under circumstances in which tissue protection from oxidative damage is desired. To test the protective properties of hyperbaric oxygen (HBO) on a tissue level, we evaluated the ability of a preconditioning treatment regimen to protect cutaneous tissue from UV-A-induced oxidative damage. Three groups of hairless SKH1-E mice were exposed to UV-A 3 days per week for 22 weeks, with two of these groups receiving an HBO pretreatment either two or four times per week. UV-A exposure increased apoptosis and proliferation of the skin tissue, indicating elevated levels of epithelial damage and repair. Pretreatment with HBO significantly reduced UV-A-induced apoptosis and proliferation. A morphometric analysis of microscopic tissue folds also showed a significant increase in skin creasing following UV-A exposure, which was prevented by HBO pretreatment. Likewise, skin elasticity was found to be greatest in the group treated with HBO four times per week. The effects of HBO were also apparent systemically as reductions in caspase-3 activity and expression were observed in the liver. Our findings support a protective function of HBO pretreatment from a direct oxidative challenge of UV-A to skin tissue. Similar protection of other tissues may likewise be achievable.
Collapse
Affiliation(s)
- Ashley M. Fuller
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, U3125, Storrs, CT 06269 USA
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, U3125, Storrs, CT 06269 USA
| | - Lawrence E. Hightower
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, U3125, Storrs, CT 06269 USA
| | - George A. Perdrizet
- Wound Recovery and Hyperbaric Medicine Center, Kent Hospital, Warwick, RI 02886 USA
| | - Cassandra A. Tierney
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, U3125, Storrs, CT 06269 USA
| |
Collapse
|
11
|
Moskalev AA, Smit-McBride Z, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Tacutu R, Fraifeld VE. Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev 2012; 11:51-66. [PMID: 21986581 PMCID: PMC3765067 DOI: 10.1016/j.arr.2011.09.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 12/12/2022]
Abstract
The Gadd45 proteins have been intensively studied, in view of their important role in key cellular processes. Indeed, the Gadd45 proteins stand at the crossroad of the cell fates by controlling the balance between cell (DNA) repair, eliminating (apoptosis) or preventing the expansion of potentially dangerous cells (cell cycle arrest, cellular senescence), and maintaining the stem cell pool. However, the biogerontological aspects have not thus far received sufficient attention. Here we analyzed the pathways and modes of action by which Gadd45 members are involved in aging, longevity and age-related diseases. Because of their pleiotropic action, a decreased inducibility of Gadd45 members may have far-reaching consequences including genome instability, accumulation of DNA damage, and disorders in cellular homeostasis - all of which may eventually contribute to the aging process and age-related disorders (promotion of tumorigenesis, immune disorders, insulin resistance and reduced responsiveness to stress). Most recently, the dGadd45 gene has been identified as a longevity regulator in Drosophila. Although further wide-scale research is warranted, it is becoming increasingly clear that Gadd45s are highly relevant to aging, age-related diseases (ARDs) and to the control of life span, suggesting them as potential therapeutic targets in ARDs and pro-longevity interventions.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Group of Molecular Radiobiology and Gerontology, Institute of Biology, Komi Science Center of Russian Academy of Sciences.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nishiura H, Kumagai J, Kashino G, Okada T, Tano K, Watanabe M. The bystander effect is a novel mechanism of UVA-induced melanogenesis. Photochem Photobiol 2011; 88:389-97. [PMID: 22091933 DOI: 10.1111/j.1751-1097.2011.01046.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We successfully identified the bystander effect in B16 murine melanoma cells exposed to UVA irradiation. The effect was identified based on melanogenesis following the medium transfer of the B16 cells, which had been cultured for 24 h after being exposed to UVA irradiation, to nonirradiated cells (bystander cells). Our confirmation study of the functional mechanism of bystander cells confirmed the reduced levels of mitochondrial membrane potential 1-4 h after the medium transfer. In addition, we observed increased levels of intracellular oxidation after 9-12 h, and the generation of melanin radicals, including long-lived radicals, 24 h after medium transfer. Further analysis of bystander factors revealed that the administration of EGTA treatment at the time of medium transfer led to an inhibition of melanogenesis and to neutralization of the mitochondrial membrane potential level, as well as to the restoration of intracellular oxidation levels to those of controls. The results demonstrated that the UVA irradiation bystander effect in B16 cells, as indicated by melanogenesis, was induced by the increase in intracellular oxidation due to the mitochondrial activity of calcium ions, which were among the bystander factors involved in the increase.
Collapse
Affiliation(s)
- Hideki Nishiura
- Division of Radiation Life Science, Department of Radiation Life Science and Radiation Medical Science, Kyoto University Research Reactor Institute, Sennan-gun, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Mouret S, Forestier A, Douki T. The specificity of UVA-induced DNA damage in human melanocytes. Photochem Photobiol Sci 2011; 11:155-62. [PMID: 21986862 DOI: 10.1039/c1pp05185g] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure to solar UV radiation is the origin of most skin cancers, including deadly melanomas. Melanomas are quite different from keratinocyte-derived tumours and exhibit a different mutation spectrum in the activated oncogenes, possibly arising from a different class of DNA damage. In addition, some data suggest a role for UVA radiation in melanomagenesis. To get further insight into the molecular mechanisms underlying induction of melanoma, we quantified a series of UV-induced DNA damage in primary cultures of normal human melanocytes. The results were compared with those obtained in keratinocytes from the same donors. In the UVB range, the frequency and the distribution of pyrimidine dimers was the same in melanocytes and keratinocytes. UVA was also found to produce thymine cyclobutane dimer as the major DNA lesion with an equal efficiency in both cell types. In contrast, following UVA-irradiation a large difference was found for the yield of 8-oxo-7,8-dihydroguanine; the level of this product was 2.2-fold higher in melanocytes than in keratinocytes. The comet assay showed that the induction of strand breaks was equally efficient in both cell types but that the yield of Fpg-sensitive sites was larger in melanocytes. Our data show that, upon UVA irradiation, oxidative lesions contribute to a larger extent to DNA damage in melanocytes than in keratinocytes. We also observed that the basal level of oxidative lesions was higher in the melanocytes, in agreement with a higher oxidative stress that may be due to the production of melanin. The bulk of these results, combined with qPCR and cell survival data, may explain some of the differences in mutation spectrum and target genes between melanomas and carcinomas arising from keratinocytes.
Collapse
Affiliation(s)
- Stéphane Mouret
- Laboratoire Lésions des Acides Nucléiques, SCIB, UMR-E3 CEA/UJF-Grenoble 1, INAC, Grenoble, F-38054, France
| | | | | |
Collapse
|
14
|
Leasure CD, Tong HY, Hou XW, Shelton A, Minton M, Esquerra R, Roje S, Hellmann H, He ZH. root uv-b sensitive mutants are suppressed by specific mutations in ASPARTATE AMINOTRANSFERASE2 and by exogenous vitamin B6. MOLECULAR PLANT 2011; 4:759-70. [PMID: 21511809 PMCID: PMC3146737 DOI: 10.1093/mp/ssr033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vitamin B6 (vitB6) serves as an essential cofactor for more than 140 enzymes. Pyridoxal 5'-phosphate (PLP), active cofactor form of vitB6, can be photolytically destroyed by trace amounts of ultraviolet-B (UV-B). How sun-exposed organisms cope with PLP photosensitivity and modulate vitB6 homeostasis is currently unknown. We previously reported on two Arabidopsis mutants, rus1 and rus2, that are hypersensitive to trace amounts of UV-B light. We performed mutagenesis screens for second-site suppressors of the rus mutant phenotype and identified mutations in the ASPARTATE AMINOTRANSFERASE2 (ASP2) gene. ASP2 encodes for cytosolic aspartate aminotransferase (AAT), a PLP-dependent enzyme that plays a key role in carbon and nitrogen metabolism. Genetic analyses have shown that specific amino acid substitutions in ASP2 override the phenotypes of rus1 and rus2 single mutants as well as rus1 rus2 double mutant. These substitutions, all shown to reside at specific positions in the PLP-binding pocket, resulted in no PLP binding. Additional asp2 mutants that abolish AAT enzymatic activity, but which alter amino acids outside of the PLP-binding pocket, fail to suppress the rus phenotype. Furthermore, exogenously adding vitB6 in growth media can rescue both rus1 and rus2. Our data suggest that AAT plays a role in vitB6 homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Colin D. Leasure
- Department of Biology, 1600 Holloway Avenue, San Francisco State University, San Francisco, CA 94132, USA
- These authors contributed equally to this work
| | - Hong-Yun Tong
- Department of Biology, 1600 Holloway Avenue, San Francisco State University, San Francisco, CA 94132, USA
- These authors contributed equally to this work
| | - Xue-Wen Hou
- Department of Biology, 1600 Holloway Avenue, San Francisco State University, San Francisco, CA 94132, USA
| | - Amy Shelton
- Department of Biology, 1600 Holloway Avenue, San Francisco State University, San Francisco, CA 94132, USA
| | - Mike Minton
- Department of Chemistry and Biochemistry, 1600 Holloway Avenue, San Francisco State University, San Francisco, CA 94132, USA
| | - Raymond Esquerra
- Department of Chemistry and Biochemistry, 1600 Holloway Avenue, San Francisco State University, San Francisco, CA 94132, USA
| | - Sanja Roje
- The Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Zheng-Hui He
- Department of Biology, 1600 Holloway Avenue, San Francisco State University, San Francisco, CA 94132, USA
- To whom correspondence should be addressed. E-mail , tel. (415) 338-6193, fax (415) 338-2295
| |
Collapse
|
15
|
Elassiuty YE, Klarquist J, Speiser J, Yousef RM, El Refaee AA, Hunter NS, Shaker OG, Gundeti M, Nieuweboer-Krobotova L, Le Poole IC. Heme oxygenase-1 expression protects melanocytes from stress-induced cell death: implications for vitiligo. Exp Dermatol 2011; 20:496-501. [PMID: 21426408 DOI: 10.1111/j.1600-0625.2010.01232.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To study protection of melanocytes from stress-induced cell death by heme oxygenases during depigmentation and repigmentation in vitiligo, expression of isoforms 1 and 2 was studied in cultured control and patient melanocytes and normal skin explants exposed to UV or bleaching agent 4-TBP. Similarly, expression of heme oxygenases was followed in skin from vitiligo patients before and after PUVA treatment. Single and double immunostainings were used in combination with light and confocal microscopic analysis and Western blotting. Melanocyte expression of heme oxygenase 1 is upregulated, whereas heme oxygenase 2 is reduced in response to UV and 4-TBP. Upregulation of inducible heme oxygenase 1 was also observed in UV-treated explant cultures, in skin of successfully PUVA-treated patients and in melanocytes cultured from vitiligo non-lesional skin. Heme oxygenase encoding genes were subsequently cloned to study consequences of either gene product on cell viability, demonstrating that HO-1 but not HO-2 overexpression offers protection from stress-induced cell death in MTT assays. HO-1 expression by melanocytes may contribute to beneficial effects of UV treatment for vitiligo patients.
Collapse
Affiliation(s)
- Yasser E Elassiuty
- Department of Pathology, Microbiology and Immunology/Oncology Institute, Loyola University Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Terzian T, Torchia EC, Dai D, Robinson SE, Murao K, Stiegmann RA, Gonzalez V, Boyle GM, Powell MB, Pollock PM, Lozano G, Robinson WA, Roop DR, Box NF. p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation. Pigment Cell Melanoma Res 2011; 23:781-94. [PMID: 20849464 DOI: 10.1111/j.1755-148x.2010.00773.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
p53 is the central member of a critical tumor suppressor pathway in virtually all tumor types, where it is silenced mainly by missense mutations. In melanoma, p53 predominantly remains wild type, thus its role has been neglected. To study the effect of p53 on melanocyte function and melanomagenesis, we crossed the ‘high-p53’Mdm4+/− mouse to the well-established TP-ras0/+ murine melanoma progression model. After treatment with the carcinogen dimethylbenzanthracene (DMBA), TP-ras0/+ mice on the Mdm4+/− background developed fewer tumors with a delay in the age of onset of melanomas compared to TP-ras0/+ mice. Furthermore, we observed a dramatic decrease in tumor growth, lack of metastasis with increased survival of TP-ras0/+: Mdm4+/− mice. Thus, p53 effectively prevented the conversion of small benign tumors to malignant and metastatic melanoma. p53 activation in cultured primary melanocyte and melanoma cell lines using Nutlin-3, a specific Mdm2 antagonist, supported these findings. Moreover, global gene expression and network analysis of Nutlin-3-treated primary human melanocytes indicated that cell cycle regulation through the p21WAF1/CIP1 signaling network may be the key anti-melanomagenic activity of p53.
Collapse
Affiliation(s)
- Tamara Terzian
- Department of Dermatology and Charles C Gates Center for Regenerative Medicine and Stem Cell Biology, UC Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Crespo-López ME, Macêdo GL, Arrifano GPF, Pinheiro MDCN, do Nascimento JLM, Herculano AM. Genotoxicity of mercury: contributing for the analysis of Amazonian populations. ENVIRONMENT INTERNATIONAL 2011; 37:136-141. [PMID: 20825993 DOI: 10.1016/j.envint.2010.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 05/29/2023]
Abstract
Mercury is an important source of environmental contamination affecting human beings throughout the world and especially in the Amazon. Riverside populations have been chronically exposed to relatively high levels of methylmercury for many years. Long-term effects of mercury exposure are not well known, but human genotoxicity was already showed in both in vitro and epidemiological studies. However, to date, only two studies were carried out in Amazonian populations with conflicting results and without comparing to a non-exposed population. Aiming to highlight this question and avoid interference factors, this work analyzed in vitro genotoxicity of mercury in blood lymphocytes of Amazonian individuals by two methods (micronucleus and chromosomal aberrations). Deleterious effects of low levels (1-500 μg/l or 0,004-2 μM) of methylmercury were only detected with the method to detect chromosomal aberrations. Mitotic index (proportion of cells in metaphase) was the parameter most sensible. Thus, this technique was applied for the analysis of an Amazonian non-exposed population (Panacauera) with similar social-economical characteristics of the exposed populations studied elsewhere. The mean of the mitotic index for Panacauera population was 0.0814 ± 0.0097. Inter-individual variability of this index had no relation with sex or age. This value was above those registered for some groups of exposed populations. This fact points to mercury as the main responsible for inhibiting the cell cycle and/or the loss of proliferative capacity of the cells. These results already support mitotic index as an essential parameter for the early diagnose of mercury genotoxicity in humans, and especially in Amazonian populations.
Collapse
Affiliation(s)
- Maria Elena Crespo-López
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Brazil.
| | | | | | | | | | | |
Collapse
|
18
|
Jin SA, Park JJ, Lee JB, Lee SC, Yun SJ. Decreased heme oxygenase-1 expression distinguishes human melanomas from melanocytic nevi. Pigment Cell Melanoma Res 2010; 23:841-4. [DOI: 10.1111/j.1755-148x.2010.00761.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Abdel-Malek ZA, Kadekaro AL, Swope VB. Stepping up melanocytes to the challenge of UV exposure. Pigment Cell Melanoma Res 2010; 23:171-86. [PMID: 20128873 DOI: 10.1111/j.1755-148x.2010.00679.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exposure to solar ultraviolet radiation (UV) is the main etiological factor for skin cancer, including melanoma. Cutaneous pigmentation, particularly eumelanin, afforded by melanocytes is the main photoprotective mechanism, as it prevents UV-induced DNA damage in the epidermis. Therefore, maintaining genomic stability of melanocytes is crucial for prevention of melanoma, as well as keratinocyte-derived basal and squamous cell carcinoma. A critical independent factor for preventing melanoma is DNA repair capacity. The response of melanocytes to UV is mediated mainly by a network of paracrine factors that not only activate melanogenesis, but also DNA repair, anti-oxidant, and survival pathways that are pivotal for maintenance of genomic stability and prevention of malignant transformation or apoptosis. However, little is known about the stress response of melanocytes to UV and the regulation of DNA repair pathways in melanocytes. Unraveling these mechanisms might lead to strategies to prevent melanoma, as well as non-melanoma skin cancer.
Collapse
Affiliation(s)
- Zalfa A Abdel-Malek
- Department of Dermatology, University of Cincinnati Collage of Medicine, Cincinnati, OH, USA.
| | | | | |
Collapse
|
20
|
Marrot L, Jones C, Perez P, Meunier JR. The significance of Nrf2 pathway in (photo)-oxidative stress response in melanocytes and keratinocytes of the human epidermis. Pigment Cell Melanoma Res 2008; 21:79-88. [PMID: 18353146 DOI: 10.1111/j.1755-148x.2007.00424.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The expression of genes encoding antioxidant and/or phase 2 detoxifying enzymes can be enhanced in response to various environmental stresses. The main transcription factor involved in this response is nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 activity is negatively regulated by the protein Kelch-like-Ech-associated-protein 1 (Keap1). While the roles of Nrf2 and phase 2 genes in chemoprevention of carcinogenesis have been well described; only few studies have dealt with their role in skin cancer. Normal human keratinocytes (NHK) and melanocytes (NHM) were treated by chemical inducers of the Nrf2 pathway or by small interfering RNAs (siRNA) used to knock down Keap1 mRNA. The above treatments resulted in significant stimulation of NQO-1 (NADPH-Quinone-Oxidoreductase 1) gene expression. GCL (gamma-Glutamyl-cysteinyl-ligase) gene was also induced but interestingly increased mRNA encoding the catalytic, heavy subunit GCLC was mainly stimulated in NHK, whereas the mRNA encoding the modifier, light subunit GCLM was mostly induced in NHM. HO-1 (Heme Oxygenase 1) gene induction was relatively strong in NHM, but generally absent in NHK, except when the cells were subjected to cytotoxic doses of the above chemicals. Exposure to solar UV (UVB + UVA, 300-400 nm) or to UVA alone (320-400 nm) confirmed this trend, but interestingly, at doses where cell growth reduction was comparable, UVA was generally more efficient than solar UV in inducing phase 2 genes. When siRNAs directed against Nrf2 were used, a strong down-regulation of NQO-1 expression was observed in both, NHM and NHK, whereas reduction of HO-1 expression was mainly detected in NHM. To our knowledge, this is the first study comparing phase 2 gene modulation in NHK and NHM. The results hereby presented should contribute to a better understanding of the molecular mechanisms involved in skin adaptation to environmental stress.
Collapse
Affiliation(s)
- Laurent Marrot
- Department of Safety Research, Phototoxicity Unit, L'OREAL Research, Aulnay-Sous-Bois, France.
| | | | | | | |
Collapse
|
21
|
Shi B, Grahn JC, Reilly DA, Dizon TC, Isseroff RR. Responses of the 27-kDa heat shock protein to UVB irradiation in human epidermal melanocytes. Exp Dermatol 2007; 17:108-14. [PMID: 18031542 DOI: 10.1111/j.1600-0625.2007.00641.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Solar ultraviolet radiation (UVR) is a major environmental hazard for the skin, and UVB (280-320 nm) has been proposed to be a main factor for melanoma development. In response to sunlight exposure, the skin has adapted a number of innate resistance mechanisms. Among them is the small heat shock protein of 27 kDa (HSP27) known to play a role in the protection of cells from variety of environmental insults including UV irradiation. In this study, we demonstrated that UVB irradiation of cultured normal epidermal melanocytes initiates changes in HSP27 phosphorylation and localization. In unstressed melanocytes, HSP27 was present as the non-phosphorylated isoform. UVB irradiation with a physiological dose (7-25 mJ/cm(2)) resulted in the formation of a mono-phosphorylated isoform and sometimes a bi-phosphorylated isoform. The UVB-induced HSP27 phosphorylation was inhibited when melanocytes were treated with the antioxidant N-acetyl cysteine or inhibitor of p38 MAP kinase prior to UVB exposure, suggesting that UVB induced HSP27 phosphorylation through reactive oxygen species/p38 MAP kinase pathway. In response to UBV irradiation, HSP27 in melanocytes translocated from the cytoplasm to the nucleus. The HSP27 responses may provide some protective role against UVB-induced cell damage in the skin.
Collapse
Affiliation(s)
- Biao Shi
- Department of Dermatology, University of California Davis School of Medicine, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
p53 has a central role in skin pigmentation and may impact on melanoma at all stages, however, as it's mutation frequency in melanoma is low, it's role has been somewhat under-appreciated. During normal skin function, p53 in the keratinocyte is a transducer of the skin tanning signal and an essential component of what is effectively a keratinocyte-melanocyte signaling cycle that regulates skin pigmentation. It is clear that this cycle functions optimally in skin of dark pigmentation. When melanin biosynthesis is genetically disrupted in skin of white complexion, we propose that this cycle operates as a promoter of melanocyte proliferation. The cell autonomous function of p53 in melanocytes is not well described, however, the balance of the evidence suggests that p53 is an effective tumor suppressor and the myriad of mechanisms by which the p53 pathway may be dysregulated in tumors attests to it importance as a tumor suppressor. In this review, we outline the known mechanisms that impair p53 itself and its immediate regulators or target genes during melanomagenesis. Due to the importance of this pathway, it is clear that p53 disruptions may relate directly to a patient's prognosis. This pathway will continue to be a focus of investigation, particularly with respect to targeted experimental chemotherapeutics.
Collapse
Affiliation(s)
- Neil F Box
- Department of Dermatology, University of Colorado at Denver, Aurora, CO, USA.
| | | |
Collapse
|
23
|
Kaufmann WK, Nevis KR, Qu P, Ibrahim JG, Zhou T, Zhou Y, Simpson DA, Helms-Deaton J, Cordeiro-Stone M, Moore DT, Thomas NE, Hao H, Liu Z, Shields JM, Scott GA, Sharpless NE. Defective cell cycle checkpoint functions in melanoma are associated with altered patterns of gene expression. J Invest Dermatol 2007; 128:175-87. [PMID: 17597816 PMCID: PMC2753794 DOI: 10.1038/sj.jid.5700935] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Defects in DNA damage responses may underlie genetic instability and malignant progression in melanoma. Cultures of normal human melanocytes (NHMs) and melanoma lines were analyzed to determine whether global patterns of gene expression could predict the efficacy of DNA damage cell cycle checkpoints that arrest growth and suppress genetic instability. NHMs displayed effective G1 and G2 checkpoint responses to ionizing radiation-induced DNA damage. A majority of melanoma cell lines (11/16) displayed significant quantitative defects in one or both checkpoints. Melanomas with B-RAF mutations as a class displayed a significant defect in DNA damage G2 checkpoint function. In contrast the epithelial-like subtype of melanomas with wild-type N-RAS and B-RAF alleles displayed an effective G2 checkpoint but a significant defect in G1 checkpoint function. RNA expression profiling revealed that melanoma lines with defects in the DNA damage G1 checkpoint displayed reduced expression of p53 transcriptional targets, such as CDKN1A and DDB2, and enhanced expression of proliferation-associated genes, such as CDC7 and GEMININ. A Bayesian analysis tool was more accurate than significance analysis of microarrays for predicting checkpoint function using a leave-one-out method. The results suggest that defects in DNA damage checkpoints may be recognized in melanomas through analysis of gene expression.
Collapse
Affiliation(s)
- William K Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sanchez S, Haro E, Ruffié G, Veyret B, Lagroye I. In vitro study of the stress response of human skin cells to GSM-1800 mobile phone signals compared to UVB radiation and heat shock. Radiat Res 2007; 167:572-80. [PMID: 17474794 DOI: 10.1667/rr0802.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 11/13/2006] [Indexed: 11/03/2022]
Abstract
The evolution of mobile phone technology is toward an increase of the carrier frequency up to 2.45 GHz. Absorption of radiofrequency (RF) radiation becomes more superficial as the frequency increases. This increasingly superficial absorption of RF radiation by the skin, which is the first organ exposed to RF radiation, may lead to stress responses in skin cells. We thus investigated the expression of three heat-shock proteins (HSP70, HSC70, HSP27) using immunohistochemistry and induction of apoptosis by flow cytometry on human primary keratinocytes and fibroblasts. A well-characterized exposure system, SXC 1800, built by the IT'IS foundation was used at 1800 MHz, with a 217 Hz modulation. We tested a 48-h exposure at an SAR of 2 W/kg (ICNIRP local exposure limit). Skin cells were also irradiated with a 600 mJ/cm2 single dose of UVB radiation and subjected to heat shock (45 degrees C, 20 min) as positive controls for apoptosis and HSP expression, respectively. The results showed no effect of a 48-h GSM-1800 exposure at 2 W/kg on either keratinocytes or fibroblasts, in contrast to UVB-radiation or heat-shock treatments, which injured cells. We thus conclude that the GSM-1800 signal does not act as a stress factor on human primary skin cells in vitro.
Collapse
Affiliation(s)
- S Sanchez
- University of Bordeaux 1, IMS Laboratory, UMR 5218 CNRS, EPHE Bioelectromagnetics Group, Pessac, France.
| | | | | | | | | |
Collapse
|
25
|
Chuang SC, Lai WS, Chen JH. Influence of ultraviolet radiation on selected physiological responses of earthworms. J Exp Biol 2006; 209:4304-12. [PMID: 17050845 DOI: 10.1242/jeb.02521] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe purpose of this study was to investigate the adverse effects of ultraviolet (UV) radiation on earthworms. Earthworms that crawl out of the soil may die within a few hours after sunrise. This study shows that UV exposure can be lethal. In general, UV-B had a stronger damaging effect than UV-A. Different species of earthworms had different tolerances to UV exposure. In this study, Pontoscolex corethrurus showed the highest tolerance of the three tested species to UV radiation, while Amynthas graciliswas the most sensitive. UV radiation induced both acute and chronic responses. The acute response, which occurred immediately on or after UV exposure, was characterized by the appearance of abnormally strong muscle contractions,including S-shaped movements and jumping behavior, possibly caused by bad coordination between the circular and longitudinal muscles. The chronic response included damage to the skin and muscle cells, which resulted in a high mortality rate. Oxygen consumption by A. gracilis was significantly decreased after exposure to UV-A or UV-B. Since the circulation in earthworms is mediated by muscle contraction and the skin is the main organ of respiration, it is reasonable to expect that abnormal muscle contraction and a damaged epithelium could cause suffocation. Because of their sensitive responses, we propose that some earthworms, such as A. gracilis,could serve as a new model for studying UV-induced photodamage.
Collapse
Affiliation(s)
- Shu-Chun Chuang
- Institute of Zoology, National Taiwan University, No. 1 Roosevelt Road, Section 4, Taipei 106, Taiwan
| | | | | |
Collapse
|
26
|
Okamoto I, Krögler J, Endler G, Kaufmann S, Mustafa S, Exner M, Mannhalter C, Wagner O, Pehamberger H. A microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with risk for melanoma. Int J Cancer 2006; 119:1312-5. [PMID: 16596642 DOI: 10.1002/ijc.21937] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heme oxygenase-1 (HO-1) has been demonstrated to play an important role in the regulation of signaling systems, which are involved in the control of cell cycle progression and apoptosis. Recently, a (GT)n dinucleotide repeat polymorphism in the HO-1 promoter was shown to modulate HO-1 gene expression. Short (<25 GT) repeats are associated with an increased HO-1 upregulation after stimulation than are longer repeats. Malignant melanoma (MM) is the most serious cutaneous malignancy with high tendency to aggressive growth and resistance to apoptosis. Therefore, we sought to study the influence of this polymorphism on the progression of MM. We determined the HO-1 promoter genotype in 152 patients with MM and 398 healthy controls and studied their association in regard to susceptibility to MM, Breslow thickness and disease-free survival. In our study, the homozygous short allele with <25 (GT)n repeats (S/S) was found more frequently in the melanoma group compared to the healthy control population (21 and 12%, respectively). The calculated risk for acquiring primary MM in S/S carriers was 2-fold higher compared to those with L-allele types (95% confidence interval: 1.2-2.4, p = 0.03). Additionally, the S/S genotype was significantly associated with primary tumors with deeper Breslow thickness compared to L-allele (>25 repeats) carriers (mean Breslow thickness: 4.0 +/- 2.9 mm versus 3.1 +/- 1.7 mm, p = 0.03). These data suggest that HO-1 might render a higher risk for MM in S/S genotype individuals and could represent an important candidate gene in the pathogenesis and growth of malignant melanoma.
Collapse
Affiliation(s)
- Ichiro Okamoto
- Department of Dermatology, Division of General Dermatology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|