1
|
Broutzakis G, Pyrris Y, Akrani I, Neuhaus A, Mikros E, Diallinas G, Gatsogiannis C. High-resolution structures of the UapA purine transporter reveal unprecedented aspects of the elevator-type transport mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609436. [PMID: 39229210 PMCID: PMC11370611 DOI: 10.1101/2024.08.23.609436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
UapA is an extensively studied elevator-type purine transporter from the model fungus Aspergillus nidulans . Determination of a 3.6Å inward-facing crystal structure lacking the cytoplasmic N-and C-tails, molecular dynamics (MD), and functional studies have led to speculative models of its transport mechanism and determination of substrate specificity. Here, we report full-length cryo-EM structures of UapA in new inward-facing apo- and substrate-loaded conformations at 2.05-3.5 Å in detergent and lipid nanodiscs. The structures reveal in an unprecedented level of detail the role of water molecules and lipids in substrate binding, specificity, dimerization, and activity, rationalizing accumulated functional data. Unexpectedly, the N-tail is structured and interacts with both the core and scaffold domains. This finding, combined with mutational and functional studies and MD, points out how N-tail interactions couple proper subcellular trafficking and transport activity by wrapping UapA in a conformation necessary for ER-exit and but also critical for elevator-type conformational changes associated with substrate translocation once UapA has integrated into the plasma membrane. Our study provides detailed insights into important aspects of the elevator-type transport mechanism and opens novel issues on how the evolution of extended cytosolic tails in eukaryotic transporters, apparently needed for subcellular trafficking, might have been integrated into the transport mechanism.
Collapse
|
2
|
Quaiyum S, Yuan Y, Kuipers PJ, Martinelli M, Jaroch M, de Crécy-Lagard V. Deciphering the Diversity in Bacterial Transporters That Salvage Queuosine Precursors. EPIGENOMES 2024; 8:16. [PMID: 38804365 PMCID: PMC11130926 DOI: 10.3390/epigenomes8020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Queuosine (Q) is a modification of the wobble base of tRNA harboring GUN anticodons with roles in decoding accuracy and efficiency. Its synthesis is complex with multiple enzymatic steps, and several pathway intermediates can be salvaged. The only two transporter families known to salvage Q precursors are QPTR/COG1738 and QrtT/QueT. Analyses of the distribution of known Q synthesis and salvage genes in human gut and oral microbiota genomes have suggested that more transporter families remain to be found and that Q precursor exchanges must occur within the structured microenvironments of the mammalian host. Using physical clustering and fusion-based association with Q salvage genes, candidate genes for missing transporters were identified and five were tested experimentally by complementation assays in Escherichia coli. Three genes encoding transporters from three different Pfam families, a ureide permease (PF07168) from Acidobacteriota bacterium, a hemolysin III family protein (PF03006) from Bifidobacterium breve, and a Major Facilitator Superfamily protein (PF07690) from Bartonella henselae, were found to allow the transport of both preQ0 and preQ1 in this heterologous system. This work suggests that many transporter families can evolve to transport Q precursors, reinforcing the concept of transporter plasticity.
Collapse
Affiliation(s)
- Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (S.Q.); (Y.Y.); (P.J.K.)
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (S.Q.); (Y.Y.); (P.J.K.)
| | - Paul J. Kuipers
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (S.Q.); (Y.Y.); (P.J.K.)
| | - Maria Martinelli
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (S.Q.); (Y.Y.); (P.J.K.)
- eSTEAMed Learning Inc., Maitland, FL 32751, USA
| | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (S.Q.); (Y.Y.); (P.J.K.)
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (S.Q.); (Y.Y.); (P.J.K.)
- Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Vitamin C transporter SVCT1 serves a physiological role as a urate importer: functional analyses and in vivo investigations. Pflugers Arch 2023; 475:489-504. [PMID: 36749388 PMCID: PMC10011331 DOI: 10.1007/s00424-023-02792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Uric acid, the end product of purine metabolism in humans, is crucial because of its anti-oxidant activity and a causal relationship with hyperuricemia and gout. Several physiologically important urate transporters regulate this water-soluble metabolite in the human body; however, the existence of latent transporters has been suggested in the literature. We focused on the Escherichia coli urate transporter YgfU, a nucleobase-ascorbate transporter (NAT) family member, to address this issue. Only SLC23A proteins are members of the NAT family in humans. Based on the amino acid sequence similarity to YgfU, we hypothesized that SLC23A1, also known as sodium-dependent vitamin C transporter 1 (SVCT1), might be a urate transporter. First, we identified human SVCT1 and mouse Svct1 as sodium-dependent low-affinity/high-capacity urate transporters using mammalian cell-based transport assays. Next, using the CRISPR-Cas9 system followed by the crossing of mice, we generated Svct1 knockout mice lacking both urate transporter 1 and uricase. In the hyperuricemic mice model, serum urate levels were lower than controls, suggesting that Svct1 disruption could reduce serum urate. Given that Svct1 physiologically functions as a renal vitamin C re-absorber, it could also be involved in urate re-uptake from urine, though additional studies are required to obtain deeper insights into the underlying mechanisms. Our findings regarding the dual-substrate specificity of SVCT1 expand the understanding of urate handling systems and functional evolutionary changes in NAT family proteins.
Collapse
|
4
|
Wang M, He J, Li S, Cai Q, Zhang K, She J. Structural basis of vitamin C recognition and transport by mammalian SVCT1 transporter. Nat Commun 2023; 14:1361. [PMID: 36914666 PMCID: PMC10011568 DOI: 10.1038/s41467-023-37037-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Vitamin C (L-ascorbic acid) is an essential nutrient for human health, and its deficiency has long been known to cause scurvy. Sodium-dependent vitamin C transporters (SVCTs) are responsible for vitamin C uptake and tissue distribution in mammals. Here, we present cryogenic electron microscopy structures of mouse SVCT1 in both the apo and substrate-bound states. Mouse SVCT1 forms a homodimer with each protomer containing a core domain and a gate domain. The tightly packed extracellular interfaces between the core domain and gate domain stabilize the protein in an inward-open conformation for both the apo and substrate-bound structures. Vitamin C binds at the core domain of each subunit, and two potential sodium ions are identified near the binding site. The coordination of sodium ions by vitamin C explains their coupling transport. SVCTs probably deliver substrate through an elevator mechanism in combination with local structural arrangements. Altogether, our results reveal the molecular mechanism by which SVCTs recognize vitamin C and lay a foundation for further mechanistic studies on SVCT substrate transport.
Collapse
Affiliation(s)
- Mingxing Wang
- MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230026, China
| | - Jin He
- MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230026, China
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230026, China
| | - Qianwen Cai
- MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230026, China.
| | - Ji She
- MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
5
|
Duque P, Vieira CP, Bastos B, Vieira J. The evolution of vitamin C biosynthesis and transport in animals. BMC Ecol Evol 2022; 22:84. [PMID: 35752765 PMCID: PMC9233358 DOI: 10.1186/s12862-022-02040-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/17/2022] [Indexed: 12/25/2022] Open
Abstract
Background Vitamin C (VC) is an indispensable antioxidant and co-factor for optimal function and development of eukaryotic cells. In animals, VC can be synthesized by the organism, acquired through the diet, or both. In the single VC synthesis pathway described in animals, the penultimate step is catalysed by Regucalcin, and the last step by l-gulonolactone oxidase (GULO). The GULO gene has been implicated in VC synthesis only, while Regucalcin has been shown to have multiple functions in mammals. Results Both GULO and Regucalcin can be found in non-bilaterian, protostome and deuterostome species. Regucalcin, as here shown, is involved in multiple functions such as VC synthesis, calcium homeostasis, and the oxidative stress response in both Deuterostomes and Protostomes, and in insects in receptor-mediated uptake of hexamerin storage proteins from haemolymph. In Insecta and Nematoda, however, there is no GULO gene, and in the latter no Regucalcin gene, but species from these lineages are still able to synthesize VC, implying at least one novel synthesis pathway. In vertebrates, SVCT1, a gene that belongs to a family with up to five members, as here shown, is the only gene involved in the uptake of VC in the gut. This specificity is likely the result of a subfunctionalization event that happened at the base of the Craniata subphylum. SVCT-like genes present in non-Vertebrate animals are likely involved in both VC and nucleobase transport. It is also shown that in lineages where GULO has been lost, SVCT1 is now an essential gene, while in lineages where SVCT1 gene has been lost, GULO is now an essential gene. Conclusions The simultaneous study, for the first time, of GULO, Regucalcin and SVCTs evolution provides a clear picture of VC synthesis/acquisition and reveals very different selective pressures in different animal taxonomic groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02040-7.
Collapse
|
6
|
Pilátová J, Pánek T, Oborník M, Čepička I, Mojzeš P. Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes. THE ISME JOURNAL 2022; 16:2290-2294. [PMID: 35672454 PMCID: PMC9381591 DOI: 10.1038/s41396-022-01264-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Despite the widespread occurrence of intracellular crystalline inclusions in unicellular eukaryotes, scant attention has been paid to their composition, functions, and evolutionary origins. Using Raman microscopy, we examined >200 species from all major eukaryotic supergroups. We detected cellular crystalline inclusions in 77% species out of which 80% is composed of purines, such as anhydrous guanine (62%), guanine monohydrate (2%), uric acid (12%) and xanthine (4%). Our findings shifts the paradigm assuming predominance of calcite and oxalates. Purine crystals emerge in microorganisms in all habitats, e.g., in freshwater algae, endosymbionts of reef-building corals, deadly parasites, anaerobes in termite guts, or slime molds. Hence, purine biocrystallization is a general and ancestral eukaryotic process likely present in the last eukaryotic common ancestor (LECA) and here we propose two proteins omnipresent in eukaryotes that are likely in charge of their metabolism: hypoxanthine-guanine phosphoribosyl transferase and equilibrative nucleoside transporter. Purine crystalline inclusions are multifunctional structures representing high-capacity and rapid-turnover reserves of nitrogen and optically active elements, e.g., used in light sensing. Thus, we anticipate our work to be a starting point for further studies spanning from cell biology to global ecology, with potential applications in biotechnologies, bio-optics, or in human medicine.
Collapse
Affiliation(s)
- Jana Pilátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic.
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague 2, Czech Republic.
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague 2, Czech Republic
| |
Collapse
|
7
|
Tatsaki E, Anagnostopoulou E, Zantza I, Lazou P, Mikros E, Frillingos S. Identification of New Specificity Determinants in Bacterial Purine Nucleobase Transporters based on an Ancestral Sequence Reconstruction Approach. J Mol Biol 2021; 433:167329. [PMID: 34710398 DOI: 10.1016/j.jmb.2021.167329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
The relation of sequence with specificity in membrane transporters is challenging to explore. Most relevant studies until now rely on comparisons of present-day homologs. In this work, we study a set of closely related transporters by employing an evolutionary, ancestral-reconstruction approach and reveal unexpected new specificity determinants. We analyze a monophyletic group represented by the xanthine-specific XanQ of Escherichia coli in the Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2 (NAT/NCS2) family. We reconstructed AncXanQ, the putative common ancestor of this clade, expressed it in E. coli K-12, and found that, in contrast to XanQ, it encodes a high-affinity permease for both xanthine and guanine, which also recognizes adenine, hypoxanthine, and a range of analogs. AncXanQ conserves all binding-site residues of XanQ and differs substantially in only five intramembrane residues outside the binding site. We subjected both homologs to rationally designed mutagenesis and present evidence that these five residues are linked with the specificity change. In particular, we reveal Ser377 of XanQ (Gly in AncXanQ) as a major determinant. Replacement of this Ser with Gly enlarges the specificity of XanQ towards an AncXanQ-phenotype. The ortholog from Neisseria meningitidis retaining Gly at this position is also a xanthine/guanine transporter with extended substrate profile like AncXanQ. Molecular Dynamics shows that the S377G replacement tilts transmembrane helix 12 resulting in rearrangement of Phe376 relative to Phe94 in the XanQ binding pocket. This effect may rationalize the enlarged specificity. On the other hand, the specificity effect of S377G can be masked by G27S or other mutations through epistatic interactions.
Collapse
Affiliation(s)
- Ekaterini Tatsaki
- Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Eleni Anagnostopoulou
- Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece. https://twitter.com/EleniAnagn
| | - Iliana Zantza
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiota Lazou
- Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece; Institute of Biosciences, University Research Center of Ioannina, Ioannina, Greece.
| |
Collapse
|
8
|
Diallinas G. Transporter Specificity: A Tale of Loosened Elevator-Sliding. Trends Biochem Sci 2021; 46:708-717. [PMID: 33903007 DOI: 10.1016/j.tibs.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/13/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Elevator-type transporters are a group of proteins translocating nutrients and metabolites across cell membranes. Despite structural and functional differences, elevator-type transporters use a common mechanism of substrate translocation via reversible movements of a mobile core domain (the elevator), which includes the substrate binding site, along a rigid scaffold domain, stably anchored in the plasma membrane. How substrate specificity is determined in elevator transporters remains elusive. Here, I discuss how a recent report on the sliding elevator mechanism, seen under the context of genetic analysis of a prototype fungal transporter, sheds light on how specificity might be genetically modified. I propose that flexible specificity alterations might occur by 'loosening' of the sliding mechanism from tight coupling to substrate binding.
Collapse
Affiliation(s)
- George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece.
| |
Collapse
|
9
|
Context-dependent Cryptic Roles of Specific Residues in Substrate Selectivity of the UapA Purine Transporter. J Mol Biol 2021; 433:166814. [PMID: 33497644 DOI: 10.1016/j.jmb.2021.166814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
Members of the ubiquitous Nucleobase Ascorbate Transporter (NAT) family are H+ or Na+ symporters specific for the cellular uptake of either purines and pyrimidines or L-ascorbic acid. Despite the fact that several bacterial and fungal members have been extensively characterised at a genetic, biochemical or cellular level, and crystal structures of NAT members from Escherichia coli and Aspergillus nidulans have been determined pointing to a mechanism of transport, we have little insight on how substrate selectivity is determined. Here, we present systematic mutational analyses, rational combination of mutations, and novel genetic screens that reveal cryptic context-dependent roles of partially conserved residues in the so-called NAT signature motif in determining the specificity of the UapA transporter of A. nidulans. We show that specific NAT signature motif substitutions, alone and in combinations with each other or with distant mutations in residues known to affect substrate selectivity, lead to novel UapA versions possessing variable transport capacities and specificities for nucleobases. In particular, we show that a UapA version including the quadruple mutation T405S/F406Y/A407S/Q408E in the NAT signature motif (UapA-SYSE) becomes incapable of purine transport, but gains a novel pyrimidine-related profile, which can be further altered to a more promiscuous purine/pyrimidine profile when combined with replacements at distantly located residues, especially at F528. Our results reveal that UapA specificity is genetically highly modifiable and allow us to speculate on how the elevator-type mechanism of transport might account for this flexibility.
Collapse
|
10
|
Botou M, Yalelis V, Lazou P, Zantza I, Papakostas K, Charalambous V, Mikros E, Flemetakis E, Frillingos S. Specificity profile of NAT/NCS2 purine transporters in
Sinorhizobium
(
Ensifer
)
meliloti. Mol Microbiol 2020; 114:151-171. [DOI: 10.1111/mmi.14503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Botou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Vassilis Yalelis
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Panayiota Lazou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Iliana Zantza
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences National and Kapodistrian University of Athens Athens Greece
| | - Konstantinos Papakostas
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Vassiliki Charalambous
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences National and Kapodistrian University of Athens Athens Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology Department of Biotechnology Agricultural University of Athens Athens Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| |
Collapse
|
11
|
Campagnaro GD, de Koning HP. Purine and pyrimidine transporters of pathogenic protozoa - conduits for therapeutic agents. Med Res Rev 2020; 40:1679-1714. [PMID: 32144812 DOI: 10.1002/med.21667] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Purines and pyrimidines are essential nutrients for any cell. Most organisms are able to synthesize their own purines and pyrimidines, but this ability was lost in protozoans that adapted to parasitism, leading to a great diversification in transporter activities in these organisms, especially for the acquisition of amino acids and nucleosides from their hosts throughout their life cycles. Many of these transporters have been shown to have sufficiently different substrate affinities from mammalian transporters, making them good carriers for therapeutic agents. In this review, we summarize the knowledge obtained on purine and pyrimidine activities identified in protozoan parasites to date and discuss their importance for the survival of these parasites and as drug carriers, as well as the perspectives of developments in the field.
Collapse
Affiliation(s)
- Gustavo D Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, UK
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, UK
| |
Collapse
|
12
|
Kourkoulou A, Grevias P, Lambrinidis G, Pyle E, Dionysopoulou M, Politis A, Mikros E, Byrne B, Diallinas G. Specific Residues in a Purine Transporter Are Critical for Dimerization, ER Exit, and Function. Genetics 2019; 213:1357-1372. [PMID: 31611232 PMCID: PMC6893392 DOI: 10.1534/genetics.119.302566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Transporters are transmembrane proteins that mediate the selective translocation of solutes across biological membranes. Recently, we have shown that specific interactions with plasma membrane phospholipids are essential for the formation and/or stability of functional dimers of the purine transporter UapA, a prototypic eukaryotic member of the ubiquitous nucleobase ascorbate transporter (NAT) family. Here, we provide strong evidence that distinct interactions of UapA with membrane lipids are essential for ab initio formation of functional dimers in the ER, or ER exit and further subcellular trafficking. Through genetic screens, we identify mutations that restore defects in dimer formation and/or trafficking. Suppressors of defective dimerization restore ab initio formation of UapA dimers in the ER. Most of these suppressors are located in the movable core domain, but also in the core-dimerization interface and in residues of the dimerization domain exposed to lipids. Molecular dynamics suggest that the majority of suppressors stabilize interhelical interactions in the core domain and thus assist the formation of functional UapA dimers. Among suppressors restoring dimerization, a specific mutation, T401P, was also isolated independently as a suppressor restoring trafficking, suggesting that stabilization of the core domain restores function by sustaining structural defects caused by the abolishment of essential interactions with specific lipids. Importantly, the introduction of mutations topologically equivalent to T401P into a rat homolog of UapA, namely rSNBT1, permitted the functional expression of a mammalian NAT in Aspergillus nidulans Thus, our results provide a potential route for the functional expression and manipulation of mammalian transporters in the model Aspergillus system.
Collapse
Affiliation(s)
- Anezia Kourkoulou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| | - Pothos Grevias
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| | - George Lambrinidis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, 15771, Greece
| | - Euan Pyle
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
- Department of Chemistry, King's College London, SE1 1DB, UK
| | - Mariangela Dionysopoulou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| | | | - Emmanuel Mikros
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, 15771, Greece
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| |
Collapse
|
13
|
Doukas A, Karena E, Botou M, Papakostas K, Papadaki A, Tziouvara O, Xingi E, Frillingos S, Boleti H. Heterologous expression of the mammalian sodium-nucleobase transporter rSNBT1 in Leishmania tarentolae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1546-1557. [PMID: 31283918 DOI: 10.1016/j.bbamem.2019.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
Recombinant expression systems for mammalian membrane transport proteins are often limited by insufficient yields to support structural studies, inadequate post-translational processing and problems related with improper membrane targeting or cytotoxicity. Use of alternative expression systems and optimization of expression/purification protocols are constantly needed. In this work, we explore the applicability of the laboratory strain LEXSY of the ancient eukaryotic microorganism Leishmania tarentolae as a new expression system for mammalian nucleobase permeases of the NAT/NCS2 (Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2) family. We achieved the heterologous expression of the purine-pyrimidine permease rSNBT1 from Rattus norvegicus (tagged at C-terminus with a red fluorescent protein), as confirmed by confocal microscopy and biochemical analysis of the subcellular fractions enriched in membrane proteins. The cDNA of rSNBT1 has been subcloned in a pLEXSY-sat-mrfp1vector and used to generate transgenic L. tarentolae-rsnbt1-mrfp1 strains carrying the pLEXSY-sat-rsnbt1-mrfp1 plasmid either episomally or integrated in the chromosomal DNA. The chimeric transporter rSNBT1-mRFP1 is targeted to the ER and the plasma membrane of the L. tarentolae promastigotes. The transgenic strains are capable of transporting nucleobases that are substrates of rSNBT1 but also of the endogenous L. tarentolae nucleoside/nucleobase transporters. A dipyridamole-resistant Na+-dependent fraction of uptake is attributed to the exogenously expressed rSNBT1.
Collapse
Affiliation(s)
- Anargyros Doukas
- Intracellular Parasitism Group, Microbiology Department, Hellenic Pasteur Institute, Vas. Sofias 127, Athens 11521, Greece
| | - Ekaterini Karena
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Greece
| | - Maria Botou
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Greece
| | | | - Amalia Papadaki
- Intracellular Parasitism Group, Microbiology Department, Hellenic Pasteur Institute, Vas. Sofias 127, Athens 11521, Greece
| | - Olympia Tziouvara
- Intracellular Parasitism Group, Microbiology Department, Hellenic Pasteur Institute, Vas. Sofias 127, Athens 11521, Greece
| | - Evaggelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Vas. Sofias 127, Athens 11521, Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Greece.
| | - Haralabia Boleti
- Intracellular Parasitism Group, Microbiology Department, Hellenic Pasteur Institute, Vas. Sofias 127, Athens 11521, Greece; Light Microscopy Unit, Hellenic Pasteur Institute, Vas. Sofias 127, Athens 11521, Greece.
| |
Collapse
|
14
|
Abstract
Cell nutrition, detoxification, signalling, homeostasis and response to drugs, processes related to cell growth, differentiation and survival are all mediated by plasma membrane (PM) proteins called transporters. Despite their distinct fine structures, mechanism of function, energetic requirements, kinetics and substrate specificities, all transporters are characterized by a main hydrophobic body embedded in the PM as a series of tightly packed, often intertwined, α-helices that traverse the lipid bilayer in a zigzag mode, connected with intracellular or extracellular loops and hydrophilic N- and C-termini. Whereas longstanding genetic, biochemical and biophysical evidence suggests that specific transmembrane segments, and also their connecting loops, are responsible for substrate recognition and transport dynamics, emerging evidence also reveals the functional importance of transporter N- and C-termini, in respect to transport catalysis, substrate specificity, subcellular expression, stability and signalling. This review highlights selected prototypic examples of transporters in which their termini play important roles in their functioning.
Collapse
Affiliation(s)
- Emmanuel Mikros
- Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, 15771 Athens, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15781 Athens, Greece
| |
Collapse
|
15
|
Chaliotis A, Vlastaridis P, Ntountoumi C, Botou M, Yalelis V, Lazou P, Tatsaki E, Mossialos D, Frillingos S, Amoutzias GD. NAT/NCS2-hound: a webserver for the detection and evolutionary classification of prokaryotic and eukaryotic nucleobase-cation symporters of the NAT/NCS2 family. Gigascience 2018; 7:5168872. [PMID: 30418564 PMCID: PMC6308229 DOI: 10.1093/gigascience/giy133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/17/2018] [Indexed: 01/16/2023] Open
Abstract
Nucleobase transporters are important for supplying the cell with purines and/or pyrimidines, for controlling the intracellular pool of nucleotides, and for obtaining exogenous nitrogen/carbon sources for metabolism. Nucleobase transporters are also evaluated as potential targets for antimicrobial therapies, since several pathogenic microorganisms rely on purine/pyrimidine salvage from their hosts. The majority of known nucleobase transporters belong to the evolutionarily conserved and ubiquitous nucleobase-ascorbate transporter/nucleobase-cation symporter-2 (NAT/NCS2) protein family. Based on a large-scale phylogenetic analysis that we performed on thousands of prokaryotic proteomes, we developed a webserver that can detect and distinguish this family of transporters from other homologous families that recognize different substrates. We can further categorize these transporters to certain evolutionary groups with distinct substrate preferences. The webserver scans whole proteomes and graphically displays which proteins are identified as NAT/NCS2, to which evolutionary groups and subgroups they belong to, and which conserved motifs they have. For key subgroups and motifs, the server displays annotated information from published crystal-structures and mutational studies pointing to key functional amino acids that may help experts assess the transport capability of the target sequences. The server is 100% accurate in detecting NAT/NCS2 family members. We also used the server to analyze 9,109 prokaryotic proteomes and identified Clostridia, Bacilli, β- and γ-Proteobacteria, Actinobacteria, and Fusobacteria as the taxa with the largest number of NAT/NCS2 transporters per proteome. An analysis of 120 representative eukaryotic proteomes also demonstrates the server's capability of correctly analyzing this major lineage, with plants emerging as the group with the highest number of NAT/NCS2 members per proteome.
Collapse
Affiliation(s)
- A Chaliotis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - P Vlastaridis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - C Ntountoumi
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - M Botou
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - V Yalelis
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - P Lazou
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - E Tatsaki
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - D Mossialos
- Molecular Bacteriology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - S Frillingos
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - G D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| |
Collapse
|