1
|
Pal M, Das D, Pandey M. Understanding genetic variations associated with familial breast cancer. World J Surg Oncol 2024; 22:271. [PMID: 39390525 PMCID: PMC11465949 DOI: 10.1186/s12957-024-03553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Breast cancer is the most frequent cancer among women. Genetics are the main risk factor for breast cancer. Statistics show that 15-25% of breast cancers are inherited among those with cancer-prone relatives. BRCA1, BRCA2, TP53, CDH1, PTEN, and STK11 are the most frequent genes for familial breast cancer, which occurs 80% of the time. In rare situations, moderate-penetrance gene mutations such CHEK2, BRIP1, ATM, and PALB2 contribute 2-3%. METHODS A search of the PubMed database was carried out spanning from 2005 to July 2024, yielding a total of 768 articles that delve into the realm of familial breast cancer, concerning genes and genetic syndromes. After exclusion 150 articles were included in the final review. RESULTS We report on a set of 20 familial breast cancer -associated genes into high, moderate, and low penetrance levels. Additionally, 10 genetic disorders were found to be linked with familial breast cancer. CONCLUSION Familial breast cancer has been linked to several genetic diseases and mutations, according to studies. Screening for genetic disorders is recommended by National Comprehensive Cancer Network recommendations. Evaluation of breast cancer candidate variations and risk loci may improve individual risk assessment. Only high- and moderate-risk gene variations have clinical guidelines, whereas low-risk gene variants require additional investigation. With increasing use of NGS technology, more linkage with rare genes is being discovered.
Collapse
Affiliation(s)
- Manjusha Pal
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Doutrina Das
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Chahat, Nainwal N, Murti Y, Yadav S, Rawat P, Dhiman S, Kumar B. Advancements in targeting tumor suppressor genes (p53 and BRCA 1/2) in breast cancer therapy. Mol Divers 2024:10.1007/s11030-024-10964-z. [PMID: 39152355 DOI: 10.1007/s11030-024-10964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Globally, among numerous cancer subtypes, breast cancer (BC) is one of the most prevalent forms of cancer affecting the female population. A female's family history significantly increases her risk of developing breast cancer. BC is caused by aberrant breast cells that proliferate and develop into tumors. It is estimated that 5-10% of breast carcinomas are inherited and involve genetic mutations that ensure the survival and prognosis of breast cancer cells. The most common genetic variations are responsible for hereditary breast cancer but are not limited to p53, BRCA1, and BRCA2. BRCA1 and BRCA2 are involved in genomic recombination, cell cycle monitoring, programmed cell death, and transcriptional regulation. When BRCA1 and 2 genetic variations are present in breast carcinoma, p53 irregularities become more prevalent. Both BRCA1/2 and p53 genes are involved in cell cycle monitoring. The present article discusses the current status of breast cancer research, spotlighting the tumor suppressor genes (BRCA1/2 and p53) along with structural activity relationship studies, FDA-approved drugs, and several therapy modalities for treating BC. Breast cancer drugs, accessible today in the market, have different side effects including anemia, pneumonitis, nausea, lethargy, and vomiting. Thus, the development of novel p53 and BRCA1/2 inhibitors with minimal possible side effects is crucial. We have covered compounds that have been examined subsequently (2020 onwards) in this overview which may be utilized as lead compounds. Further, we have covered mechanistic pathways to showcase the critical druggable targets and clinical and post-clinical drugs targeting them for their utility in BC.
Collapse
Affiliation(s)
- Chahat
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premanagar, Dehradun, 248007, Uttarakhand, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Savita Yadav
- IES Institute of Technology and Management, IES University, Bhopal, 462044, Madhya Pradesh, India
| | - Pramod Rawat
- Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University Clement Town, Dehradun, 248002, India
| | - Sonia Dhiman
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India.
| |
Collapse
|
3
|
Bhat SA, Kumar V, Dhanjal DS, Gandhi Y, Mishra SK, Singh S, Webster TJ, Ramamurthy PC. Biogenic nanoparticles: pioneering a new era in breast cancer therapeutics-a comprehensive review. DISCOVER NANO 2024; 19:121. [PMID: 39096427 PMCID: PMC11297894 DOI: 10.1186/s11671-024-04072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Breast cancer, a widespread malignancy affecting women globally, often arises from mutations in estrogen/progesterone receptors. Conventional treatments like surgery, radiotherapy, and chemotherapy face limitations such as low efficacy and adverse effects. However, nanotechnology offers promise with its unique attributes like targeted delivery and controlled drug release. Yet, challenges like poor size distribution and environmental concerns exist. Biogenic nanotechnology, using natural materials or living cells, is gaining traction for its safety and efficacy in cancer treatment. Biogenic nanoparticles synthesized from plant extracts offer a sustainable and eco-friendly approach, demonstrating significant toxicity against breast cancer cells while sparing healthy ones. They surpass traditional drugs, providing benefits like biocompatibility and targeted delivery. Thus, this current review summarizes the available knowledge on breast cancer (its types, stages, histopathology, symptoms, etiology and epidemiology) with the importance of using biogenic nanomaterials as a new and improved therapy. The novelty of this work lies in its comprehensive examination of the challenges and strategies for advancing the industrial utilization of biogenic metal and metal oxide NPs. Additionally; it underscores the potential of plant-mediated synthesis of biogenic NPs as effective therapies for breast cancer, detailing their mechanisms of action, advantages, and areas for further research.
Collapse
Affiliation(s)
- Shahnawaz Ahmad Bhat
- Jamia Milia Islamia, New Delhi, 110011, India
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India.
| | | | - Yashika Gandhi
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India
| | - Sujeet K Mishra
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India
| | | | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Program in Materials Science, UFPI, Teresina, Brazil
| | | |
Collapse
|
4
|
Hassan AN, Mustafa MS. Breast Cancer High-Penetrance Genes BRCA1 and BRCA2 Mutations Using Next-Generation Sequencing Among Iraqi Kurdish Women. Cureus 2024; 16:e62160. [PMID: 38863777 PMCID: PMC11166091 DOI: 10.7759/cureus.62160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/13/2024] Open
Abstract
Background BRCA1 and BRCA2 genes are the main high-penetrance genes that are responsible for most cases of inherited breast cancer. The present study aimed to detect the frequencies of inherited breast cancer caused by BRCA1 and BRCA2 genes among Kurdish breast cancer patients, including all the exome of these two genes, using next-generation sequencing (NGS). Methodology Seventy women who were diagnosed with breast cancer and registered at Nanakali Hospital in Erbil, Iraq, were included. Blood samples were collected for molecular testing (polymerase chain reaction (PCR)) targeting all exomes of BRCA1 and BRCA2 genes. All exome regions are sequenced by NGS using the Miseq system (Illumina Inc., San Diego, CA). Obtained data were visualized using Integrative Genomics Viewer (IGV 2.3 Software, Broad Institute, Cambridge, MA). Data were interpreted based on the National Center for Biotechnology Information (NCBI), Clinically Relevant Variation (ClinVar) archives, and other databases. Results Among 70 samples, more than forty-two variants have been detected, 20 on BRCA1 and 22 on BRCA2. Regarding clinical significance, six (14.28%) variants were pathogenic, four of them on the BRCA1 gene, which were: c.3607C>T, c.3544C>T, c.68_69del, and c.224_227delAAAG, and two pathogenic variants were on BRCA2 gene: c.100G>T, and c.1813delA. Also, two (4.76%) variants were conflict interpretations of pathogenicity, one (2.38%) was a variant of uncertain significant VUS, and the rest 29 (69%) variants were benign. In addition, four new variants (three in BRCA1 and one in BRCA2 gene), never previously reported, were identified. Conclusions In conclusion, analyzing the BRCA1/2 genes provide a better prediction for the risk of developing breast cancer in the future. Variant types and frequencies differ among different populations and ethnicities, the common mutations worldwide may not be prevalent in the Kurdish population. The current research findings will be useful for future screening studies of these two genes in the Kurdish population.
Collapse
Affiliation(s)
- Ahmad N Hassan
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, IRQ
| | - Mustafa S Mustafa
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, IRQ
| |
Collapse
|
5
|
Zarghami A, Mirmalek SA. Differentiating Primary and Recurrent Lesions in Patients with a History of Breast Cancer: A Comprehensive Review. Galen Med J 2024; 13:1-18. [PMID: 39224544 PMCID: PMC11368482 DOI: 10.31661/gmj.v13i.3340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/01/2023] [Accepted: 10/25/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer (BC) recurrence remains a concerning issue, requiring accurate identification and differentiation from primary lesions for optimal patient management. This comprehensive review aims to summarize and evaluate the current evidence on methods to distinguish primary breast tumors from recurrent lesions in patients with a history of BC. Also, we provide a comprehensive understanding of the different imaging techniques, including mammography, ultrasound, magnetic resonance imaging, and positron emission tomography, highlighting their diagnostic accuracy, limitations, and potential integration. In addition, the role of various biopsy modalities and molecular markers was explored. Furthermore, the potential role of liquid biopsy, circulating tumor cells, and circulating tumor DNA in differentiating between primary and recurrent BC was emphasized. Finally, it addresses emerging diagnostic modalities, such as radiomic analysis and artificial intelligence, which show promising potential in enhancing diagnostic accuracy. Through comprehensive analysis and review of the available literature, the current study provides an up-to-date understanding of the current state of knowledge, challenges, and future directions in accurately distinguishing between primary and recurrent breast lesions in patients with a history of BC.
Collapse
Affiliation(s)
- Anita Zarghami
- Department of Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Abbas Mirmalek
- Department of Surgery, Tehran Medical Sciences, Islamic Azad University, Tehran,
Iran
| |
Collapse
|
6
|
Alganmi N, Bashanfar A, Alotaibi R, Banjar H, Karim S, Mirza Z, Abusamra H, Al-Attas M, Turkistany S, Abuzenadah A. Uncovering hidden genetic risk factors for breast and ovarian cancers in BRCA-negative women: a machine learning approach in the Saudi population. PeerJ Comput Sci 2024; 10:e1942. [PMID: 38660159 PMCID: PMC11042021 DOI: 10.7717/peerj-cs.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024]
Abstract
Breast and ovarian cancers are prevalent worldwide, with genetic factors such as BRCA1 and BRCA2 mutations playing a significant role. However, not all patients carry these mutations, making it challenging to identify risk factors. Researchers have turned to whole exome sequencing (WES) as a tool to identify genetic risk factors in BRCA-negative women. WES allows the sequencing of all protein-coding regions of an individual's genome, providing a comprehensive analysis that surpasses traditional gene-by-gene sequencing methods. This technology offers efficiency, cost-effectiveness and the potential to identify new genetic variants contributing to the susceptibility to the diseases. Interpreting WES data for disease-causing variants is challenging due to its complex nature. Machine learning techniques can uncover hidden genetic-variant patterns associated with cancer susceptibility. In this study, we used the extreme gradient boosting (XGBoost) and random forest (RF) algorithms to identify BRCA-related cancer high-risk genes specifically in the Saudi population. The experimental results exposed that the RF method scored superior performance with an accuracy of 88.16% and an area under the receiver-operator characteristic curve of 0.95. Using bioinformatics analysis tools, we explored the top features of the high-accuracy machine learning model that we built to enhance our knowledge of genetic interactions and find complex genetic patterns connected to the development of BRCA-related cancers. We were able to identify the significance of HLA gene variations in these WES datasets for BRCA-related patients. We find that immune response mechanisms play a major role in the development of BRCA-related cancer. It specifically highlights genes associated with antigen processing and presentation, such as HLA-B, HLA-A and HLA-DRB1 and their possible effects on tumour progression and immune evasion. In summary, by utilizing machine learning approaches, we have the potential to aid in the development of precision medicine approaches for early detection and personalized treatment strategies.
Collapse
Affiliation(s)
- Nofe Alganmi
- Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arwa Bashanfar
- Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Alotaibi
- Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haneen Banjar
- Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zeenat Mirza
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba Abusamra
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal Al-Attas
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shereen Turkistany
- Center of Innovation Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Jin Y, Wang L, Jin C, Zhang N, Shimizu S, Xiao W, Guo C, Liu X, Si H. A Novel Inhibitor of Poly( ADP- Ribose) Polymerase-1 Inhibits Proliferation of a BRCA-Deficient Breast Cancer Cell Line via the DNA Damage- Activated cGAS-STING Pathway. Chem Res Toxicol 2024; 37:561-570. [PMID: 38534178 DOI: 10.1021/acs.chemrestox.3c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Loss-of-function mutations in the Breast Cancer Susceptibility Gene (BRCA1 and BRCA2) are often detected in patients with breast cancer. Poly(ADP-ribose) polymerase-1 (PARP1) plays a key role in the repair of DNA strand breaks, and PARP inhibitors have been shown to induce highly selective killing of BRCA1/2-deficient tumor cells, a mechanism termed synthetic lethality. In our previous study, a novel PARP1 inhibitor─(E)-2-(2,3-dibromo-4,5-dimethoxybenzylidene)-N-(4-fluorophenyl) hydrazine-1-carbothioamide (4F-DDC)─was synthesized, which significantly inhibited PARP1 activity with an IC50 value of 82 ± 9 nM. The current study aimed to explore the mechanism(s) underlying the antitumor activity of 4F-DDC under in vivo and in vitro conditions. 4F-DDC was found to selectively inhibit the proliferation of BRCA mutant cells, with highly potent effects on HCC-1937 (BRCA1-/-) cells. Furthermore, 4F-DDC was found to induce apoptosis and G2/M cell cycle arrest in HCC-1937 cells. Interestingly, immunofluorescence and Western blot results showed that 4F-DDC induced DNA double strand breaks and further activated the cGAS-STING pathway in HCC-1937 cells. In vivo analysis results revealed that 4F-DDC inhibited the growth of HCC-1937-derived tumor xenografts, possibly via the induction of DNA damage and activation of the cGAS-STING pathway. In summary, the current study provides a new perspective on the antitumor mechanism of PARP inhibitors and showcases the therapeutic potential of 4F-DDC in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yonglong Jin
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lijie Wang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chengxue Jin
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Na Zhang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shosei Shimizu
- Department of Radiotherapy, Yizhou Tumor Hospital, Zhuozhou 072750, China
- Department of Radiotherapy, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chuanlong Guo
- Department of Pharmacy, Qingdao University of Science and Technology, Qingdao 266041, China
| | - Xiguang Liu
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongzong Si
- School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
8
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
9
|
An J, McDougall J, Lin Y, Lu SE, Walters ST, Heidt E, Stroup A, Paddock L, Grumet S, Toppmeyer D, Kinney AY. Randomized trial promoting cancer genetic risk assessment when genetic counseling cost removed: 1-year follow-up. JNCI Cancer Spectr 2024; 8:pkae018. [PMID: 38490263 PMCID: PMC11006111 DOI: 10.1093/jncics/pkae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
PURPOSE Cancer genetic risk assessment (CGRA) is recommended for women with ovarian and high-risk breast cancer. However, the underutilization of CGRA has long been documented, and cost has been a major barrier. In this randomized controlled trial, a tailored counseling and navigation (TCN) intervention significantly improved CGRA uptake at 6-month follow-up, compared with targeted print (TP) and usual care (UC). We aimed to examine the effect of removing genetic counseling costs on CGRA uptake by 12 months. METHODS We recruited racially and geographically diverse women with breast and ovarian cancer from cancer registries in Colorado, New Jersey, and New Mexico. Participants assigned to TCN received telephone-based psychoeducation and navigation. After 6 months, the trial provided free genetic counseling to participants in all arms. RESULTS At 12 months, more women in TCN obtained CGRA (26.6%) than those in TP (11.0%; odds ratio [OR] = 2.77, 95% confidence interval [CI] = 1.56 to 4.89) and UC (12.2%; OR = 2.46, 95% CI = 1.41 to 4.29). There were no significant differences in CGRA uptake between TP and UC. The Kaplan-Meier curve shows that the divergence of cumulative incidence slopes (TCN vs UC, TCN vs TP) appears primarily within the initial 6 months. CONCLUSION TCN significantly increased CGRA uptake at the 12-month follow-up. Directly removing the costs of genetic counseling attenuated the effects of TCN, highlighting the critical enabling role played by cost coverage. Future policies and interventions should address multilevel cost-related barriers to expand patients' access to CGRA. TRIAL REGISTRATION This trial was registered with the NIH clinical trial registry, clinicaltrials.gov, NCT03326713. https://clinicaltrials.gov/ct2/show/NCT03326713.
Collapse
Affiliation(s)
- Jinghua An
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | - Yong Lin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Shou-En Lu
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Scott T Walters
- University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Emily Heidt
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Antoinette Stroup
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Lisa Paddock
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Sherry Grumet
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | - Anita Y Kinney
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Rutgers University School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
10
|
Panahandeh AR, Delashoub M, Aval SF. The effect of human umbilical cord mesenchymal stem cells conditioned medium combined with tamoxifen drug on BRCA1 and BRCA2 expression in breast cancer mouse models. Mol Biol Rep 2024; 51:241. [PMID: 38300337 DOI: 10.1007/s11033-023-08926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/24/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND A growing number of studies has indicated that the expression of Breast Cancer Susceptibility Genes 1 (BRCA1) and BRCA2 contribute to the resistance to DNA-damaging chemotherapies. Tamoxifen induces tumor cell death by suppressing estrogen receptor (ER) signaling and inducing DNA damage, and BRCA1 upregulation causes Tamoxifen chemoresistance in breast cancer cells. Consequently, this research study aimed to investigate the possible therapeutic effect of Human Umbilical Cord Mesenchymal Stem Cells Conditioned Medium (UCMSCs-CM) on sensitizing breast cancer cells to Tamoxifen by regulating BRCA1 and BRCA2 expression in vivo. METHODS Forty female mice, 4-8 weeks old, with weight of 150 g, were used for this study. Mouse 4T1 breast tumor models were established and then treated with UCMSCs-CM and Tamoxifen alone or in combination. After 10 days, the tumor masses were collected and the expression levels of BRCA1 and BRCA2 were evaluated using qRT-PCR assay. RESULTS The results obtained from qRT-PCR assay illustrated that UCMSCs-CM, either alone or in combination with Tamoxifen, significantly downregulated the mRNA expression levels of BRCA1 in breast cancer mouse models. However, both UCMSCs-CM and Tamoxifen indicated no statistically significant impact on BRCA2 mRNA expression compared to controls. CONCLUSION Our findings evidenced that UCMSCs-CM could be considered as a potential therapeutic option to modulate Tamoxifen chemosensitivity by regulating BRCA1 in breast cancer.
Collapse
Affiliation(s)
- Ahmad Reza Panahandeh
- Department of Basic Science, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Masoud Delashoub
- Department of Basic Science, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
- Department of basic science, Biotechnology Research Centre, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Sedigheh Fekri Aval
- Department of Basic Science, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
11
|
Akhtar MF, Afzaal A, Saleem A, Roheel A, Khan MI, Imran M. A comprehensive review on the applications of ferrite nanoparticles in the diagnosis and treatment of breast cancer. Med Oncol 2024; 41:53. [PMID: 38198041 DOI: 10.1007/s12032-023-02277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Various conventional treatments including endocrine therapy, radiotherapy, surgery, and chemotherapy have been used for several decades to treat breast cancer; however, these therapies exhibit various life-threatening and debilitating adverse effects in patients. Additionally, combination therapies are required for prompt action as well as to prevent drug resistance toward standard breast cancer medications. Ferrite nanoparticles (NPs) are increasingly gaining momentum for their application in the diagnosis and treatment of breast cancer. Spinel ferrites are particularly used against breast cancer and have shown in vitro and in vivo better efficacy as compared to conventional cancer therapies. Magnetic resonance imaging contrast agents, magnetic particle imaging tracers, cell separation, and immune assays are some aspects related to the diagnosis of breast cancer against which different ferrite NPs have been successfully evaluated. Moreover, citrate-coated nickel ferrite, Mg/Zn ferrites, poly amidoamine dendrimers, cobalt ferrites, graphene oxide cobalt ferrites, doxorubicin functionalized cobalt ferrites, chitosan-coated zinc ferrites, PEG-coated cobalt ferrite, and copper ferrite NPs have demonstrated antiproliferative action against different breast cancer cells. Oxaliplatin-loaded polydopamine/BSA-copper ferrites, functionalized cobalt and zinc ferrites of curcumin, oxaliplatin-copper ferrite NPs, tamoxifen/diosgenin encapsulated ZnO/Mn ferrites, and fabricated core-shell fibers of doxorubicin have been developed to increase the bioavailability and anti-proliferative effect and decrease the toxicity of anticancer drugs. These ferrite NPs showed an anticancer effect at different doses in the presence or absence of an external magnetic field. The present review covers the in-depth investigations of ferrite NPs for the diagnosis and management of breast cancer.
Collapse
Affiliation(s)
- Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Aysha Afzaal
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Amna Roheel
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| |
Collapse
|
12
|
Maioru OV, Radoi VE, Coman MC, Hotinceanu IA, Dan A, Eftenoiu AE, Burtavel LM, Bohiltea LC, Severin EM. Developments in Genetics: Better Management of Ovarian Cancer Patients. Int J Mol Sci 2023; 24:15987. [PMID: 37958970 PMCID: PMC10647767 DOI: 10.3390/ijms242115987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
The purpose of this article is to highlight the new advancements in molecular and diagnostic genetic testing and to properly classify all ovarian cancers. In this article, we address statistics, histopathological classification, molecular pathways implicated in ovarian cancer, genetic screening panels, details about the genes, and also candidate genes. We hope to bring new information to the medical field so as to better prevent and diagnose ovarian cancer.
Collapse
Affiliation(s)
- Ovidiu-Virgil Maioru
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| | - Viorica-Elena Radoi
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Madalin-Codrut Coman
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| | - Iulian-Andrei Hotinceanu
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| | - Andra Dan
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| | - Anca-Elena Eftenoiu
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| | - Livia-Mălina Burtavel
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| | - Laurentiu-Camil Bohiltea
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Emilia-Maria Severin
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| |
Collapse
|
13
|
Feng Z, Yang X, Tian M, Zeng N, Bai Z, Deng W, Zhao Y, Guo J, Yang Y, Zhang Z, Yang Y. BRCA genes as candidates for colorectal cancer genetic testing panel: systematic review and meta-analysis. BMC Cancer 2023; 23:807. [PMID: 37644384 PMCID: PMC10464413 DOI: 10.1186/s12885-023-11328-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Breast cancer susceptibility gene (BRCA) mutation carriers are at an increased risk for breast, ovarian, prostate and pancreatic cancers. However, the role of BRCA is unclear in colorectal cancer; the results regarding the association between BRCA gene mutations and colorectal cancer risk are inconsistent and even controversial. This study aimed to investigate whether BRCA1 and BRCA2 gene mutations are associated with colorectal cancer risk. METHODS In this systematic review, we searched PubMed/MEDLINE, Embase and Cochrane Library databases, adhering to PRISMA guidelines. Study quality was assessed using the Newcastle-Ottawa Scale (NOS). Unadjusted odds ratios (ORs) were used to estimate the probability of Breast Cancer Type 1 Susceptibility gene (BRCA1) and Breast Cancer Type 2 Susceptibility gene (BRCA2) mutations in colorectal cancer patients. The associations were evaluated using fixed effect models. RESULTS Fourteen studies were included in the systematic review. Twelve studies, including seven case-control and five cohort studies, were included in the meta-analysis. A significant increase in the frequency of BRCA1 and BRCA2 mutations was observed in patients with colorectal cancer [OR = 1.34, 95% confidence interval (CI) = 1.02-1.76, P = 0.04]. In subgroup analysis, colorectal cancer patients had an increased odds of BRCA1 (OR = 1.48, 95% CI = 1.10-2.01, P = 0.01) and BRCA2 (OR = 1.56, 95% CI = 1.06-2.30, P = 0.02) mutations. CONCLUSIONS BRCA genes are one of the genes that may increase the risk of developing colorectal cancer. Thus, BRCA genes could be potential candidates that may be included in the colorectal cancer genetic testing panel.
Collapse
Affiliation(s)
- Zhewen Feng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Xiaobao Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Mingwei Tian
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Na Zeng
- School of Public Health, Peking University, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Yanyan Zhao
- MyGene Diagnostics Co., Ltd, Guangzhou, China
| | - Jianru Guo
- MyGene Diagnostics Co., Ltd, Guangzhou, China
| | - Yingchi Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China
| | - Yun Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95, Yong An Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
14
|
Dibble KE, Connor AE. Evaluation of disparities in perceived healthcare discrimination among BRCA1/2-positive women from medically underserved populations. Women Health 2023; 63:539-550. [PMID: 37461380 PMCID: PMC10372883 DOI: 10.1080/03630242.2023.2237610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
The current study evaluated associations between disparities relating to race/ethnicity, poverty status, educational status, and odds of experiencing healthcare discrimination among women with BRCA1/2 mutations. We conducted a cross-sectional study of United States (US)-based women (18+ years) who have tested positive for BRCA1/2 mutations within the past 5 years and who identify with one or more medically underserved populations. 211 women were recruited from BRCA1/2-oriented support groups and completed an online survey. Adjusted odds ratios (aORs) and 95 percent confidence intervals (CIs) were estimated using multivariable logistic regression models for associations between race/ethnicity, poverty status, education, and perceived healthcare discrimination adjusting for covariates. 182 women were included (31.3 percent were cancer survivors). Most were NHW (67.2 percent) and younger than 50 years (83.2 percent). Racial/ethnic minorities were 2.6 times more likely to report receiving poorer service than NHW women (95 percent CI, 1.26-5.33, p = .01). Associations with poverty status, education, and healthcare discrimination outcomes were not statistically significant. Improving patient-provider interactions that can contribute to medical mistrust should become a priority for the care of high-risk US minority women with BRCA1/2 mutations.
Collapse
Affiliation(s)
- Kate E Dibble
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, E6133, Baltimore MD 21205, USA
| | - Avonne E Connor
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, E6133, Baltimore MD 21205, USA
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore MD 21205, USA
| |
Collapse
|
15
|
Neves Rebello Alves L, Dummer Meira D, Poppe Merigueti L, Correia Casotti M, do Prado Ventorim D, Ferreira Figueiredo Almeida J, Pereira de Sousa V, Cindra Sant'Ana M, Gonçalves Coutinho da Cruz R, Santos Louro L, Mendonça Santana G, Erik Santos Louro T, Evangelista Salazar R, Ribeiro Campos da Silva D, Stefani Siqueira Zetum A, Silva Dos Reis Trabach R, Imbroisi Valle Errera F, de Paula F, de Vargas Wolfgramm Dos Santos E, Fagundes de Carvalho E, Drumond Louro I. Biomarkers in Breast Cancer: An Old Story with a New End. Genes (Basel) 2023; 14:1364. [PMID: 37510269 PMCID: PMC10378988 DOI: 10.3390/genes14071364] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is the second most frequent cancer in the world. It is a heterogeneous disease and the leading cause of cancer mortality in women. Advances in molecular technologies allowed for the identification of new and more specifics biomarkers for breast cancer diagnosis, prognosis, and risk prediction, enabling personalized treatments, improving therapy, and preventing overtreatment, undertreatment, and incorrect treatment. Several breast cancer biomarkers have been identified and, along with traditional biomarkers, they can assist physicians throughout treatment plan and increase therapy success. Despite the need of more data to improve specificity and determine the real clinical utility of some biomarkers, others are already established and can be used as a guide to make treatment decisions. In this review, we summarize the available traditional, novel, and potential biomarkers while also including gene expression profiles, breast cancer single-cell and polyploid giant cancer cells. We hope to help physicians understand tumor specific characteristics and support decision-making in patient-personalized clinical management, consequently improving treatment outcome.
Collapse
Affiliation(s)
- Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Diego do Prado Ventorim
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (Ifes), Cariacica 29150-410, ES, Brazil
| | - Jucimara Ferreira Figueiredo Almeida
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
| | - Valdemir Pereira de Sousa
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Marllon Cindra Sant'Ana
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
| | - Rahna Gonçalves Coutinho da Cruz
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, ES, Brazil
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, ES, Brazil
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória 29027-502, ES, Brazil
| | - Rhana Evangelista Salazar
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Danielle Ribeiro Campos da Silva
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Aléxia Stefani Siqueira Zetum
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Raquel Silva Dos Reis Trabach
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
| | - Flávia Imbroisi Valle Errera
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Flávia de Paula
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Eldamária de Vargas Wolfgramm Dos Santos
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, RJ, Brazil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| |
Collapse
|
16
|
Yan S, Imam M. Progress and prospects in research and clinical practice of hormone receptor-positive, HER-2-negative breast cancer with BRCA1/2 mutations. Discov Oncol 2023; 14:110. [PMID: 37351713 PMCID: PMC10290022 DOI: 10.1007/s12672-023-00732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023] Open
Abstract
Breast cancer (BC) is a heterogeneous disease that is the most common cancer in women worldwide. However, precise subtyping and corresponding treatments have improved patient outcomes. Hormone receptor (HR)-positive, human epidermal growth factor receptor type 2 (HER2)-negative (HR+/HER2-) BC with BRCA1 and/or BRCA2 mutations (BRCA1/2m) is a unique BC subset with dual drivers: homologous recombination deficiency and hormone receptor signaling. Wild-type BRCA1/2 suppresses estrogen receptor-mediated signaling. Loss-of-function mutations in BRCA1/2 release estrogen receptor suppression, leading to reduced sensitivity to endocrine therapy. Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) exert antitumor effects against this subtype and can be used in combination with endocrine therapy. Although PARPis have been evaluated in metastatic triple-negative breast cancer, their efficacy against HR+/HER2- BC has not been clearly established. The present review summarizes recent advances and prospects in the progress of the HR+/HER2-/BRCA1/2m subgroup. As such, this article provides theoretical guidance for future research and promotes the use of PARPis for the treatment of HR+/HER2-/BRCA1/2m BC.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| | - Murshid Imam
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| |
Collapse
|
17
|
Mustafa Karim A, Eun Kwon J, Ali T, Jang J, Ullah I, Lee YG, Won Park D, Park J, Woo Jeang J, Chan Kang S. Triple-negative breast cancer: epidemiology, molecular mechanisms, and modern vaccine-based treatment strategies. Biochem Pharmacol 2023; 212:115545. [PMID: 37044296 DOI: 10.1016/j.bcp.2023.115545] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Long-standing scarcity of efficacious treatments and tumor heterogeneity have contributed to triple-negative breast cancer (TNBC), a subtype with a poor prognosis and aggressive behavior that accounts for 10-15% of all new cases of breast cancer. TNBC is characterized by the absence of progesterone and estrogen receptor expression and lacks gene amplification or overexpression of HER2. Genomic sequencing has detected that the unique mutational profile of both the somatic and germline modifications in TNBC is staggeringly dissimilar from other breast tumor subtypes. The clinical utility of sequencing germline BRCA1/2 genes has been well established in TNBC. Nevertheless, reports regarding the penetrance and risk of other susceptibility genes are relatively scarce. Recurring mutations (e.g., TP53 and PI3KCA mutations) occur together with rare mutations in TNBC, and the shared effects of genomic modifications drive its progression. Given the heterogeneity and complexity of this disease, a clinical understanding of the genomic modifications in TNBC can pave an innovative way toward its therapy. In this review, we summarized the most recent discoveries associated with the underlying biology of developmental signaling pathways in TNBC. We also summarize the recent advancements in genetics and epidemiology and discuss state-of-the-art vaccine-based therapeutic strategies for TNBC that will enable tailored therapeutics.
Collapse
Affiliation(s)
- Asad Mustafa Karim
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, 17104, Republic of Korea.
| | - Jeong Eun Kwon
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Tanveer Ali
- Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Jinsoo Jang
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yeong-Geun Lee
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Dae Won Park
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Juha Park
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Jin Woo Jeang
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Se Chan Kang
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, 17104, Republic of Korea.
| |
Collapse
|
18
|
Clusan L, Ferrière F, Flouriot G, Pakdel F. A Basic Review on Estrogen Receptor Signaling Pathways in Breast Cancer. Int J Mol Sci 2023; 24:ijms24076834. [PMID: 37047814 PMCID: PMC10095386 DOI: 10.3390/ijms24076834] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Breast cancer is the most common cancer and the deadliest among women worldwide. Estrogen signaling is closely associated with hormone-dependent breast cancer (estrogen and progesterone receptor positive), which accounts for two-thirds of tumors. Hormone therapy using antiestrogens is the gold standard, but resistance to these treatments invariably occurs through various biological mechanisms, such as changes in estrogen receptor activity, mutations in the ESR1 gene, aberrant activation of the PI3K pathway or cell cycle dysregulations. All these factors have led to the development of new therapies, such as selective estrogen receptor degraders (SERDs), or combination therapies with cyclin-dependent kinases (CDK) 4/6 or PI3K inhibitors. Therefore, understanding the estrogen pathway is essential for the treatment and new drug development of hormone-dependent cancers. This mini-review summarizes current literature on the signalization, mechanisms of action and clinical implications of estrogen receptors in breast cancer.
Collapse
Affiliation(s)
- Léa Clusan
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - François Ferrière
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Gilles Flouriot
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Farzad Pakdel
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
19
|
Dibble KE, Connor AE. Residential Locale Is Associated with Disparities in Genetic Testing-Related Outcomes Among BRCA1/2-Positive Women. J Racial Ethn Health Disparities 2023; 10:718-729. [PMID: 35178668 PMCID: PMC8853067 DOI: 10.1007/s40615-022-01259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND While research on hereditary genetic testing for BRCA1/2 mutations continues to emerge, there remain unanswered questions regarding access to testing and cancer-related care. Our study determined the associations between race/ethnicity, residential locale, and genetic testing provider and related outcomes among US women with BRCA1/2 genetic mutations. METHODS One hundred ninety-three BRCA1/2-positive women from vulnerable health backgrounds were recruited via private national Facebook BRCA1/2-oriented support groups and completed an online survey. Adjusted odds ratios (aOR) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression for the associations between race/ethnicity, residential locale, and genetic testing-related outcomes. RESULTS Women ranged in age (18-75, M = 39.5, SD = 10.7), and most were non-Hispanic white (66.3%) and lived in a suburban locale (54.9%). Women living in suburban areas were significantly less likely (aOR, .369, 95% CI, .177-.771) to receive behavioral referrals after genetic testing compared to those living in an urban locale. Women living in rural areas and suburban areas were 4.72 times more likely (95% CI, 1.48-15.1, p = .009) and 2.61 times more likely (95% CI, 1.05-6.48, p = .038), respectively, to receive genetic testing from a primary care provider versus private genetic testing office/hospital compared to women in urban locales. Associations between race/ethnicity and genetic testing outcomes were not statistically significant. Residential locale did not predict the odds of undergoing surgery for risk reduction or surveillance for early detection. CONCLUSION Our study identifies disparities in genetic testing resources among women living in suburban and rural areas. These findings can be used to inform future care, research, and community resources that may impact services relating to genetic testing within these locales.
Collapse
Affiliation(s)
- Kate E Dibble
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| | - Avonne E Connor
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21205, USA
| |
Collapse
|
20
|
Katheeja MN, Das SP, Das R, Laha S. BRCA1 interactors, RAD50 and BRIP1, as prognostic markers for triple-negative breast cancer severity. Front Genet 2023; 14:1035052. [PMID: 36873936 PMCID: PMC9978165 DOI: 10.3389/fgene.2023.1035052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction: BRIP1 (BRCA1-interacting protein 1) is one of the major interacting partners of BRCA1, which plays an important role in repair by homologous recombination (HR). This gene is mutated in around 4% of cases of breast cancer; however, its mechanism of action is unclear. In this study, we presented the fundamental role of BRCA1 interactors BRIP1 and RAD50 in the development of differential severity in triple-negative breast cancer (TNBC) among various affected individuals. Methods: We have analyzed the expression of DNA repair-related genes in different BC cells using Real-time PCR and western blotting analysis and assessed changes in stemness property and proliferation through Immunophenotyping. We have performed cell cycle analysis to see the defect in checkpoints and also immunofluorescence assay to confirm the accumulation of gamma-H2AX and BRCA1 foci and subsequent incidence. We have performed a severity analysis using TCGA data sets for comparing the expression in MDA-MB-468 MDA-MB-231 and MCF7 cell line. Results: We showed that in some TNBC cell lines such as MDA-MB-231, the functioning of both BRCA1/TP53 is compromised. Furthermore, the sensing of DNA damage is affected. Due to less damage-sensing capability and low availability of BRCA1 at the damage sites, the repair by HR becomes inefficient, leading to more damage. Accumulation of damage sends a signal for over activation of NHEJ repair pathways. Over expressed NHEJ molecules with compromised HR and checkpoint conditions lead to higher proliferation and error-prone repair, which increases the mutation rate and corresponding tumour severity. The in-silico analysis of the TCGA datasets with gene expression in the deceased population showed a significant correlation of BRCA1 expression with overall survival (OS) in TNBCs (0.0272). The association of BRCA1 with OS became stronger with the addition of BRIP1 expression (0.000876**). Conclusion: The severity phenotypes were more in cells having compromised BRCA1-BRIP1 functioning. Since the OS is directly proportional to the extent of severity, the data analysis hints at the role of BRIP1 in controlling the severity of TNBC.
Collapse
Affiliation(s)
- Muhseena N Katheeja
- Yenepoya Research Centre, Yenepoya (Deemed to be) University, Mangalore, Karnataka, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be) University, Mangalore, Karnataka, India
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be) University, Mangalore, Karnataka, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be) University, Mangalore, Karnataka, India
| |
Collapse
|
21
|
Pourgholamali B, Sohrabi B, Salbi M, Akbari S, Rastan I, Sayaf M, Jalil AT, Kadhim MM, Sheervalilou R, Mehrzad N. Bioinformatic Analysis Divulged Novel Prognostic Circulating MicroRNAs and Their Potential Target Genes in Breast Cancer. Appl Biochem Biotechnol 2023; 195:283-297. [PMID: 36074234 DOI: 10.1007/s12010-022-04151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Breast cancer (BC) is both an inherited and environmental-based disease which is the leading cause of death among women. Early detection of BC can prevent invasion and metastasis in patients. Currently, researchers endeavor to find non-invasive biological markers from body fluids. Circulating non-coding RNAs such as microRNAs (miRNAs) can potentially be valuable prognostic and detective biomarkers. To identify novel miRNA-based biomarkers, we utilized bioinformatic tools. To reach this goal, the miRNA expression profiles of GSE31309, GSE 44,281, GSE98181, and GSE118782 were analyzed through a limma package of R. Target gene prediction of differentially expressed miRNAs, called differentially expressed miRNAs (DEMs), between samples of healthy individuals and BC patients was implemented through Multimir package of R. Functional enrichment analysis of predicted target genes through Enrich R (online database) revealed that most of the genes are enriched in the mitochondrial outer membrane for cellular component, intrinsic apoptotic signaling regulations for biological processes, transcription co-receptor activity for molecular functions, and dopaminergic synapse pathway. Furthermore, our survival analysis results revealed that miR-29c and mir-361 have the potential to serve as prognostic biomarkers.
Collapse
Affiliation(s)
- Babak Pourgholamali
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Behnoush Sohrabi
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Mandana Salbi
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | | | - Iman Rastan
- Department of Electronic and Electrical Engineering, Shiraz Azad University, Shiraz, Iran
| | - Masoud Sayaf
- Azad University Central Tehran Branch Faculty of Basic Sciences, Department of Cellular and Molecular Biology, Tehran, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq.,Department of Dentistry, Kut University College, Kut, Wasit, Iraq
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Nazanin Mehrzad
- Department of Biology, Science and Research Branch Islamic Azad university, Tehran, Iran.
| |
Collapse
|
22
|
Kaur SD, Chellappan DK, Aljabali AA, Tambuwala M, Dua K, Kapoor DN. Recent advances in cancer therapy using PARP inhibitors. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:241. [PMID: 36180646 DOI: 10.1007/s12032-022-01840-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
When DNA repair is inadequate it increases the chances of the genome becoming unstable and it undergoes a malignant mutation. The deficiency of DNA repair PARP proteins may be leveraged for cancer therapy by increasing genomic instability and causing massive DNA damage in cancer cells. DNA repair components are under increased demand in cancer cells because of the continuous replication of DNA. The oncogenic loss of BRCA and an inefficient DNA repair led to cancer cells being dependent on particular DNA repair pathways, like the Poly (ADP-ribose) polymerase pathway. Breast cancer gene 1 and 2 plays a crucial role in DNA repair and genome integrity explaining how BRCA1 and BRCA2 mutations raise the menace of cancer. PARP inhibitors inhibit the base exclusion repair pathway, resulting in the buildup of unrepaired single strand breaks, which cause inflated replication forks in the S phase and subsequently the development of damaging double stranded breaks. Cells having BRCA mutations are unable to repair DNA breaks, leading to apoptosis and eventually death of cancer cells. Numerous indicators, such as a lack of homologous recombination and a high degree of replication pressure, indicate that this therapy will be very effective. Combining PARP inhibitors with chemotherapy, an immune checkpoint inhibitor, and a targeted drug is an effective strategy for combating PARP inhibitors resistance. Several PARP-based combination approaches are in preclinical and clinical development. Various clinical trials are successfully completed and some are undergoing to evaluate the efficacy of these molecules. This review will describe the current views and clinical updates on PARP inhibitors.
Collapse
Affiliation(s)
- Simran Deep Kaur
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Alaa A Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarrmouk University, Irbid, 566, Jordan
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, England, UK
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, NSW, 2007, Australia
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| |
Collapse
|
23
|
The Differential Metabolic Signature of Breast Cancer Cellular Response to Olaparib Treatment. Cancers (Basel) 2022; 14:cancers14153661. [PMID: 35954325 PMCID: PMC9367310 DOI: 10.3390/cancers14153661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Breast cancer remains a leading cause of female cancer related mortality worldwide. Loss of genomic stability and dysregulation of cellular metabolism are well-recognized features of breast cancer, presenting an opportunity to study the drivers of breast cancer progression and resistance to chemotherapy. The overarching goal of this work is to perform combined analysis of DNA damage repair and cellular metabolism in response to olaparib treatment in a panel of breast cancer cell lines. By applying a combined untargeted metabolomics and molecular biology approach, our findings show dysregulation of amino acid metabolism and metabolic reprogramming from glycolysis to amino acid utilization to be a common feature in all breast cancer cell lines examined, some of which are consistent with findings from the analysis of clinical breast cancer tumours. Functional assessment of genetic alterations offers the scope to design new prognostic tools and inform the design of new chemotherapies or drug combinations. Abstract Metabolic reprogramming and genomic instability are key hallmarks of cancer, the combined analysis of which has gained recent popularity. Given the emerging evidence indicating the role of oncometabolites in DNA damage repair and its routine use in breast cancer treatment, it is timely to fingerprint the impact of olaparib treatment in cellular metabolism. Here, we report the biomolecular response of breast cancer cell lines with DNA damage repair defects to olaparib exposure. Following evaluation of olaparib sensitivity in breast cancer cell lines, we immunoprobed DNA double strand break foci and evaluated changes in cellular metabolism at various olaparib treatment doses using untargeted mass spectrometry-based metabolomics analysis. Following identification of altered features, we performed pathway enrichment analysis to measure key metabolic changes occurring in response to olaparib treatment. We show a cell-line-dependent response to olaparib exposure, and an increased susceptibility to DNA damage foci accumulation in triple-negative breast cancer cell lines. Metabolic changes in response to olaparib treatment were cell-line and dose-dependent, where we predominantly observed metabolic reprogramming of glutamine-derived amino acids and lipids metabolism. Our work demonstrates the effectiveness of combining molecular biology and metabolomics studies for the comprehensive characterisation of cell lines with different genetic profiles. Follow-on studies are needed to map the baseline metabolism of breast cancer cells and their unique response to drug treatment. Fused with genomic and transcriptomics data, such readout can be used to identify key oncometabolites and inform the rationale for the design of novel drugs or chemotherapy combinations.
Collapse
|
24
|
Ali A, Manzoor MF, Ahmad N, Aadil RM, Qin H, Siddique R, Riaz S, Ahmad A, Korma SA, Khalid W, Aizhong L. The Burden of Cancer, Government Strategic Policies, and Challenges in Pakistan: A Comprehensive Review. Front Nutr 2022; 9:940514. [PMID: 35938114 PMCID: PMC9355152 DOI: 10.3389/fnut.2022.940514] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 01/09/2023] Open
Abstract
Cancer is a severe condition characterized by uncontrolled cell division and increasing reported mortality and diagnostic cases. In 2040, an estimated 28.4 million cancer cases are expected to happen globally. In 2020, an estimated 19.3 million new cancer cases (18.1 million excluding non-melanoma skin cancer) had been diagnosed worldwide, with around 10.0 million cancer deaths. Breast cancer cases have increased by 2.26 million, lung cancer by 2.21 million, stomach by 1.089 million, liver by 0.96 million, and colon cancer by 1.93 million. Cancer is becoming more prevalent in Pakistan, with 19 million new cancer cases recorded in 2020. Food adulteration, gutkha, paan, and nutritional deficiencies are major cancer risk factors that interplay with cancer pathogenesis in this country. Government policies and legislation, cancer treatment challenges, and prevention must be revised seriously. This review presents the current cancer epidemiology in Pakistan to better understand cancer basis. It summarizes current cancer risk factors, causes, and the strategies and policies of the country against cancer.
Collapse
Affiliation(s)
- Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
- Food and Nutrition Society, Gilgit Baltistan, Pakistan
| | | | - Nazir Ahmad
- Department of Nutritional Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Hong Qin
- School of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sakhawat Riaz
- Department of Home Economics, Government College University Faisalabad, Faisalabad, Pakistan
| | - Arslan Ahmad
- Department of Home Economics, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig, Egypt
| | - Waseem Khalid
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Liu Aizhong
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
- *Correspondence: Liu Aizhong
| |
Collapse
|
25
|
De Francesco EM, Cirillo F, Vella V, Belfiore A, Maggiolini M, Lappano R. Triple-negative breast cancer drug resistance, durable efficacy, and cure: How advanced biological insights and emerging drug modalities could transform progress. Expert Opin Ther Targets 2022; 26:513-535. [PMID: 35761781 DOI: 10.1080/14728222.2022.2094762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) and often associated with poor survival outcomes. The backbone of current treatments for TNBC relies on chemotherapy; however, resistance to cytotoxic agents is a commonly encountered hurdle to overcome. AREAS COVERED : Current understanding on the mechanisms involved in TNBC chemoresistance is evaluated and novel potential actionable targets and recently explored modalities for carrying and delivering chemotherapeutics are highlighted. EXPERT OPINION : A comprehensive identification of both genomic and functional TNBC signatures is required for a more definite categorization of the patients in order to prevent insensitivity to chemotherapy and therefore realize the full potential of precision-medicine approaches. In this scenario, cell-line-derived xenografts (CDX), patient-derived xenografts (PDX), patient-derived orthotopic xenografts (PDOX) and patient-derived organoids (PDO) are indispensable experimental models for evaluating the efficacy of drug candidates and predicting the therapeutic response. The combination of increasingly sensitive "omics" technologies, computational algorithms and innovative drug modalities may accelerate the successful translation of novel candidate TNBC targets from basic research to clinical settings, thus contributing to reach optimal clinical output, with lower side effects and reduced resistance.
Collapse
Affiliation(s)
- Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
26
|
Sarhangi N, Hajjari S, Heydari SF, Ganjizadeh M, Rouhollah F, Hasanzad M. Breast cancer in the era of precision medicine. Mol Biol Rep 2022; 49:10023-10037. [PMID: 35733061 DOI: 10.1007/s11033-022-07571-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 01/02/2023]
Abstract
Breast cancer is a heterogeneous disorder with different molecular subtypes and biological characteristics for which there are diverse therapeutic approaches and clinical outcomes specific to any molecular subtype. It is a global health concern due to a lack of efficient therapy regimens that might be used for all disease subtypes. Therefore, treatment customization for each patient depending on molecular characteristics should be considered. Precision medicine for breast cancer is an approach to diagnosis, treatment, and prevention of the disease that takes into consideration the patient's genetic makeup. Precision medicine provides the promise of highly individualized treatment, in which each individual breast cancer patient receives the most appropriate diagnostics and targeted therapies based on the genetic profile of cancer. The knowledge about the molecular features and development of breast cancer treatment approaches has increased, which led to the development of new targeted therapeutics. Tumor genomic profiling is the standard of care for breast cancer that could contribute to taking steps to better management of malignancies. It holds great promise for accurate prognostication, prediction of response to common systemic therapies, and individualized monitoring of the disease. The emergence of targeted treatment has significantly enhanced the survival of patients with breast cancer and contributed to reducing the economic costs of the health system. In this review, we summarized the therapeutic approaches associated with the molecular classification of breast cancer to help the best treatment selection specific to the target patient.
Collapse
Affiliation(s)
- Negar Sarhangi
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Hajjari
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyede Fatemeh Heydari
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Ganjizadeh
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rouhollah
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
27
|
PARP-1 Expression and BRCA1 Mutations in Breast Cancer Patients' CTCs. Cancers (Basel) 2022; 14:cancers14071731. [PMID: 35406503 PMCID: PMC8996866 DOI: 10.3390/cancers14071731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Recent estimates have shown that approx. 70% of individuals with BRCA1 mutations will develop breast cancer by the age of 70. To make matters worse, breast cancer patients with BRCA1 mutations are more likely to have the more aggressive triple-negative breast cancer. PARPs, belong to a family of nuclear enzymes, which are involved in many cellular processes, including DNA repair. PARP inhibitors have been approved for the treatment of BRCA-mutated breast cancer. The aim of the study was the determination of PARP-1 expression in the context of the presence of BRCA1 mutations in circulating tumor cells of breast cancer patients. PARP-1 (nuclear) expression and BRCA1 mutations were mainly detected in triple negative breast cancer patients, and the latter were correlated with decreased survival. Our data suggest that PARP-1, in conjunction with BRCA1, could potentially be used as (a) biomarker(s) for patients’ stratification. Abstract BRCA1 and PARP are involved in DNA damage repair pathways. BRCA1 mutations have been linked to higher likelihood of triple negative breast cancer (TNBC). The aim of the study was to determine PARP-1 expression and BRCA1 mutations in circulating tumor cells (CTCs) of BC patients. Fifty patients were enrolled: 23 luminal and 27 TNBC. PARP expression in CTCs was identified by immunofluorescence. Genotyping was performed by PCR-Sanger sequencing in the same samples. PARP-1 expression was higher in luminal (61%) and early BC (54%), compared to TNBC (41%) and metastatic (33%) patients. In addition, PARP-1 distribution was mostly cytoplasmic in luminal patients (p = 0.024), whereas it was mostly nuclear in TNBC patients. In cytokeratin (CK)-positive patients, those with the CK+PARP+ phenotype had longer overall survival (OS, log-rank p = 0.046). Overall, nine mutations were detected; M1 and M2 were completely new and M4, M7 and M8 were characterized as pathogenic. M7 and M8 were predominantly found in metastatic TNBC patients (p = 0.014 and p = 0.002). Thus, PARP-1 expression and increased mutagenic burden in TNBC patients’ CTCs, could be used as an indicator to stratify patients regarding therapeutic approaches.
Collapse
|
28
|
Tran LTT, Dang NYT, Nguyen Le NT, Nguyen HT, Ho DV, Do TT, Tran MH, Nguyen TK, Pham PTV. In Silico and in Vitro Evaluation of Alkaloids from Goniothalamus elegans Ast. for Breast Cancer Treatment. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221088110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the leading cause of cancer mortality in women. In this study, liriodenine and lysicamine from Goniothalamus elegans Ast. were investigated for their anti-breast cancer activity based on their molecular interactions with three proteins related to breast cancer. Liriodenine had predicted binding affinities for BRCA1, BRCA2, and estrogen receptor alpha of −6.2, −7.9, and −8.3 kcal/mol, respectively. Lysicamine had predicted binding affinities of −5.8, −7.2, and 7.6 kcal/mol. To evaluate the biological activity of liriodenine and lysicamine, we studied their in vitro cytotoxic effects on MCF-7 cells. These alkaloids showed significant inhibitory effects with IC50 values of 33.31 and 70.03 µM. These results suggest that Goniothalamus elegans could be a promising medical plant for breast cancer treatment. Further studies are needed to understand the molecular mechanisms and improve the toxicity of liriodenine and lysicamine for clinical use.
Collapse
Affiliation(s)
- Linh Thuy Thi Tran
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Thua Thien Hue Province, Vietnam
| | - Nhi Yen Thi Dang
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Thua Thien Hue Province, Vietnam
| | - Nguyen Thao Nguyen Le
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Thua Thien Hue Province, Vietnam
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Thua Thien Hue Province, Vietnam
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Thua Thien Hue Province, Vietnam
| | - Thao Thi Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology, , Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Manh Hung Tran
- UDA-Institute of Applied Life Sciences (UDA-IALS), Dong A University, Da Nang city, Vietnam
- Scientific Management Department, Dong A University, Da Nang city, Vietnam
| | - Tan Khanh Nguyen
- UDA-Institute of Applied Life Sciences (UDA-IALS), Dong A University, Da Nang city, Vietnam
- Scientific Management Department, Dong A University, Da Nang city, Vietnam
| | - Phu Tran Vinh Pham
- Faculty of Medicine, Dong A University, Da Nang city, Vietnam
- UDA-Institute of Applied Life Sciences (UDA-IALS), Dong A University, Da Nang city, Vietnam
| |
Collapse
|
29
|
Dibble KE, Connor AE. Anxiety and depression among racial/ethnic minorities and impoverished women testing positive for BRCA1/2 mutations in the United States. Support Care Cancer 2022; 30:5769-5778. [PMID: 35344102 PMCID: PMC10083824 DOI: 10.1007/s00520-022-07004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To outline the association between race/ethnicity and poverty status and perceived anxiety and depressive symptomologies among BRCA1/2-positive United States (US) women to identify high-risk groups of mutation carriers from medically underserved backgrounds. METHODS A total of 211 BRCA1/2-positive women from medically underserved backgrounds were recruited through national Facebook support groups and completed an online survey. Adjusted odds ratios (aOR) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression for associations between race/ethnicity, poverty status, and self-reported moderate-to-severe anxiety and depressive symptoms. RESULTS Women ranged in age (18-75, M = 39.5, SD = 10.6). Most women were non-Hispanic white (NHW) (67.2%) and were not impoverished (76.7%). Hispanic women with BRCA1/2 mutations were 6.11 times more likely to report moderate-to-severe anxiety (95% CI, 2.16-17.2, p = 0.001) and 4.28 times more likely to report moderate-to-severe depressive symptoms (95% CI, 1.98-9.60, p < 0.001) than NHW women with these mutations. Associations were not statistically significant among other minority women. Women living in poverty were significantly less likely to report moderate-to-severe depressive symptoms than women not in poverty (aOR, 0.42, 95% CI, 0.18-0.95, p = 0.04). CONCLUSION Hispanic women with BRCA1/2 mutations from medically underserved backgrounds are an important population at increased risk for worse anxiety and depressive symptomology. Our findings among Hispanic women with BRCA1/2 mutations add to the growing body of literature focused on ethnic disparities experienced across the cancer control continuum.
Collapse
Affiliation(s)
- Kate E Dibble
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| | - Avonne E Connor
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21205, USA
| |
Collapse
|
30
|
Fu Z, Lin Z, Yang M, Li C. Cardiac Toxicity From Adjuvant Targeting Treatment for Breast Cancer Post-Surgery. Front Oncol 2022; 12:706861. [PMID: 35402243 PMCID: PMC8988147 DOI: 10.3389/fonc.2022.706861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most prevalent types of cancers worldwide, especially for females. Surgery is the preferred treatment for breast cancer, and various postoperative adjuvant therapies can be reasonably used according to different pathological characteristics, especially traditional radiotherapy, chemotherapy, and endocrine therapy. In recent years, targeting agent therapy has also become one of the selective breast cancer treatment strategies, including anti-HER-2 drugs, CDK4/6 inhibitor, poly ADP-ribose polymerase inhibitor, PI3K/AKT/mTOR pathway inhibitor, ER targeting drugs, and aromatase inhibitor. Because of the different pathologic mechanisms of these adjuvant therapies, each of the strategies may cause cardiotoxicity in clinic. The cardiac adverse events of traditional endocrine therapy, radiotherapy, and chemotherapy for breast cancer have been widely detected in clinic; however, the targeting therapy agents have been paid more attention with the extension of application. This review will summarize the cardiac toxicity of various adjuvant therapies for breast cancer, especially for targeting drug therapy.
Collapse
Affiliation(s)
- Zhenkun Fu
- Department of Immunology & Wu Lien-Teh Institute & Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, Harbin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Basic Medical College, Harbin Medical University, Harbin, China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Mao Yang
- Basic Medical College, Harbin Medical University, Harbin, China
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
31
|
Babu G, Bin Islam S, Khan MA. A review on the genetic polymorphisms and susceptibility of cancer patients in Bangladesh. Mol Biol Rep 2022; 49:6725-6739. [PMID: 35277785 DOI: 10.1007/s11033-022-07282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
Cancer is one of the major health burdens worldwide, and genetic polymorphisms in individuals are closely associated with cancer susceptibility. Like in many other developing countries, the risk of cancer is increasing among Bangladeshi population. Genetic polymorphisms in xenobiotic metabolic enzymes (CYP1A1, CYP2A6, CYP3A4, CYP3A5, NAT2, SULT1A), cell cycle regulatory proteins (TP53, HER2, MDM2, miR-218-2, TGFB), cell signaling protein (CDH1), DNA repair proteins (BRCA1, BRCA2, EXO1, RAD51, XRCC2, ECCR1, ERCC4, XPC, ERCC2), and others (HLA-DRB1, INSIG2, GCNT1P5) have been found to be associated with various cancers like cancers of breast, bladder, cervix, colon, lung, prostate, etc. in different studies with Bangladeshi population. In this review article, we have discussed these gene polymorphisms associated with cancers in the Bangladeshi population, and also made a comparison with other ethnic groups. This will probably be helpful in understanding drug effects, drug resistance, and personalized medicine in the population of this region.
Collapse
Affiliation(s)
- Golap Babu
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, 1342, Dhaka, Bangladesh
| | - Shad Bin Islam
- Bachelor in Medicine and Surgery Program, Affiliated hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, 646000, Luzhou, Sichuan, China.
| |
Collapse
|
32
|
DNA binding and cleavage, BRCA1 gene interaction, antiglycation and anticancer studies of transition metal complexes of sulfonamides. Mol Divers 2022; 26:3093-3113. [PMID: 35182295 DOI: 10.1007/s11030-021-10366-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
A series of 4-((4-methylphenylsulfonamido)methyl)cyclohexanecarboxylic acid (NaMSCCA) transition metal complexes [Cu(II), Zn(II), Ni(II), Mn(II), and Co(II)] have been synthesized by precipitation method. The characterization was done by physical techniques, FT-IR spectroscopy, mass spectrometry, and NMR spectroscopy. The molecular structures of nickel (II) AZ-3 and cobalt (II) AZ-5 complexes were determined by the X-ray diffraction technique and found to crystallize in the triclinic space group P-1. The coordination geometry around the central nickel (AZ-3) and cobalt (AZ-5) atoms was square planar bipyramidal. Molecular docking was performed with duplex DNA of sequence d(CGCGAATTCGCG)2 DNA to determine the probable binding mode of compounds. Then these synthesized compounds were used to perform DNA cleavage activity through the agarose gel electrophoresis method. Among the compounds, compounds AZ-1 and AZ-2 exhibited good nuclease activity. The DNA sequence of breast-cancer suppressor gene 1 (BRCA1) was amplified through PCR and interaction studies of compounds AZ-1 and AZ-2 were performed through gel electrophoresis and fluorescence emission spectroscopy. The expression analysis of the BRCA1 gene was also performed to quantify the expression relative fold change (2^-(∆∆CT)) after treatment with compounds. All synthesized compounds were evaluated for their antioxidant and antiglycation activities and AZ-2 exhibited excellent results. The molecular docking study of these compounds was performed against the protein structure of advanced glycation end products to support the experimental results. Anticancer activity of compounds was performed through MTT assay. Copper and zinc complexes depicted the highest anticancer activity against human breast adenocarcinoma (MCF7) and human corneal epithelial cell (HCEC) cell lines.
Collapse
|
33
|
Singh J, Sangwan N, Chauhan A, Sarma P, Prakash A, Medhi B, Avti PK. Screening and identification of phytochemical drug molecules against mutant BRCA1 receptor of breast cancer using computational approaches. Mol Cell Biochem 2022; 477:885-896. [PMID: 35067782 DOI: 10.1007/s11010-021-04338-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
The American Cancer Society claims that breast cancer is the second most significant cause of cancer-related death, with over one million women diagnosed each year. Breast cancer linked to the BRCA1 gene has a significant risk of mortality and recurrence and is susceptible to alteration or over-expression, which can lead to hereditary breast cancer. Given the shortage of effective and possibly curative treatments for breast cancer, the present study combined molecular and computational analysis to find prospective phytochemical substances that can suppress the mutant gene (BRCA1) that causes the disease. Virtual screening and Molecular docking approaches are utilized to find probable phytochemicals from the ZINC database. The 3D structure of mutant BRCA1 protein with the id 3PXB was extracted from the NCBI-PDB. Top 10 phytochemical compounds shortlisted based on molecular docking score between - 11.6 and - 13.0. Following the ADMET properties, only three (ZINC000085490903 = - 12.50, ZINC000085490832 = - 12.44, and ZINC000070454071 = - 11.681) of the 10 selected compounds have drug-like properties. The molecular dynamic simulation study of the top three potential phytochemicals showed stabilized RMSD and RMSF values as compared to the APO form of the BRCA1 receptor. Further, trajectory analysis revealed that approximately similar radius of gyration score tends to the compactness of complex structure, and principal component and cross-correlation analysis suggest that the residues move in a strong correlation. Thermostability of the target complex (B-factor) provides information on the stable energy minimized structure. The findings suggest that the top three ligands show potential as breast cancer inhibitors.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Sector -12, Chandigarh, 160012, India
| | - Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Sector -12, Chandigarh, 160012, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Sector -12, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Sector -12, Chandigarh, 160012, India.
| |
Collapse
|
34
|
Aksoy F, Tezcan Unlu H, Cecener G, Guney Eskiler G, Egeli U, Tunca B, Efendi Erdem E, Senol K, Gokgoz MS. Identification of CHEK2 germline mutations in BRCA1/2 and PALB2 negative breast and ovarian cancer patients. Hum Hered 2022; 87:000521369. [PMID: 34991090 DOI: 10.1159/000521369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The CHEK2 gene is known to be an important signal transducer involved in DNA repair, apoptosis, or cell cycle arrest in response to DNA damage. The mutations in this gene have been associated with a wide range of cancers, both sporadic and hereditary. Germline CHEK2 mutations are linked to an increased risk of breast cancer. Therefore, the aim of this study was to identify the prevalence of CHEK2 variants in BRCA1/2 and PALB2 negative early-onset patients with breast cancer and/or ovarian cancer in a Turkish population for the first time. METHODS The study included 95 patients with BRCA1/2 and PALB2 negative early-onset breast cancer and/or ovarian cancer and also 60 unaffected women. All the intron/exon boundaries and coding exons of CHEK2 were subjected to mutational analysis by heteroduplex analysis and DNA sequencing. RESULTS A total of 16 CHEK2 variants were found in breast cancer patients within the Turkish population. CHEK2 c.1100delC mutation studied in the CHEK2 gene most frequently was not detected in our study. The prevalence of variants of uncertain significance in CHEK2 was found to be 7.3% (n= 7) in BRCA1/2 and PALB2 mutation negative Turkish patients with early-onset breast and/or ovarian cancer. DISCUSSION/CONCLUSION The present study may shed light on alternative variations that could be significant for understanding the prevalence and clinical suitability of the CHEK2 gene.
Collapse
|
35
|
Zhao L, Cho WC, Luo JL. Exploring the patient-microbiome interaction patterns for pan-cancer. Comput Struct Biotechnol J 2022; 20:3068-3079. [PMID: 35782745 PMCID: PMC9233187 DOI: 10.1016/j.csbj.2022.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022] Open
Abstract
Cancer subtype-specific sets of microbiomes, making pan-cancer heterogeneity at the microbial level. Approximately 60% of the untreated cancer patients have experienced microbial composition changes in their tumor tissues. Colorectal cancer (CRC) was largely composed of two subtypes (S4 and S6) driven by different microbial profiles. The identified seven pan-cancer subtypes with 424 subtype-specific microbial signatures will help us find new therapeutic targets and better treatment strategies for cancer patients.
Microbes play important roles in human health and disease. Immunocompromised cancer patients are more vulnerable to getting microbial infections. Regions of hypoxia and acidic tumor microenvironment shape the microbial community diversity and abundance. Each cancer has its own microbiome, making cancer-specific sets of microbiomes. High-throughput profiling technologies provide a culture-free approach for microbial profiling in tumor samples. Microbial compositional data was extracted and examined from the TCGA unmapped transcriptome data. Biclustering, correlation, and statistical analyses were performed to determine the seven patient-microbe interaction patterns. These two-dimensional patterns consist of a group of microbial species that show significant over-representation over the 7 pan-cancer subtypes (S1-S7), respectively. Approximately 60% of the untreated cancer patients have experienced tissue microbial composition and functional changes between subtypes and normal controls. Among these changes, subtype S5 had loss of microbial diversity as well as impaired immune functions. S1, S2, and S3 had been enriched with microbial signatures derived from the Gammaproteobacteria, Actinobacteria and Betaproteobacteria, respectively. Colorectal cancer (CRC) was largely composed of two subtypes, namely S4 and S6, driven by different microbial profiles. S4 patients had increased microbial load, and were enriched with CRC-related oncogenic pathways. S6 CRC together with other cancer patients, making up almost 40% of all cases were classified into the S6 subtype, which not only resembled the normal control’s microbiota but also retained their original “normal-like” functions. Lastly, the S7 was a rare and understudied subtype. Our study investigated the pan-cancer heterogeneity at the microbial level. The identified seven pan-cancer subtypes with 424 subtype-specific microbial signatures will help us find new therapeutic targets and better treatment strategies for cancer patients.
Collapse
|
36
|
Fawzy A, Alqelaiti YA, Almatrafi MM, Almatrafi OM, Alqelaiti EA. Common Sensitive Prognostic Marker in Breast Cancer and their Clinical Significance: A Review Article. ARCHIVES OF PHARMACY PRACTICE 2022. [DOI: 10.51847/t8d3bp2l19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
37
|
Arendt LM. Divide and Conquer: Isolating Cell Populations to Investigate How Breast Cancer Risk Factors Alter the Breast Microenvironment. Methods Mol Biol 2022; 2471:271-282. [PMID: 35175603 DOI: 10.1007/978-1-0716-2193-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breast cancer is a multifactorial disease with risk factors that are fixed or modifiable. Understanding how these risk factors interact within breast tissue may provide insight into how to improve interventions or chemoprevention strategies to reduce breast cancer incidence. Here we describe methods to utilize breast tissue from patients with defined risk factors undergoing reduction mammoplasty or prophylactic mastectomy to isolate epithelial cells, stromal cells, adipocytes, and macrophages to investigate how risk factors impact distinct cell populations within breast tissue. Following enzymatic digestion of breast tissue, adipocyte-enriched, stromal cell, and epithelial organoid fractions can be isolated. Using antibody-conjugated beads, further cell populations, such as macrophages, can be isolated for molecular analysis. These methods can be adapted to sequentially isolate other cell populations based on specific cell surface markers and are useful for small-sized breast tissue specimens.
Collapse
Affiliation(s)
- Lisa M Arendt
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
38
|
Dastjerd NT, Valibeik A, Rahimi Monfared S, Goodarzi G, Moradi Sarabi M, Hajabdollahi F, Maniati M, Amri J, Samavarchi Tehrani S. Gene therapy: A promising approach for breast cancer treatment. Cell Biochem Funct 2021; 40:28-48. [PMID: 34904722 DOI: 10.1002/cbf.3676] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most prevalent malignancy and the second leading cause of death among women worldwide that is caused by numerous genetic and environmental factors. Hence, effective treatment for this type of cancer requires new therapeutic approaches. The traditional methods for treating this cancer have side effects, therefore so much research have been performed in last decade to find new methods to alleviate these problems. The study of the molecular basis of breast cancer has led to the introduction of gene therapy as an effective therapeutic approach for this cancer. Gene therapy involves sending genetic material through a vector into target cells, which is followed by a correction, addition, or suppression of the gene. In this technique, it is necessary to target tumour cells without affecting normal cells. In addition, clinical trial studies have shown that this approach is less toxic than traditional therapies. This study will review various aspects of breast cancer, gene therapy strategies, limitations, challenges and recent studies in this area.
Collapse
Affiliation(s)
- Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sobhan Rahimi Monfared
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Faezeh Hajabdollahi
- Department of Anatomical Sciences, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jamal Amri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Ghose A, Moschetta M, Pappas-Gogos G, Sheriff M, Boussios S. Genetic Aberrations of DNA Repair Pathways in Prostate Cancer: Translation to the Clinic. Int J Mol Sci 2021; 22:ijms22189783. [PMID: 34575947 PMCID: PMC8471942 DOI: 10.3390/ijms22189783] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. Due to the large-scale sequencing efforts, there is currently a better understanding of the genomic landscape of PC. The identification of defects in DNA repair genes has led to clinical studies that provide a strong rationale for developing poly (ADP-ribose) polymerase (PARP) inhibitors and DNA-damaging agents in this molecularly defined subset of patients. The identification of molecularly defined subgroups of patients has also other clinical implications; for example, we now know that carriers of breast cancer 2 (BRCA2) pathogenic sequence variants (PSVs) have increased levels of serum prostate specific antigen (PSA) at diagnosis, increased proportion of high Gleason tumors, elevated rates of nodal and distant metastases, and high recurrence rate; BRCA2 PSVs confer lower overall survival (OS). Distinct tumor PSV, methylation, and expression patterns have been identified in BRCA2 compared with non-BRCA2 mutant prostate tumors. Several DNA damage response and repair (DDR)-targeting agents are currently being evaluated either as single agents or in combination in patients with PC. In this review article, we highlight the biology and clinical implications of deleterious inherited or acquired DNA repair pathway aberrations in PC and offer an overview of new agents being developed for the treatment of PC.
Collapse
Affiliation(s)
- Aruni Ghose
- Barts Cancer Centre, Department of Medical Oncology, St. Bartholomew’s Hospital, Barts Health NHS Trust, W Smithfield, London EC1A 7BE, UK;
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Michele Moschetta
- CHUV, Lausanne University Hospital, Rue du Bugnon 21, CH-1011 Lausanne, Switzerland;
| | - George Pappas-Gogos
- Department of Surgery, University Hospital of Ioannina, 45111 Ioannina, Greece;
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
40
|
Hamdi Y, Mighri N, Boujemaa M, Mejri N, Ben Nasr S, Ben Rekaya M, Messaoud O, Bouaziz H, Berrazega Y, Rachdi H, Jaidane O, Daoud N, Zribi A, Ayari J, El Benna H, Labidi S, Ben Hassouna J, Haddaoui A, Rahal K, Benna F, Mrad R, Ben Ahmed S, Boussen H, Boubaker S, Abdelhak S. Identification of Eleven Novel BRCA Mutations in Tunisia: Impact on the Clinical Management of BRCA Related Cancers. Front Oncol 2021; 11:674965. [PMID: 34490083 PMCID: PMC8417726 DOI: 10.3389/fonc.2021.674965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Background Breast cancer is the world's most common cancer among women. It is becoming an increasingly urgent problem in low- and middle-income countries (LMICs) where a large fraction of women is diagnosed with advanced-stage disease and have no access to treatment or basic palliative care. About 5-10% of all breast cancers can be attributed to hereditary genetic components and up to 25% of familial cases are due to mutations in BRCA1/2 genes. Since their discovery in 1994 and 1995, as few as 18 mutations have been identified in BRCA genes in the Tunisian population. The aim of this study is to identify additional BRCA mutations, to estimate their contribution to the hereditary breast and ovarian cancers in Tunisia and to investigate the clinicopathological signatures associated with BRCA mutations. Methods A total of 354 patients diagnosed with breast and ovarian cancers, including 5 male breast cancer cases, have been investigated for BRCA1/2 mutations using traditional and/or next generation sequencing technologies. Clinicopathological signatures associated with BRCA mutations have also been investigated. Results In the current study, 16 distinct mutations were detected: 10 in BRCA1 and 6 in BRCA2, of which 11 are described for the first time in Tunisia including 3 variations that have not been reported previously in public databases namely BRCA1_c.915T>A; BRCA2_c.-227-?_7805+? and BRCA2_c.249delG. Early age at onset, family history of ovarian cancer and high tumor grade were significantly associated with BRCA status. BRCA1 carriers were more likely to be triple negative breast cancer compared to BRCA2 carriers. A relatively high frequency of contralateral breast cancer and ovarian cancer occurrence was observed among BRCA carriers and was more frequent in patients carrying BRCA1 mutations. Conclusion Our study provides new insights into breast and ovarian cancer genetic landscape in the under-represented North African populations. The prevalence assessment of novel and recurrent BRCA1/2 pathogenic mutations will enhance the use of personalized treatment and precise screening strategies by both affected and unaffected North African cancer cases.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nesrine Mejri
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sonia Ben Nasr
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Mariem Ben Rekaya
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,UR17ES15, Oncotheranostic Biomarkers, Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hanen Bouaziz
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Yosra Berrazega
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Haifa Rachdi
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Olfa Jaidane
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Nouha Daoud
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Aref Zribi
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Jihene Ayari
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Houda El Benna
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Soumaya Labidi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Jamel Ben Hassouna
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | | | - Khaled Rahal
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Farouk Benna
- Department of Radiation Oncology, University of Tunis, Tunis, Tunisia
| | - Ridha Mrad
- Department of Human Genetics, Charles Nicolle Hospital, Tunis, Tunisia
| | - Slim Ben Ahmed
- Faculty of Medicine of Sousse Department of Medical Oncology Farhat Hached University Hospital University of Sousse, Sousse, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
41
|
Narayanankutty A. Phytochemicals as PI3K/ Akt/ mTOR Inhibitors and Their Role in Breast Cancer Treatment. Recent Pat Anticancer Drug Discov 2021; 15:188-199. [PMID: 32914720 DOI: 10.2174/1574892815666200910164641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Breast cancer is the predominant form of cancer in women; various cellular pathways are involved in the initiation and progression of breast cancer. Among the various types of breast cancer that differ in their growth factor receptor status, PI3K/Akt signaling is a common pathway where all these converge. Thus, the PI3K signaling is of great interest as a target for breast cancer prevention; however, it is less explored. OBJECTIVE The present review is aimed to provide a concise outline of the role of PI3K/Akt/mTOR pathway in breast carcinogenesis and its progression events, including metastasis, drug resistance and stemness. The review emphasizes the role of natural and synthetic inhibitors of PI3K/Akt/m- TOR pathway in breast cancer prevention. METHODS The data were obtained from PubMed/Medline databases, Scopus and Google patent literature. RESULTS PI3K/Akt/mTOR signaling plays an important role in human breast carcinogenesis; it acts on the initiation and progression events associated with it. Numerous molecules have been isolated and identified as promising drug candidates by targeting the signaling pathway. Results from clinical studies confirm their application in the treatment of human breast cancer alone and in combination with classical chemotherapeutics as well as monoclonal antibodies. CONCLUSION PI3K/mTOR signaling blockers have evolved as promising anticancer agents by interfering breast cancer development and progression at various stages. Natural products and bioactive components are emerging as novel inhibitors of PI3K signaling and more research in this area may yield numerous drug candidates.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, Post Graduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Kerala, India
| |
Collapse
|
42
|
Dibble KE, Connor AE. COVID-19 Experiences Predicting High Anxiety and Depression Among a Sample of BRCA1/BRCA2-positive Women in the US. RESEARCH SQUARE 2021. [PMID: 34401875 PMCID: PMC8366809 DOI: 10.21203/rs.3.rs-763516/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Purpose. During the COVID-19 pandemic, breast and ovarian cancer survivors experienced more anxiety and depression than before the pandemic. Studies have not investigated the similarities of this trend among BRCA1/2-positive women who are considered high risk for these cancers. The current study examines the impact of COVID-19 experiences on anxiety and depression in a sample of BRCA1/2-positive women in the U.S. Methods. 211 BRCA1/2-positive women from medically underserved backgrounds completed an online survey. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression for associations between COVID-19 experiences and self-reported anxiety and depression stratified by demographic factors. Results. Overall, women who reported quarantining/isolation (aOR, 0.46, 95% CI, 0.24–0.88) experienced significantly fewer depressive symptoms than women who did not report this experience. Racial/ethnic minority women caring for someone at home during COVID-19 were 3.78 times more likely (95% CI, 1.04–13.6) to report high anxiety while non-Hispanic white women were less likely (aOR, 0.36, 95% CI, 0.10–1.33, p-interaction=0.011). Conclusions. To date, this is the first study to analyze anxiety and depression considering several COVID-19 predictors among BRCA1/2-positive women. Our findings can be used to inform future research and advise COVID-19-related mental health resources specific to these women.
Collapse
|
43
|
Tang M, Pei G, Su D, Wang C, Feng X, Srivastava M, Chen Z, Zhao Z, Chen J. Genome-wide CRISPR screens reveal cyclin C as synthetic survival target of BRCA2. Nucleic Acids Res 2021; 49:7476-7491. [PMID: 34197614 PMCID: PMC8287926 DOI: 10.1093/nar/gkab540] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 01/15/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitor (PARPi)-based therapies initially reduce tumor burden but eventually lead to acquired resistance in cancer patients with BRCA1 or BRCA2 mutation. To understand the potential PARPi resistance mechanisms, we performed whole-genome CRISPR screens to discover genetic alterations that change the gene essentiality in cells with inducible depletion of BRCA2. We identified that several RNA Polymerase II transcription Mediator complex components, especially Cyclin C (CCNC) as synthetic survival targets upon BRCA2 loss. Total mRNA sequencing demonstrated that loss of CCNC could activate the transforming growth factor (TGF)-beta signaling pathway and extracellular matrix (ECM)-receptor interaction pathway, however the inhibition of these pathways could not reverse cell survival in BRCA2 depleted CCNC-knockout cells, indicating that the activation of these pathways is not required for the resistance. Moreover, we showed that the improved survival is not due to restoration of homologous recombination repair although decreased DNA damage signaling was observed. Interestingly, loss of CCNC could restore replication fork stability in BRCA2 deficient cells, which may contribute to PARPi resistance. Taken together, our data reveal CCNC as a critical genetic determinant upon BRCA2 loss of function, which may help the development of novel therapeutic strategies that overcome PARPi resistance.
Collapse
Affiliation(s)
- Mengfan Tang
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
44
|
Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J 2021; 19:4101-4109. [PMID: 34527184 PMCID: PMC8339292 DOI: 10.1016/j.csbj.2021.07.014] [Citation(s) in RCA: 463] [Impact Index Per Article: 154.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction Extensive research is directed to uncover new biomarkers capable to stratify breast cancer patients into clinically relevant cohorts. However, the overall performance ranking of such marker candidates compared to other genes is virtually absent. Here, we present the ranking of all survival related genes in chemotherapy treated basal and estrogen positive/HER2 negative breast cancer. Methods We searched the GEO repository to uncover transcriptomic datasets with available follow-up and clinical data. After quality control and normalization, samples entered an integrated database. Molecular subtypes were designated using gene expression data. Relapse-free survival analysis was performed using Cox proportional hazards regression. False discovery rate was computed to combat multiple hypothesis testing. Kaplan-Meier plots were drawn to visualize the best performing genes. Results The entire database includes 7,830 unique samples from 55 independent datasets. Of those with available relapse-free survival time, 3,382 samples were estrogen receptor-positive and 696 were basal. In chemotherapy treated ER positive/ERBB2 negative patients the significant prognostic biomarker genes achieved hazard rates between 1.76 and 3.33 with a p value below 5.8E−04. The significant prognostic genes in adjuvant chemotherapy treated basal breast cancer samples reached hazard rates between 1.88 and 3.61 with a p value below 7.2E−04. Our integrated platform was extended enabling the validation of future biomarker candidates. Conclusions A reference ranking for all genes in two chemotherapy treated breast cancer cohorts is presented. The results help to neglect those with unlikely clinical significance and to focus future research on the most promising candidates.
Collapse
Affiliation(s)
- Balázs Győrffy
- Semmelweis University Dept. of Bioinformatics, Tűzoltó utca 7-9., 1094 Budapest, Hungary.,TTK Momentum Cancer Biomarker Research Group, Institute of Enzymology, Magyar Tudósok körútja 2., 1117 Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9., 1094 Budapest, Hungary
| |
Collapse
|
45
|
The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies. Med Oncol 2021; 38:95. [PMID: 34268641 DOI: 10.1007/s12032-021-01547-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is a multifactorial, heterogeneous disease and the second most frequent cancer amongst women worldwide. Metastasis is one of the most leading causes of death in these patients. Early-stage or locally advanced breast cancer is limited to the breast or nearby lymph nodes. When breast cancer spreads to farther tissues/organs from its original site, it is referred to as metastatic or stage IV breast cancer. Normal breast development is regulated by specific genes and signalling pathways controlling cell proliferation, cell death, cell differentiation and cell motility. Dysregulation of genes involved in various signalling pathways not only leads to the formation of primary tumour but also to the metastasis as well. The metastatic cascade is represented by a multi-step process including invasion of the local tumour cell followed by its entry into the vasculature, exit of malignant cells from the circulation and ultimately their colonization at the distant sites. These stages are referred to as formation of primary tumour, angiogenesis, invasion, intravasation and extravasation, respectively. The major sites of metastasis of breast cancer are the lymph nodes, bone, brain and lung. Only about 28% five-year survival rate has been reported for stage IV breast cancer. Metastasis is a serious concern for breast cancer and therefore, various therapeutic strategies such as tyrosine kinase inhibitors have been developed to target specific dysregulated genes and various signalling pathways involved in different steps of metastasis. In addition, other therapies like hyperbaric oxygen therapy, RNA interference and CRISPR/Cas9 are also being explored as novel strategies to cure the stage IV/metastatic breast cancer. Therefore, the current review has been compiled with an aim to evaluate the genetic basis of stage IV breast cancer with a focus on the molecular mechanisms. In addition, the therapeutic strategies targeting these dysregulated genes involved in various signalling pathways have also been discussed. Genome editing technologies that can target specific genes in the affected areas by making knock-in and knock-out alternations and thereby bring significant treatment outcomes in breast cancer have also been summarized.
Collapse
|
46
|
Molecular Genetics in Epstein-Barr Virus-Associated Malignancies. Life (Basel) 2021; 11:life11070593. [PMID: 34206255 PMCID: PMC8306230 DOI: 10.3390/life11070593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/21/2022] Open
Abstract
Global genomic studies have detected the role of genomic alterations in the pathogenesis of Epstein–Barr virus (EBV)-associated tumors. EBV oncoproteins cause a vital shift of EBV from an infectious virus to an oncogenic form during the latent and lytic phase within the lymphoid B cells and epithelial cells. This epigenetic alteration modulates the virus and host genomes and inactivates and disrupts numerous tumor suppressors and signaling pathways. Genomic profiling has played the main role in identifying EBV cancer pathogenesis and its related targeted therapies. This article reviews the role of genetic changes in EBV-associated lymphomas and carcinomas. This includes the prolific molecular genesis, key diagnostic tools, and target-specific drugs that have been in recent clinical use.
Collapse
|
47
|
van der Giessen JAM, Ausems MGEM, van Riel E, de Jong A, Fransen MP, van Dulmen S. Development of a plain-language guide for discussing breast cancer genetic counseling and testing with patients with limited health literacy. Support Care Cancer 2021; 29:2895-2905. [PMID: 33001269 PMCID: PMC8062319 DOI: 10.1007/s00520-020-05800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/22/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE Due to limited health literacy and resulting ineffective communication between healthcare professionals and patients, not all eligible patients are offered breast cancer genetic counseling and testing. We aimed to develop a plain-language guide to increase effective communication about genetic counseling and testing with breast cancer patients with limited health literacy. METHODS Together with oncological healthcare professionals, we drafted a list of jargon words frequently used during (breast) cancer genetic counseling. In a focus group interview with breast cancer counselees with limited health literacy, who had received genetic counseling before, we reformulated these words in plain language. Low-literate individuals, who are not familiar with breast cancer care or genetic counseling, reflected on the draft of the guide. Completeness, acceptability, and perceived usability were tested in an online questionnaire among healthcare professionals. RESULTS The result is a plain-language guide for genetic counseling and testing with 33 frequently used jargon words and a reformulation of these words in plain language. Acceptability and perceived usefulness of the guide among healthcare professionals (n = 58) were high. CONCLUSION The plain-language guide provides opportunities to facilitate communication about genetic counseling and testing with patients with limited health literacy and could enhance opportunities for patients to make informed decisions to participate in genetic testing. As the intention from healthcare professionals to use the plain-language guide is high, implementation of the guide in a real-life setting seems promising.
Collapse
Affiliation(s)
- J A M van der Giessen
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - M G E M Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E van Riel
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A de Jong
- Reading & Writing Foundation, Den Haag, The Netherlands
| | - M P Fransen
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S van Dulmen
- Research Institute for Health Sciences, Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, The Netherlands
- Nivel (Netherlands Institute for Health Services Research), Utrecht, The Netherlands
- Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen, Norway
| |
Collapse
|
48
|
Neiger HE, Siegler EL, Shi Y. Breast Cancer Predisposition Genes and Synthetic Lethality. Int J Mol Sci 2021; 22:5614. [PMID: 34070674 PMCID: PMC8198377 DOI: 10.3390/ijms22115614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
BRCA1 and BRCA2 are tumor suppressor genes with pivotal roles in the development of breast and ovarian cancers. These genes are essential for DNA double-strand break repair via homologous recombination (HR), which is a virtually error-free DNA repair mechanism. Following BRCA1 or BRCA2 mutations, HR is compromised, forcing cells to adopt alternative error-prone repair pathways that often result in tumorigenesis. Synthetic lethality refers to cell death caused by simultaneous perturbations of two genes while change of any one of them alone is nonlethal. Therefore, synthetic lethality can be instrumental in identifying new therapeutic targets for BRCA1/2 mutations. PARP is an established synthetic lethal partner of the BRCA genes. Its role is imperative in the single-strand break DNA repair system. Recently, Olaparib (a PARP inhibitor) was approved for treatment of BRCA1/2 breast and ovarian cancer as the first successful synthetic lethality-based therapy, showing considerable success in the development of effective targeted cancer therapeutics. Nevertheless, the possibility of drug resistance to targeted cancer therapy based on synthetic lethality necessitates the development of additional therapeutic options. This literature review addresses cancer predisposition genes, including BRCA1, BRCA2, and PALB2, synthetic lethality in the context of DNA repair machinery, as well as available treatment options.
Collapse
Affiliation(s)
- Hannah E. Neiger
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA;
| | - Emily L. Siegler
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA;
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA;
| |
Collapse
|
49
|
Systematic development of a training program for healthcare professionals to improve communication about breast cancer genetic counseling with low health literate patients. Fam Cancer 2021; 19:281-290. [PMID: 32323055 PMCID: PMC7497313 DOI: 10.1007/s10689-020-00176-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is a disproportionate underuse of genetic testing in breast cancer patients from lower education or migrant background. Within these groups, communication about referral to genetic counseling appears challenging due to limited health literacy and cultural barriers. Our aim was to develop and evaluate a training program for healthcare professionals (breast surgeons and specialized nurses), to increase effective communication. We systematically developed a blended training program based on patients’ and healthcare professionals’ needs and preferences. Prior to the training, we assessed awareness, knowledge and self-efficacy of healthcare professionals. Acceptability and usefulness of the training program were assessed directly after the training. Healthcare professionals (n = 65) from 17 hospitals showed moderate to high awareness and knowledge about the prevalence and impact of limited health literacy. They were aware of cultural factors that influence communication. However, they did not feel confident in recognizing limited health literacy and their self-efficacy to communicate effectively with these patients was low. The training program was rated as acceptable and useful. Healthcare professionals lack confidence to effectively communicate with patients with limited health literacy or migrant background. The training program offers opportunities to improve communication about referral to breast cancer genetic counseling.
Collapse
|
50
|
Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, Suarez-Arroyo IJ, Joaquín-Ovalle FM, Delinois LJ, Griebenow K. Key genes and drug delivery systems to improve the efficiency of chemotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:163-191. [PMID: 34142021 PMCID: PMC8208690 DOI: 10.20517/cdr.2020.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells can develop resistance to anticancer drugs, thereby becoming tolerant to treatment through different mechanisms. The biological mechanisms leading to the generation of anticancer treatment resistance include alterations in transmembrane proteins, DNA damage and repair mechanisms, alterations in target molecules, and genetic responses, among others. The most common anti-cancer drugs reported to develop resistance to cancer cells include cisplatin, doxorubicin, paclitaxel, and fluorouracil. These anticancer drugs have different mechanisms of action, and specific cancer types can be affected by different genes. The development of drug resistance is a cellular response which uses differential gene expression, to enable adaptation and survival of the cell to diverse threatening environmental agents. In this review, we briefly look at the key regulatory genes, their expression, as well as the responses and regulation of cancer cells when exposed to anticancer drugs, along with the incorporation of alternative nanocarriers as treatments to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Zally Torres-Martinez
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Yancy Ferrer-Acosta
- Neuroscience Department, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | | | - Freisa M Joaquín-Ovalle
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Louis J Delinois
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Kai Griebenow
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| |
Collapse
|