1
|
Wang J, Fang S, Jiang Y, Hua Q. Unraveling the Mechanism of Action of Ubiquitin-Specific Protease 5 and Its Inhibitors in Tumors. Clin Med Insights Oncol 2024; 18:11795549241281932. [PMID: 39391229 PMCID: PMC11465303 DOI: 10.1177/11795549241281932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Ubiquitin-specific protease 5 (USP5), a member of the ubiquitin-specific proteases (USPs) family, functions by specifically removing ubiquitin chains from target proteins for stabilization and degrading unbound polyubiquitin chains to maintain a steady-state monoubiquitin pool. Ubiquitin-specific protease 5 regulates various cellular activities, including DNA double-strand break repair, transmission of neuropathic and inflammatory pain signals, immune response, and tumor cell proliferation. Furthermore, USP5 is involved in the development of multiple tumors such as liver, lung, pancreatic, and breast cancers as well as melanoma. Downstream regulatory mechanisms associated with USP5 are complex and diverse. Ubiquitin-specific protease 5 has been revealed as an emerging target for tumor treatment. This study has introduced some molecules upstream to control the expression of USP5 at the levels of transcription, translation, and post-translation. Furthermore, the study incorporated inhibitors known to be associated with USP5, including partially selective deubiquitinase (DUB) inhibitors such as WP1130, EOAI3402143, vialinin A, and chalcone derivatives. It also included the ubiquitin-activating enzyme E1 inhibitor, PYR-41. These small molecule inhibitors impact the occurrence and development of various tumors. Therefore, this article comprehensively reviews the pivotal role of USP5 in different signaling pathways during tumor progression and resumes the progress made in developing USP5 inhibitors, providing a theoretical foundation for their clinical translation.
Collapse
Affiliation(s)
| | | | - Yang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Han Z, Aizezi A, Ma L, Su Y, Fan L, Liu J. The association between human papillomavirus and lung cancer: A Mendelian randomization study. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105646. [PMID: 39059733 DOI: 10.1016/j.meegid.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND To investigate the causal relationship between human papillomavirus (HPV) and lung cancer, we conducted a study using the two-sample Mendelian randomization (TSMR). METHOD Data from genome-wide association studies (GWAS) were analyzed with HPV E7 Type 16 and HPV E7 Type 18 as exposure factors. The outcome variables included lung cancer, small cell lung cancer, adenocarcinoma and squamous cell lung cancer. Causality was estimated using inverse variance weighted (IVW), MR-Egger and weighted median methods. Heterogeneity testing, sensitivity analysis, and multiple validity analysis were also performed.. RESULTS The results showed that HPV E7 Type 16 infection was associated with a higher risk of squamous cell lung cancer (OR = 7.69; 95% CI:1.98-29.85; p = 0.0149). HPV E7 Type 18 infection significantly increased the risk of lung adenocarcinoma (OR = 0.71; 95% CI: 0.38-1.31; p = 0.0079) and lung cancer (OR = 7.69; 95% CI:1.98-29.85; p = 0.0292). No significant causal relationship was found between HPV E7 Type 16 and lung adenocarcinoma, lung cancer, or small cell lung carcinoma, and between HPV E7 Type 18 and squamous cell lung cancer or small cell lung carcinoma. CONCLUSIONS This study has revealed a causal relationship between HPV and lung cancers. Our findings provide valuable insights for further mechanistic and clinical studies on HPV-mediated cancer.
Collapse
Affiliation(s)
- Zhongcheng Han
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830002, PR China.
| | - Ayixiamuguli Aizezi
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830002, PR China
| | - Lili Ma
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830002, PR China
| | - Ying Su
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830002, PR China
| | - Lijuan Fan
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830002, PR China
| | - Jiang Liu
- Department of Oncology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830002, PR China
| |
Collapse
|
3
|
Cao F, Li YZ, Zhang DY, Wang XY, Chen WX, Liu FH, Men YX, Gao S, Lin CQ, Zou HC, Gong TT, Wu QJ. Human papillomavirus infection and the risk of cancer at specific sites other than anogenital tract and oropharyngeal region: an umbrella review. EBioMedicine 2024; 104:105155. [PMID: 38744109 PMCID: PMC11108822 DOI: 10.1016/j.ebiom.2024.105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Despite numerous studies having evaluated the associations between human papillomavirus (HPV) infection and risk of specific cancers other than anogenital tract and oropharyngeal, the findings are inconsistent and the quality of evidence has not been systematically quantified. We aimed to summarise the existing evidence as well as to evaluate the strength and credibility of these associations. METHODS We conducted an umbrella review of systematic reviews and meta-analyses of observational studies. PubMed, EMBASE, and Web of Science were searched from inception to March 2024. Studies with systematic reviews and meta-analyses that examined associations between HPV or HPV-associated genotypes infection and specific cancers were eligible for this review. The quality of the methodology was evaluated using A Measurement Tool to Assess systematic Reviews (AMSTAR). The credibility of the evidence was assessed using GRADE. The protocol was preregistered with PROSPERO (CRD42023439070). FINDINGS The umbrella review identified 31 eligible studies reporting 87 associations with meta-analytic estimates, including 1191 individual studies with 336,195 participants. Of those, 29 (93.5%) studies were rated as over moderate quality by AMSTAR. Only one association indicating HPV-18 infection associated with an increased risk of breast cancer (odds ratio [OR] = 3.48, 95% confidence interval [CI] = 2.24-5.41) was graded as convincing evidence. There were five unique outcomes identified as highly suggestive evidence, including HPV infection increased the risk of oral squamous cell carcinoma (OR = 7.03, 95% CI = 3.87-12.76), oesophageal cancer (OR = 3.32, 95% CI = 2.54-4.34), oesophageal squamous cell carcinoma (OR = 2.69, 95% CI = 2.05-3.54), lung cancer (OR = 3.60, 95% CI = 2.59-5.01), and breast cancer (OR = 6.26, 95% CI = 4.35-9.00). According to GRADE, one association was classified as high, indicating that compared with the controls in normal tissues, HPV infection was associated with an increased risk of breast cancer. INTERPRETATION The umbrella review synthesised up-to-date observational evidence on HPV infection with the risk of breast cancer, oral squamous cell carcinoma, oesophageal cancer, oesophageal squamous cell carcinoma, and lung cancer. Further larger prospective cohort studies are needed to verify the associations, providing public health recommendations for prevention of disease. FUNDING National Key Research and Development Program of China, Natural Science Foundation of China, Outstanding Scientific Fund of Shengjing Hospital of China Medical University, and 345 Talent Project of Shengjing Hospital of China Medical University.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - De-Yu Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wen-Xiao Chen
- Department of Sports Medicine and Joint Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xuan Men
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chun-Qing Lin
- National Clinical Research Center for Cancer, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hua-Chun Zou
- School of Public Health, Fudan University, Shanghai, China; Kirby Institute, University of New South Wales, Sydney, Australia.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
4
|
Bhuia MS, Chowdhury R, Ara I, Mamun M, Rouf R, Khan MA, Uddin SJ, Shakil MAK, Habtemariam S, Ferdous J, Calina D, Sharifi-Rad J, Islam MT. Bioactivities of morroniside: A comprehensive review of pharmacological properties and molecular mechanisms. Fitoterapia 2024; 175:105896. [PMID: 38471574 DOI: 10.1016/j.fitote.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mamun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md Abdul Kader Shakil
- Research Center, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
5
|
Faida P, Attiogbe MKI, Majeed U, Zhao J, Qu L, Fan D. Lung cancer treatment potential and limits associated with the STAT family of transcription factors. Cell Signal 2023:110797. [PMID: 37423343 DOI: 10.1016/j.cellsig.2023.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Lung cancer is one of the mortal cancers and the leading cause of cancer-related mortality, with a cancer survival rate of fewer than 5% in developing nations. This low survival rate can be linked to things like late-stage detection, quick postoperative recurrences in patients receiving therapy, and chemoresistance developing against various lung cancer treatments. Signal transducer and activator of transcription (STAT) family of transcription factors are involved in lung cancer cell proliferation, metastasis, immunological control, and treatment resistance. By interacting with specific DNA sequences, STAT proteins trigger the production of particular genes, which in turn result in adaptive and incredibly specific biological responses. In the human genome, seven STAT proteins have been discovered (STAT1 to STAT6, including STAT5a and STAT5b). Many external signaling proteins can activate unphosphorylated STATs (uSTATs), which are found inactively in the cytoplasm. When STAT proteins are activated, they can increase the transcription of several target genes, which leads to unchecked cellular proliferation, anti-apoptotic reactions, and angiogenesis. The effects of STAT transcription factors on lung cancer are variable; some are either pro- or anti-tumorigenic, while others maintain dual, context-dependent activities. Here, we give a succinct summary of the various functions that each member of the STAT family plays in lung cancer and go into more detail about the advantages and disadvantages of pharmacologically targeting STAT proteins and their upstream activators in the context of lung cancer treatment.
Collapse
Affiliation(s)
- Paison Faida
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
6
|
Wang D, Ao J, Xiong Y, Zhang X, Zhang W. Systematic Analysis of Stress Granule Regulators-Associated Molecular Subtypes Predicts Drug Response, Immune Response, and Prognosis in Non-Small Cell Lung Cancer. Front Cell Dev Biol 2022; 10:868918. [PMID: 35433677 PMCID: PMC9006074 DOI: 10.3389/fcell.2022.868918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/09/2022] [Indexed: 01/22/2023] Open
Abstract
Lung cancer has the world’s second highest cancer incidence and second highest cancer-related mortality rate. However, the mechanism underlying non-small cell lung cancer (NSCLC) remained to be unclear. Overall, this study for the first time revealed Stress Granule Regulators were mutated and dysregulated in NSCLC samples by analyzing TCGA database. Moreover, three subtypes of NSCLC were identified based on the expression levels of Stress Granule Regulators. Patients in cluster 2 showed a higher survival rate than those in clusters 1 and 3. Bioinformatics analysis indicated the cell cycle, mTOR signaling pathway, EGFR signaling, PI3K/Akt signaling and DNA damage repair signaling were significantly related to molecular subtypes. Moreover, we performed a prediction analysis of the response to the inhibitors against the aforementioned signaling. Our results showed patients in C2 NSCLC had the highest sensitivity to MK.2206 (AKT.inhibitor) and Rapamycin (mTOR inhibitor). Patients in C3 NSCLC had the highest sensitivity for Temsirolimus (PI3K/mTOR signaling), BIBW2992 (EGFR signaling), Erlotinib (EGFR signaling), PD.0332991 (CDK4/6 inhibitor), CGP.60474 (CDK inhibitor), and Gefitinib (EGFR signaling). Moreover, our results showed patients in C1 NSCLC had the highest sensitivity to AKT.inhibitor, AZD6482 (PI3K inhibitor). To evaluate the response to immune therapy of different subtypes, we analyzed the tumor immune inflation, immune regulators expression, and TIDE score in different SG related subtypes. These results showed that C2 and C3 may be more sensitive to immune therapy. To better predict the prognosis of NSCLC, we analyzed the correlation between stress granule regulator expression and overall survival time in NSCLC and constructed a Stress Granule Score including EIF2S1, CTSG, EIF4G1, IGF2BP1, PABPC1 to predict the prognosis of NSCLC. Overall, this study for the first time uncovers the effect of stress particles on drug response, immune response, and prognosis, laying a new theoretical foundation for the NSCLC prognosis and treatment.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai, China
| | - Jiangen Ao
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Youwen Xiong
- Department of Testing, Jiangxi Center of Medical Device Testing, Nanchang, China
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Weifang Zhang,
| |
Collapse
|
7
|
Han T, Zhang L, Tong W, Zhao J, Wang W. Exploring the interaction of calycosin with cyclin D1 protein as a regulator of cell cycle progression in lung cancer cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
8
|
Zhang Z, Cui Z, Xie Z, Li C, Xu C, Guo X, Yu J, Chen T, Facchinetti F, Bohnenberger H, Leong TL, Xie Y, Mao X, Zhao J. Deubiquitinase USP5 promotes non-small cell lung cancer cell proliferation by stabilizing cyclin D1. Transl Lung Cancer Res 2021; 10:3995-4011. [PMID: 34858787 PMCID: PMC8577967 DOI: 10.21037/tlcr-21-767] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022]
Abstract
Background Cyclin D1 (CCND1) is overexpressed in non-small cell lung cancer (NSCLC) and contributes to its tumorigenesis and progression. Accumulating evidence shows that ubiquitin-specific protease 5 (USP5), an important member of the USP family, acts as a tumor promoter by deubiquitinating and stabilizing oncoproteins. However, neither the mechanism for dysregulated turnover of CCND1 protein nor the association of CCND1 with USP5 in NSCLC is well understood. Methods The association of USP5 with CCND1 in human NSCLC cells and clinical tissues was determined by immunoprecipitation/immunoblotting, immunohistochemistry (IHC), and The Cancer Genome Atlas database analyses. The effect of USP5 knockdown or overexpression on NSCLC cell proliferation in vitro was assessed by Cell Counting Kit-8, flow cytometry-based cell cycle, and colony formation assays. The effect of the USP5 inhibitor EOAI3402143 (G9) on NSCLC proliferation in vitro was analyzed by CCK-8 assay. The effect of G9 on NSCLC xenograft tumor growth was also examined in vivo, using athymic BALB/c nude mice. Results USP5 physically bound to CCND1 and decreased its polyubiquitination level, thereby stabilizing CCND1 protein. This USP5-CCND1 axis promoted NSCLC cell proliferation and colony formation. Further, knockdown of USP5 led to CCND1 degradation and cell cycle arrest in NSCLC cells. Importantly, this tumor-suppressive effect elicited by USP5 knockdown in NSCLC cells was validated in vitro and in vivo through chemical inhibition of USP5 activity using G9. Consistently, G9 downregulated the protein levels of CCND1 in NSCLC cells and xenograft tumor tissues. Also, the expression level of USP5 was positively associated with the protein level of CCND1 in human clinical NSCLC tissues. Conclusions This study has provided the first evidence that CCND1 is a novel substrate of USP5. The USP5-CCND1 axis could be a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zihan Cui
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhuolin Xie
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Yu
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tengfei Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Francesco Facchinetti
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Biomarqueurs Prédictifs et Nouvelles, Stratégies Thérapeutiques en Oncologie, Villejuif, France
| | | | - Tracy L Leong
- Department of Respiratory Medicine, Austin Health, Heidelberg, Victoria, Australia
| | - Yufeng Xie
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinliang Mao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jun Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Zhao S, Chen Z, Han S, Wu H. Effects of the p16/cyclin D1/CDK4/Rb/E2F1 pathway on aberrant lung fibroblast proliferation in neonatal rats exposed to hyperoxia. Exp Ther Med 2021; 22:1057. [PMID: 34434271 DOI: 10.3892/etm.2021.10491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/11/2021] [Indexed: 11/06/2022] Open
Abstract
p16INK4a (p16) inhibits the vital G1 to S phase transition during cell cycle progression through the p16/cyclin D1/CDK4/retinoblastoma(Rb)/E2F1 pathway. Hyperoxia can suppress the G1/S checkpoint and induce more lung fibroblasts (LFs) to transition from the G1 phase to the S phase and undergo cell proliferation. The present study investigated the rate of p16 gene promoter methylation and the protein expression levels of p16, cyclin D1, CDK4, Rb and E2F1 in LFs from the lungs of rats exposed to hyperoxia and normoxia on postnatal days 3, 7 and 14. In the hyperoxia-exposed group, the methylation rate was 50 and 80% on days 7 and 14, respectively. Cyclin D1 and CDK4 overexpression was associated with p16 loss and Rb inactivation by phosphorylation. Rb phosphorylation induced E2F1 release in the G1 phase, which promoted cell proliferation. No methylation was observed in the normoxia-exposed group. These observations suggested that p16 loss may stimulate aberrant LF proliferation via the p16/cyclin D1/CDK4/Rb/E2F1 pathway.
Collapse
Affiliation(s)
- Shimeng Zhao
- Department of Neonatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhiguang Chen
- Department of Neonatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuang Han
- Department of Neonatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hongmin Wu
- Department of Neonatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
10
|
Liu Z, Deng M, Wu L, Zhang S. An integrative investigation on significant mutations and their down-stream pathways in lung squamous cell carcinoma reveals CUL3/KEAP1/NRF2 relevant subtypes. Mol Med 2020; 26:48. [PMID: 32434476 PMCID: PMC7240936 DOI: 10.1186/s10020-020-00166-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/16/2020] [Indexed: 01/10/2023] Open
Abstract
Background Molecular mechanism of lung squamous cell carcinoma (LUSC) remains poorly understood, hampering effective targeted therapies or precision diagnosis about LUSC. We devised an integrative framework to investigate on the molecular patterns of LUSC by systematically mining the genomic, transcriptional and clinical information. Methods We utilized the genomics and transcriptomics data for the LUSC cohorts in The Cancer Genome Atlas.. Both kinds of omics data for 33 types of cancers were downloaded from The NCI’s Genomic Data Commons (GDC) (https://gdc.cancer.gov/about-data/publications/pancanatlas). The genomics data were processed in mutation annotation format (maf), and the transcriptomics data were determined by RNA-seq method. Mutation significance was estimated by MutSigCV. Prognosis analysis was based on the cox proportional hazards regression (Coxph) model. Results Significant somatic mutated genes (SMGs) like NFE2L2, RASA1 and COL11A1 and their potential down-stream pathways were recognized. Furthermore, two LUSC-specific and prognosis-meaningful subtypes were identified. Interestingly, the good prognosis subtype was enriched with mutations in CUL3/KEAP1/NRF2 pathway and with markedly suppressed expressions of multiple down-stream pathways like epithelial mesenchymal transition. The subtypes were verified by the other two cohorts. Additionally, primarily regulated down-stream elements of different SMGs were also estimated. NFE2L2, KEAP1 and RASA1 mutations showed remarkable effects on the subtype-determinant gene expressions, especially for the inflammatory relevant genes. Conclusions This study supplies valuable references on potential down-stream processes of SMGs and an alternative way to classify LUSC.
Collapse
Affiliation(s)
- Zongang Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District Shenyang, Liaoning, 110004, People's Republic of China
| | - Meiyan Deng
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District Shenyang, Liaoning, 110004, People's Republic of China
| | - Lin Wu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District Shenyang, Liaoning, 110004, People's Republic of China.
| | - Suning Zhang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District Shenyang, Liaoning, 110004, People's Republic of China
| |
Collapse
|
11
|
MiR-23a-3p promoted G1/S cell cycle transition by targeting protocadherin17 in hepatocellular carcinoma. J Physiol Biochem 2020; 76:123-134. [PMID: 31994011 DOI: 10.1007/s13105-020-00726-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022]
Abstract
MiR-23a-3p has been shown to promote liver cancer cell growth and metastasis and regulate that of chemosensitivity. Protocadherin17 (PCDH17) is a tumor suppressor gene and plays an essential part in cell cycle of hepatocellular carcinoma (HCC). This study aimed at evaluating the effects of miR-23a-3p and PCDH17 on HCC cell cycle and underlining the mechanism. The level of miR-23a-3p was up-regulated, while PCDH17 level was down-regulated in HCC tissues compared to adjacent tissues. For the in vitro studies, high expression of miR-23a-3p down-regulated PCDH17 level; increased cell viability; promoted G1/S cell cycle transition; up-regulated cyclin D1, cyclin E, CDK2, CDK4, p-p27, and p-RB levels; and down-regulated the expression of p27. Dual luciferase reporter assay suggested PCDH17 was a target gene of miR-23a-3p. MiR-23a-3p inhibitor and PCDH17 siRNA led to an increase in cell viability and the number of cells in the S phase and up-regulated cyclin D1 and cyclin E levels, compared with miR-23a-3p inhibitor and NC siRNA group. For the in vivo experiments, high expression of miR-23a-3p promoted tumor growth and reduced PCDH17 level in the cytoplasm. These results indicated that high expression of miR-23a-3p might promote G1/S cell cycle transition by targeting PCDH17 in HCC cells. The miR-23a-3p could be considered as a molecular target for HCC detection.
Collapse
|
12
|
Wang C, Li S, Ren H, Sheng Y, Wang T, Li M, Zhou Q, He H, Liu C. Anti-Proliferation and Pro-Apoptotic Effects of Diosmetin via Modulating Cell Cycle Arrest and Mitochondria-Mediated Intrinsic Apoptotic Pathway in MDA-MB-231 Cells. Med Sci Monit 2019; 25:4639-4647. [PMID: 31228347 PMCID: PMC6601365 DOI: 10.12659/msm.914058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer is one of the most malignant tumors worldwide. The natural flavonoid diosmetin has been reported to exhibit various pharmacological activities, including anti-cancer effects. This study aimed to investigate the anti-breast cancer effects of diosmetin on MDA-MB-231 cells and to explore the underlying molecular mechanisms of cell apoptosis. Material/Methods The MDA-MB-231 cells were incubated with diosmetin for 24 h. Then, cell viability and lactate dehydrogenase (LDH) leakage were detected using CCK-8 and LDH assay kits, respectively. Inverted fluorescence microscopy and flow cytometry were used to measure the mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS). Cell apoptosis and cell cycle were determined by flow cytometry. The expressions of apoptosis and cell cycle-related genes were determined by Western blotting and qRT-PCR. Results The results revealed that diosmetin exerts significant cytotoxic effects on MDA-MB-231 cells, as indicated by decreased cell viability, increased intracellular ROS accumulation and LDH release, as well as cell cycle arrest in G0/G1 phase, inducing mitochondrial dysfunction and apoptosis. Moreover, diosmetin treatment significantly downregulated the expression levels of Bcl-2 and Cyclin D1, and upregulated that of p53, Bax, caspase 3, cleaved caspase 9, and cleaved caspase 3. Conclusions These findings demonstrate that diosmetin has anti-proliferative and pro-apoptotic activities against MDA-MB-231 cells via cell cycle arrest and the mitochondria-mediated intrinsic apoptotic pathway. Our results extend the understanding of the anti-tumor mechanism of diosmetin and suggest that it may be of use as an active natural agent for the prevention or treatment of human breast cancer.
Collapse
Affiliation(s)
- Chunjing Wang
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Shujing Li
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Huanhuan Ren
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yue Sheng
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Tiantian Wang
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Min Li
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Qiang Zhou
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Hongxian He
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Changqing Liu
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| |
Collapse
|
13
|
Gopalan PK, Villegas AG, Cao C, Pinder-Schenck M, Chiappori A, Hou W, Zajac-Kaye M, Ivey AM, Kaye FJ. CDK4/6 inhibition stabilizes disease in patients with p16-null non-small cell lung cancer and is synergistic with mTOR inhibition. Oncotarget 2018; 9:37352-37366. [PMID: 30647837 PMCID: PMC6324768 DOI: 10.18632/oncotarget.26424] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/16/2018] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of CDK4/6 kinase is the most common somatic event in non-small cell lung cancer (NSCLC). Palbociclib is a highly specific CDK4/6 inhibitor shown to inhibit cell cycle progression and promote cellular senescence. We conducted a phase 2 clinical trial of palbociclib in 19 previously-treated patients with advanced NSCLC. Only patients with p16-null staining by immunohistochemistry and documented tumor progression were eligible. The primary endpoint was tumor response rate. Palbociclib therapy alone was well-tolerated. Of 16 evaluable patients who received > 1 month of therapy, there were no objective responses. However, 8 patients (50%) with previously progressive NSCLC had stable disease (SD) lasting a range of 4-10.5 months. Median overall survival (OS) for all cases was 5.1 months, and median overall survival for the subset of patients with SD was 16.6 months. We also performed preclinical testing of palbociclib in combination with 13 different targeted or cytotoxic chemotherapeutic agents using a cell viability assay. Only the combination of palbociclib and mTOR inhibitors resulted in synergistic growth inhibition, particularly in tumors carrying RAS mutations. Our findings warrant further clinical investigation of the combination of palbociclib and mTOR inhibitors, especially in patients carrying activated RAS mutations.
Collapse
Affiliation(s)
- Priya K Gopalan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Andres Gordillo Villegas
- Department of Medicine, University of Florida, Gainesville, FL, USA.,Current address: Sangamo Therapeutics, Richmond, CA, USA
| | - Chunxia Cao
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Mary Pinder-Schenck
- Moffitt Cancer Center, Tampa, FL, USA.,Current address: Merck, Philadelphia, PA, USA
| | | | - Wei Hou
- Department of Biostatistics, University of Florida, Gainesville, FL, USA.,Current address: Division of Epidemiology and Biostatistics, Stony Brook University, Stony Brook, NY, USA
| | - Maria Zajac-Kaye
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, USA
| | - Alison M Ivey
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Frederic J Kaye
- Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Liu S, Wang X, Qin W, Genchev GZ, Lu H. Transcription Factors Contribute to Differential Expression in Cellular Pathways in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. Interdiscip Sci 2018; 10:836-847. [PMID: 30039492 DOI: 10.1007/s12539-018-0300-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022]
Abstract
Lung cancers are broadly classified into small cell lung cancers and non-small cell lung cancers (NSCLC). Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) are two common subtypes of NSCLC, and despite the fact that both occur in lung tissues, these two subtypes show a number of different pathological characteristics. To investigate the differences and seek potential therapy targets, we used bioinformatics methods to analyze RNA-Seq data from different aspects. The previous studies and comparative pathway enrichment analysis on publicly available data showed that expressed or inhibited genes are different in two cancer subtypes through important pathways. Some of these genes could not only affect cell function through expression, but also could regulate other genes' expression by binding to a specific DNA sequence. This kind of genes is called transcription factor (TF) or sequence-specific DNA-binding factor. Transcription factors play important roles in controlling gene expression in carcinoma pathways. Our results revealed transcription factors that may cause differential expression of genes in cellular pathways of LUAD and LUSC, which provide new clues for study and treatment. Once such TF is NFE2l2 which may regulate genes in the Wnt signaling pathway, and the MAPK signaling pathway, thus leading to an increase the cell growth, cell division, and gene transcription. Another TF-XBP1 has high correlation with genes related to cell adhesion molecules and cytokine-cytokine receptor interaction pathways that may further affect the immune system. Moreover, the two TF and high correlated genes also show similar patterns in an independent GEO data set.
Collapse
Affiliation(s)
- Shiyi Liu
- Department of Bioinformatics and Biostatistics, Shanghai Jiaotong University, Shanghai, China
| | - Xujun Wang
- Department of Bioinformatics and Biostatistics, Shanghai Jiaotong University, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics, Shanghai Jiaotong University, Shanghai, China
| | - Wenyi Qin
- SJTU-Yale Joint Center for Biostatistics, Shanghai Jiaotong University, Shanghai, China.,Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan, Rm 218, Chicago, IL, 60607, USA
| | - Georgi Z Genchev
- SJTU-Yale Joint Center for Biostatistics, Shanghai Jiaotong University, Shanghai, China
| | - Hui Lu
- Department of Bioinformatics and Biostatistics, Shanghai Jiaotong University, Shanghai, China. .,SJTU-Yale Joint Center for Biostatistics, Shanghai Jiaotong University, Shanghai, China. .,Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan, Rm 218, Chicago, IL, 60607, USA.
| |
Collapse
|
15
|
Gao X, Zhou Y, Zheng X, Sun H, Zhang J, Liu W, Pan X. Peniciketal A, A Novel Spiroketal Compound, Exerts Anticancer Effects by Inhibiting Cell Proliferation, Migration and Invasion of A549 Lung Cancer Cells. Anticancer Agents Med Chem 2018; 18:1573-1581. [PMID: 29866018 DOI: 10.2174/1871520618666180604090802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/03/2018] [Accepted: 05/21/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Peniciketal A (Pe-A) is a spiroketal compound isolated from saline soil-derived fungus Penicillium raistrickii. However, its role for biological processes has not been clarified. In this study, we for the first time investigated the anticancer effects and the underlying mechanisms of Pe-A in A549 lung cancer cells. Metheds: Cell proliferation was tested by MTT assay and colony formation assay. Flow cytometry was performed to examine the cell cycle, apoptosis and mitochondrial membrane potential. Invasion and migration were analyzed using transwell assay and wound healing analysis. Immunofluorescence staining and western blotting were used to evaluate the protein expression. RESULTS Pe-A effectively inhibited proliferation, with IC50 values was 22.33 μM for 72 h. Mechanistic studies revealed that Pe-A caused cell cycle arrest at the G0-G1 phase by decreasing cyclinD1 expression and induced apoptosis through accelerating the mitochondrial apoptotic pathway. Moreover, Pe-A significantly inhibited A549 cell migration and invasion by reducing the protein levels of MMP-2 and MMP-9, while the Epithelial- Mesenchymal Transition (EMT) property was also changed. Importantly, Pe-A exhibited much lower toxicity towards L02, normal liver cells, and MRC5, normal fibroblast cells, compared to A549 cells. CONCLUSION Collectively, the current results indicate that Pe-A may offer effective potentials and insights for lung cancer treatment and drug design.
Collapse
Affiliation(s)
- Xue Gao
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.,The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, Yantai 264003, China
| | - Yuming Zhou
- Affiliated Hospital of Binzhou Medical University, Yantai 264003, China
| | - Xiaoqi Zheng
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hongliu Sun
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.,The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, Yantai 264003, China
| | - Jing Zhang
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.,The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, Yantai 264003, China
| | - Weizhong Liu
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.,The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, Yantai 264003, China
| | - Xiaohong Pan
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.,The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, Yantai 264003, China
| |
Collapse
|
16
|
Han W, Li W, Zhang X, Du Z, Liu X, Zhao X, Wen X, Wang G, Hu JF, Cui J. Targeted breast cancer therapy by harnessing the inherent blood group antigen immune system. Oncotarget 2017; 8:15034-15046. [PMID: 28122343 PMCID: PMC5362465 DOI: 10.18632/oncotarget.14746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer gene therapy has attracted increasing attention for its advantages over conventional therapy in specific killing of tumor cells. Here, we attempt to prove a novel therapeutic approach that targets tumors by harnessing the blood antigen immune response system, which is inherently present in patients with breast cancers. Breast cancer MDA-MB-231 cells expressed blood group H antigen precursor. After ectopic expression of blood group A glycosyltransferase, we found that the H precursor was converted into the group A antigen, appearing on the surface of tumor cells. Incubation with group B plasma from breast cancer patients activated the antigen-antibody-complement cascade and triggered tumor cell killing. Interestingly, expression of blood A antigen also reduced tumorigenesis in breast cancer cells by inhibiting cell proliferation, migration, and tumor sphere formation. Cell cycle analysis revealed that cancer cells were paused at S phase due to the activation of cell cycle regulatory genes. Furthermore, pro-apoptotic genes were unregulated by the A antigen, including BAX, P21, and P53, while the anti-apoptotic BCL2 was down regulated. Importantly, we showed that extracellular HMGB1 and ATP, two critical components of the immunogenic cell death pathway, were significantly increased in the blood A antigen-expressing tumor cells. Collectively, these data suggest that blood antigen therapy induces specific cancer cell killing by activating the apoptosis and immunogenic cell death pathways. Further translational studies are thereby warranted to apply this approach in cancer immuno-gene therapy.
Collapse
Affiliation(s)
- Wei Han
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Wei Li
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Xiaoying Zhang
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Zhonghua Du
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Xiaoliang Liu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Xin Zhao
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Xue Wen
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Guanjun Wang
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130021, China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USA
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
17
|
Hsu YL, Hung JY, Lee YL, Chen FW, Chang KF, Chang WA, Tsai YM, Chong IW, Kuo PL. Identification of novel gene expression signature in lung adenocarcinoma by using next-generation sequencing data and bioinformatics analysis. Oncotarget 2017; 8:104831-104854. [PMID: 29285217 PMCID: PMC5739604 DOI: 10.18632/oncotarget.21022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Lung adenocarcinoma is one of the leading causes of cancer-related death worldwide. We showed transcriptomic profiles in three pairs of tumors and adjacent non-tumor lung tissues using next-generation sequencing (NGS) to screen protein-coding RNAs and microRNAs. Combined with meta-analysis from the Oncomine and Gene Expression Omnibus (GEO) databases, we identified a representative genetic expression signature in lung adenocarcinoma. There were 9 upregulated genes, and 8 downregulated genes in lung adenocarcinoma. The analysis of the effects from each gene expression on survival outcome indicated that 6 genes (AGR2, SPDEF, CDKN2A, CLDN3, SFN, and PHLDA2) play oncogenic roles, and 7 genes (PDK4, FMO2, CPED1, GNG11, IL33, BTNL9, and FABP4) act as tumor suppressors in lung adenocarcinoma. In addition, we also identified putative genetic interactions, in which there were 5 upregulated microRNAs with specific targets - hsa-miR-183-5p-BTNL9, hsa-miR-33b-5p-CPED1, hsa-miR-429-CPED1, hsa-miR-182-5p-FMO2, and hsa-miR-130b-5p-IL33. These 5 microRNAs have been shown to be associated with tumorigenesis in lung cancer. Our findings suggest that these genetic interactions play important roles in the progression of lung adenocarcinoma. We propose that this molecular change of genetic expression may represent a novel signature in lung adenocarcinoma, which may be developed for diagnostic and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jen-Yu Hung
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yen-Lung Lee
- Division of Thoracic surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Feng-Wei Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Ming Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Shen H, Li L, Yang S, Wang D, Zhou S, Chen X, Tang J. Regulatory role of tumor necrosis factor receptor-associated factor 6 in breast cancer by activating the protein kinase B/glycogen synthase kinase 3β signaling pathway. Mol Med Rep 2017. [DOI: 10.3892/mmr.2017.6782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Pang J, Yan X, Cao H, Qian L, He H, Tian H, Han F, Wang G, Chen X, Zhao Y, Hu JF, Cui J. Knockdown of COPS3 Inhibits Lung Cancer Tumor Growth in Nude Mice by Blocking Cell Cycle Progression. J Cancer 2017; 8:1129-1136. [PMID: 28607586 PMCID: PMC5463426 DOI: 10.7150/jca.16201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/18/2016] [Indexed: 12/13/2022] Open
Abstract
COPS3 encodes the third subunit of the COP9 signalosome and its aberrant expression is associated with many RITE ("Region of Increased Tumor Expression") genes in lung cancer tissues. To elucidate the specific role of COPS3 in lung cancer, we examined its expression in lung cancer tissues by immunohistochemical staining. We found that COPS3 was overexpressed in most of the lung cancer samples examined, particularly in small cell carcinoma and squamous cell carcinoma. The expression of COPS3 protein was positively correlated with the level of Ki-67 cell proliferation index (p=0.001) and negatively related to the degree of tumor differentiation (p=0.012). In a xenograft tumor model in nude mice, shRNA-knockdown of COPS3 significantly reduced tumor growth. In lung adenocarcinoma A549 cells, shRNA-knockdown of COPS3 induced cell cycle arrest at G0/G1 phase by upregulating the cell cycle regulator protein P21 and downregulating cyclin B1 and CDK4. These data suggest that COPS3 may promote tumor growth by regulating cell-cycle associated proteins.
Collapse
Affiliation(s)
- Jianan Pang
- Cancer Center, the First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, China
| | - Xu Yan
- Pathological diagnostic Center, the First Hospital of Jilin University, No.71.Xinmin Street, Changchun, 130021, China
| | - He Cao
- Cancer Center, the First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, China
| | - Lei Qian
- Cancer Center, the First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, China
| | - Hua He
- Cancer Center, the First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, China
| | - Huimin Tian
- Cancer Center, the First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, China
| | - Fujun Han
- Cancer Center, the First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, China
| | - Guanjun Wang
- Cancer Center, the First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, China
| | - Xiao Chen
- Cancer Center, the First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, China
| | - Ji-Fan Hu
- Cancer Center, the First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, China
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, China
| |
Collapse
|
20
|
Wang JZ, Xu CL, Wu H, Shen SJ. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells. Braz J Med Biol Res 2017; 50:e6079. [PMID: 28225893 PMCID: PMC5333723 DOI: 10.1590/1414-431x20176079] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer.
Collapse
Affiliation(s)
- J Z Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - C L Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - H Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - S J Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Piroddi M, Albini A, Fabiani R, Giovannelli L, Luceri C, Natella F, Rosignoli P, Rossi T, Taticchi A, Servili M, Galli F. Nutrigenomics of extra-virgin olive oil: A review. Biofactors 2017; 43:17-41. [PMID: 27580701 DOI: 10.1002/biof.1318] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
Nutrigenomics data on the functional components of olive oil are still sparse, but rapidly increasing. Olive oil is the main source of fat and health-promoting component of the Mediterranean diet. Positive effects have been observed on genes involved in the pathobiology of most prevalent age- and lifestyle-related human conditions, such as cancer, cardiovascular disease and neurodegeneration. Other effects on health-promoting genes have been identified for bioactive components of olives and olive leafs. Omics technologies are offering unique opportunities to identify nutritional and health biomarkers associated with these gene responses, the use of which in personalized and even predictive protocols of investigation, is a main breakthrough in modern medicine and nutrition. Gene regulation properties of the functional components of olive oil, such as oleic acid, biophenols and vitamin E, point to a role for these molecules as natural homeostatic and even hormetic factors with applications as prevention agents in conditions of premature and pathologic aging. Therapeutic applications can be foreseen in conditions of chronic inflammation, and particularly in cancer, which will be discussed in detail in this review paper as major clinical target of nutritional interventions with olive oil and its functional components. © 2016 BioFactors, 43(1):17-41, 2017.
Collapse
Affiliation(s)
- Marta Piroddi
- Department of Pharmaceutical Sciences, Nutrition and Clinical Biochemistry Lab, University of Perugia, Italy
| | - Adriana Albini
- IRCCS MultiMedica, Scientific and Technology Pole, Milan, Italy
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Italy
| | - Lisa Giovannelli
- NEUROFARBA - Section of Phamacology and Toxicology, University of Firenze, Italy
| | - Cristina Luceri
- NEUROFARBA - Section of Phamacology and Toxicology, University of Firenze, Italy
| | - Fausta Natella
- CREA-NUT, Consiglio per La Ricerca in Agricoltura E L'Analisi Dell'Economia Agraria, Food and Nutrition Research Centre, via Ardeatina 546, 00178, Roma, Italy
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Italy
| | - Teresa Rossi
- Research and Statistics, Department, IRCCS "Tecnologie Avanzate E Modelli Assistenziali in Oncologia", Laboratory of Translational Research, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Agnese Taticchi
- Department of Agricultural Food and Environmental Sciences, University of Perugia, Italy
| | - Maurizio Servili
- Department of Agricultural Food and Environmental Sciences, University of Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Nutrition and Clinical Biochemistry Lab, University of Perugia, Italy
| |
Collapse
|
22
|
Lin FCF, Huang JY, Tsai SCS, Nfor ON, Chou MC, Wu MF, Lee CT, Jan CF, Liaw YP. The association between human papillomavirus infection and female lung cancer: A population-based cohort study. Medicine (Baltimore) 2016; 95:e3856. [PMID: 27281096 PMCID: PMC4907674 DOI: 10.1097/md.0000000000003856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths among Taiwanese women. Human papillomavirus (HPV) has been detected in lung cancer tissues. The aim of this study was to investigate the association between HPV infection and lung cancer among the Taiwanese women. The analytical data were collected from the longitudinal health insurance databases (LHID 2005 and 2010) of the National Health Insurance Research Database (NHIRD). The study participants were 30 years and older and included 24,162 individuals who were identified with HPV infection from 2001 to 2004 and 1,026,986 uninfected individuals. Lung cancer incidence among infected and uninfected individuals was compared using the univariate and multivariate regression models. Among the total participants, 24,162 individuals were diagnosed with HPV. After adjusting for age, gender, low income, residential area, and comorbidity, the risk of lung cancer was higher in women (hazard ratio [HR] 1.263, 95% CI 1.015-1.571), while all cancer risks were high in both men and women with corresponding hazard ratios (HR) of 1.161 (95% CI 1.083-1.245) and HR 1.240 (95% CI 1.154-1.331), respectively. This study showed a significant increase in lung cancer risk among Taiwanese women who were exposed to HPV infection.
Collapse
Affiliation(s)
- Frank Cheau-Feng Lin
- School of Medicine, Chung Shan Medical University
- Department of Thoracic Surgery, Chung Shan Medical University Hospital
| | - Jing-Yang Huang
- Department of Public Health and Institute of Public Health, Chung Shan Medical University
| | - Stella Ching-Shao Tsai
- Department of Medical Research, Tungs’ Taichung Metro Harbor Hospital
- Department of Food and Nutrition, Providence University
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University
| | - Ming-Chih Chou
- School of Medicine, Chung Shan Medical University
- Department of Thoracic Surgery, Chung Shan Medical University Hospital
| | - Ming-Fang Wu
- School of Medicine, Chung Shan Medical University
- Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung
| | - Chun-Te Lee
- School of Medicine, Chung Shan Medical University
- Department of Psychiatry, Chung Shan Medical University Hospital
| | | | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- ∗Correspondence: Yung-Po Liaw, Department of Public Health and Institute of Public Health, Chung Shan Medical University, 110 Sec. 1 Jianguo N. Road, Taichung 40201, Taiwan (e-mail: )
| |
Collapse
|
23
|
Zang X, Chen M, Zhou Y, Xiao G, Xie Y, Wang X. Identifying CDKN3 Gene Expression as a Prognostic Biomarker in Lung Adenocarcinoma via Meta-analysis. Cancer Inform 2015; 14:183-91. [PMID: 26052221 PMCID: PMC4444140 DOI: 10.4137/cin.s17287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is among the major causes of cancer deaths, and the survival rate of lung cancer patients is extremely low. Recent studies have demonstrated that the gene CDKN3 is related to neoplasia, but in the literature severe controversy exists over whether it is involved in cancer progression or, conversely, tumor inhibition. In this study, we investigated the expression of CDKN3 and its association with prognosis in lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) using datasets in Lung Cancer Explorer (LCE; http://qbrc.swmed.edu/lce/). We found that CDKN3 was up-regulated in ADC and SCC compared to normal tissues. We also found that CDKN3 was expressed at a higher level in SCC than in ADC, which was further validated through meta-analysis (coefficient = 2.09, 95% CI = 1.50-2.67, P < 0.0001). In addition, based on meta-analysis for the prognostic value of CDKN3, we found that higher CDKN3 expression was associated with poorer survival outcomes in ADC (HR = 1.65, 95% CI = 1.39-1.96, P < 0.0001), but not in SCC (HR = 1.10, 95% CI = 0.84-1.44, P = 0.494). Our findings indicate that CDKN3 may be a prognostic marker in ADC, though the detailed mechanism is yet to be revealed.
Collapse
Affiliation(s)
- Xiao Zang
- Quantitative Biomedical Research Center, Department of Clinical Sciences
| | - Min Chen
- Department of Mathematical Sciences, University of Texas at Dallas
| | - Yunyun Zhou
- Quantitative Biomedical Research Center, Department of Clinical Sciences
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Clinical Sciences
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Clinical Sciences
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center
| | - Xinlei Wang
- Department of Statistics, Southern Methodist University
| |
Collapse
|
24
|
Suzuki M, Minami A, Nakanishi A, Kobayashi K, Matsuda S, Ogura Y, Kitagishi Y. Atherosclerosis and tumor suppressor molecules (review). Int J Mol Med 2014; 34:934-40. [PMID: 25069568 DOI: 10.3892/ijmm.2014.1866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/18/2014] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis, the major cause of heart attack and stroke, is a chronic inflammatory disease characterized by the formation of atherosclerotic plaque. Oxidized low-density lipoprotein through increased oxidative stress has been identified as one of the primary factors responsible for atherogenesis. Cell proliferation and death are key processes in the progression of atherosclerosis. The oxidative environment in areas of lipid accumulation is mainly created by the production of reactive oxygen species, which are assumed to mediate vascular tissue injury. Oxidative DNA damage and levels of DNA repair are reduced during dietary lipid lowering. The tumor suppressor molecules play a pivotal role in regulating cell proliferation, DNA repair and cell death, which are important processes in regulating the composition of atherosclerotic plaque. Accordingly, in this review, we discuss the fundamental role of tumor suppressor molecules in regulating atherogenesis. In particular, we discuss how tumor suppressor molecules are activated in the complex environment of atherosclerotic plaque, and regulate growth arrest, cell senescence and the apoptosis of vascular smooth muscle cells, which may protect against the progression of atherosclerosis. In addition, we discuss promising alternatives to the use of medications (such as statin) against atherosclerosis, namely diet, with the use of plant-derived supplements to modulate the expression and/or activity of tumor suppressor molecules. We also summarize the progress of research made on herbs with a focus on the modulatory roles of tumor suppressors, and on the molecular mechanisms underlying the prevention if atherosclerosis, supporting designs for further research in this field.
Collapse
Affiliation(s)
- Miho Suzuki
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| | - Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| | - Keiko Kobayashi
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
25
|
Cytotoxic effects of fascaplysin against small cell lung cancer cell lines. Mar Drugs 2014; 12:1377-89. [PMID: 24608973 PMCID: PMC3967216 DOI: 10.3390/md12031377] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/17/2014] [Accepted: 02/27/2014] [Indexed: 12/27/2022] Open
Abstract
Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4) inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC) cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS) and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose)-Polymerase 1 (PARP1) inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS.
Collapse
|
26
|
Synergism of cyclin-dependent kinase inhibitors with camptothecin derivatives in small cell lung cancer cell lines. Molecules 2014; 19:2077-88. [PMID: 24549232 PMCID: PMC6271949 DOI: 10.3390/molecules19022077] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/21/2014] [Accepted: 01/29/2014] [Indexed: 11/17/2022] Open
Abstract
Advanced small cell lung cancer (SCLC) has a dismal prognosis. Modulation of the camptothecin topotecan, approved for second-line therapy, may improve response. Our recent finding of synergistic enhancement of the cytotoxic activity of camptothecin (CPT) by cyclin-dependent kinase 4 inhibitors is extended here to a panel of camptothecin analogs comprising 10-hydroxy-CPT (HOCPT), topotecan (TPT; 9-[(dimethylamino)-methyl]-10-hydroxy-CPT), 9-amino-CPT (9AC), 9-nitrocamptothecin (rubitecan), SN38 (7-ethyl-10-hydroxycamptothecin) and 10-hydroxy-9-nitrocamptothecin (CPT109) in combination with PD0332991, CDK4I, roscovitine and olomoucine. SCLC cell lines employed are chemoresistant NCI-H417 and DMS153 and the chemosensitive SCLC26A line established at our institution. The CPT analogs exhibiting highest cytotoxicity towards the three SCLC lines tested were SN38 and 9AC, followed by rubitecan, HOCPT, TPT and CPT109. NCI-H417 and DMS153 revealed an approximately 25-fold and 7-fold higher resistance compared to the chemosensitive SCLC26A cell line. Whereas the CDK4/6 inhibitor PD0332991 proved less effective to chemosensitize SCLC cells to CPT analogs, the CDK inhibitors CDK4I, roscovitine and olomoucine gave comparable chemosensitization effects in combination with 9AC, SN38, rubitecan and to a lesser extent with TPT and CPT109, not directly related with topoisomerase mRNA expression. In conclusion, small chemical modifications of the parent CPT structure result in differing cytotoxicities and chemomodulatory effects in combination with CDKIs of the resulting analogs.
Collapse
|
27
|
Chen JP, Xu DEG, Yu XY, Zhao FM, Xu DQ, Zhang X, Cai BC, Wang MY. Discrepancy between the effects of morronside on apoptosis in human embryonic lung fibroblast cells and lung cancer A549 cells. Oncol Lett 2014; 7:927-932. [PMID: 24944645 PMCID: PMC3961276 DOI: 10.3892/ol.2014.1850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/13/2013] [Indexed: 12/31/2022] Open
Abstract
Morroniside is a water-soluble compound extracted from the fruit of Cornus officinalis and is used to protect lung activity against aging. In the present study, the manner in which morroniside regulates normal lung and cancer cells was examined. The human embryonic lung fibroblast (HELF) cell line and lung cancer A549 cell line, and their responses to morroniside treatment, were examined. Results showed that morroniside reverses the apoptotic effect of H2O2 on HELF cell growth, protecting cell proliferation and normal cell morphology and inhibiting apoptosis. However, these effects were not present in A549 cells. Western blotting showed that morroniside also markedly downregulated retinoblastoma protein in HELF cells. These results suggest that morroniside treatment exhibits different effects on apoptosis in HELF and A549 cells, making it a viable compound for decreasing the side effects of anticancer medicines in normal cells.
Collapse
Affiliation(s)
- Jian-Ping Chen
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - DE-Guo Xu
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Yi Yu
- China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Feng-Ming Zhao
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Dong-Qing Xu
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xu Zhang
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Bao-Chang Cai
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ming-Yan Wang
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
28
|
Liu JY, Qian D, He LR, Li YH, Liao YJ, Mai SJ, Tian XP, Liu YH, Zhang JX, Kung HF, Zeng YX, Zhou FJ, Xie D. PinX1 suppresses bladder urothelial carcinoma cell proliferation via the inhibition of telomerase activity and p16/cyclin D1 pathway. Mol Cancer 2013; 12:148. [PMID: 24268029 PMCID: PMC4176126 DOI: 10.1186/1476-4598-12-148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/19/2013] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND PIN2/TRF1-interacting telomerase inhibitor1 (PinX1) was recently suggested as a putative tumor suppressor in several types of human cancer, based on its binding to and inhibition of telomerase. Moreover, loss of PinX1 has been detected in many human malignancies. However, the possible involvement of PinX1 and its clinical/prognostic significance in urothelial carcinoma of the bladder (UCB) are unclear. METHODS The PinX1 expression profile was examined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry (IHC) in UCB tissues and adjacent normal urothelial bladder epithelial tissues. PinX1 was overexpressed and silenced in UCB cell lines to determine its role in tumorigenesis, development of UCB, and the possible mechanism. RESULTS PinX1 expression in UCB was significantly down-regulated at both mRNA and protein level as compared with that in normal urothelial bladder epithelial tissues. PinX1 levels were inversely correlated with tumor multiplicity, advanced N classification, high proliferation index (Ki-67), and poor survival (P < 0.05). Moreover, overexpression of PinX1 in UCB cells significantly inhibited cell proliferation in vitro and in vivo, whereas silencing PinX1 dramatically enhanced cell proliferation. Overexpression of PinX1 resulted in G1/S phase arrest and cell growth/proliferation inhibition, while silencing PinX1 led to acceleration of G1/S transition, and cell growth/proliferation promotion by inhibiting/enhancing telomerase activity and via the p16/cyclin D1 pathway. CONCLUSIONS These findings suggest that down-regulation of PinX1 play an important role in the tumorigenesis and development of UCB and that the expression of PinX1 as detected by IHC is an independent molecular marker in patients with UCB.
Collapse
Affiliation(s)
- Jian-Ye Liu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, No, 651, Dongfeng Road East, Guangzhou 510060, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
MiR‐365b‐3p, down‐regulated in retinoblastoma, regulates cell cycle progression and apoptosis of human retinoblastoma cells by targeting PAX6. FEBS Lett 2013; 587:1779-86. [PMID: 23660406 DOI: 10.1016/j.febslet.2013.04.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 12/24/2022]
|
30
|
Hamilton G, Lukas Klameth UO, Ulsperger E, Geissler K. Synergistic Anticancer Activity of Topotecan— Cyclin-Dependent Kinase Inhibitor Combinations against Drug-Resistant Small Cell Lung Cancer (SCLC) Cell Lines. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.48a008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489:519-25. [PMID: 22960745 PMCID: PMC3466113 DOI: 10.1038/nature11404] [Citation(s) in RCA: 3010] [Impact Index Per Article: 250.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/09/2012] [Indexed: 12/14/2022]
Abstract
Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment. As part of The Cancer Genome Atlas, here we profile 178 lung squamous cell carcinomas to provide a comprehensive landscape of genomic and epigenomic alterations. We show that the tumour type is characterized by complex genomic alterations, with a mean of 360 exonic mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per tumour. We find statistically recurrent mutations in 11 genes, including mutation of TP53 in nearly all specimens. Previously unreported loss-of-function mutations are seen in the HLA-A class I major histocompatibility gene. Significantly altered pathways included NFE2L2 and KEAP1 in 34%, squamous differentiation genes in 44%, phosphatidylinositol-3-OH kinase pathway genes in 47%, and CDKN2A and RB1 in 72% of tumours. We identified a potential therapeutic target in most tumours, offering new avenues of investigation for the treatment of squamous cell lung cancers.
Collapse
Affiliation(s)
-
- Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
32
|
Siemeister G, Lücking U, Wengner AM, Lienau P, Steinke W, Schatz C, Mumberg D, Ziegelbauer K. BAY 1000394, a novel cyclin-dependent kinase inhibitor, with potent antitumor activity in mono- and in combination treatment upon oral application. Mol Cancer Ther 2012; 11:2265-73. [PMID: 22821149 DOI: 10.1158/1535-7163.mct-12-0286] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deregulated activity of cyclin-dependent kinases (CDK) results in loss of cell-cycle checkpoint function and increased expression of antiapoptotic proteins, which has been directly linked to the molecular pathology of cancer. BAY 1000394 inhibits the activity of cell-cycle CDKs CDK1, CDK2, CDK3, CDK4, and of transcriptional CDKs CDK7 and CDK9 with IC(50) values in the range between 5 and 25 nmol/L. Cell proliferation was inhibited at low nanomolar concentration in a broad spectrum of human cancer cell lines. In cell-based assays, the inhibition of phosphorylation of the CDK substrates retinoblastoma protein, nucleophosmin, and RNA polymerase II was shown. Cell-cycle profiles were consistent with inhibition of CDK 1, 2, and 4 as shown in cell-cycle block and release experiments. The physicochemical and pharmacokinetic properties of BAY 1000394 facilitate rapid absorption and moderate oral bioavailability. The compound potently inhibits growth of various human tumor xenografts on athymic mice including models of chemotherapy resistance upon oral dosing. Furthermore, BAY 1000394 shows more than additive efficacy when combined with cisplatin and etoposide. These results suggest that BAY 1000394 is a potent pan-CDK inhibitor and a novel oral cytotoxic agent currently in phase I clinical trials.
Collapse
Affiliation(s)
- Gerhard Siemeister
- Bayer Pharma AG, Global Drug Discovery/TRG-ONC/GT, Mullerstrasse 178, D-13342 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Feng Z, Chen J, Wei H, Gao P, Shi J, Zhang J, Zhao F. The risk factor of gallbladder cancer: hyperplasia of mucous epithelium caused by gallstones associates with p16/CyclinD1/CDK4 pathway. Exp Mol Pathol 2011; 91:569-77. [PMID: 21777578 DOI: 10.1016/j.yexmp.2011.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/24/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUNDS The mucosa of gallbladder stimulated with gallstones and accompanied with abnormalities in bile composition, is the origin of biliary disease, which could induce metaplasia, simple hyperplasia, atypical hyperplasia and even carcinoma in situ and invasive carcinoma in gallbladder mucosa. METHODS To determine the disorder of the balance between cell proliferation and cell cycle or apoptosis in gallbladder cancer accompanied with gallstones, removal of the gallbladder due to gallstones specimens of 88 cases were collected randomly, including a variety of 54 cases for hyperplasia, 27 cases for gallbladder cancer and 7 cases for normal gallbladder. The expressions of key cell cycle factors were detected by in situ hybridization, immunohistochemistry and Western blot. RESULTS The expressions of CDK4 and Cyclin D1 increased along with progression of gallbladder mucosa hyperplasia; and showed highest expression in cancer group. On the contrary, p16 decreased to the lowest level in gallbladder cancer. The increased apoptotic index analyzed by TUNEL assay rose along with malignant degree to the highest level in undifferentiated carcinoma. CONCLUSIONS Our results suggest that changes of these signals have effect on breaking the balance of proliferation and death of gallbladder epithelial cells, even on inducing gallbladder cancer.
Collapse
Affiliation(s)
- Zhiqiang Feng
- Department of Hepatobiliary Surgery, Air Force General Hospital of PLA, Beijing, 100142, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Park GB, Song H, Kim YS, Sung M, Ryu JW, Lee HK, Cho DH, Kim D, Lee WJ, Hur DY. Cell cycle arrest induced by engagement of B7-H4 on Epstein-Barr virus-positive B-cell lymphoma cell lines. Immunology 2010; 128:360-8. [PMID: 20067536 DOI: 10.1111/j.1365-2567.2009.03111.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
B7-H4 is a recently discovered B7 family member that has inhibitory effects on T-cell immunity. However, the reverse signalling mechanism of the B7-H4-expressing cells remains unclear. Previous work has shown that B7-H4 expression was enhanced on B cells following Epstein-Barr virus (EBV) infection, and engagement of cell-surface-expressed B7-H4 induces cell death of EBV-transformed B cells. Here we found that B7-H4 was constitutively expressed on EBV-positive lymphoma cells, Raji and IM-9 cells, but was not expressed on EBV-negative lymphoma cells (Ramos). Engagement of B7-H4 significantly reduced cell growth of Raji and IM-9 cells and resulted in cell cycle arrest at G0-G1 phase in a dose- and time-dependent manner. To clarify the mechanism of cell cycle arrest via activation of B7-H4, cell cycle regulatory factors were examined by reverse transcription-polymerase chain reaction and immunoblotting. We found that B7-H4 triggered down-regulation of CDK4/6 and up-regulation of p21 expression at both protein and RNA levels. Furthermore, CDK2 and cyclin E/D expression was down-regulated by B7-H4 triggering. Additionally, the down-regulation of phospho-AKT and phospho-cyclin E were clearly detected in B7-H4-activated Raji cells, but the phosphorylation of p53 was constitutively maintained. These results indicate that B7-H4-mediated signalling on EBV-positive B-cell lymphoma cells modulates the cell cycle through down-regulation of the AKT pathway. Consequently, B7-H4 may be a new potential target for use in EBV-positive lymphoma therapy.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Anatomy and Tumour Immunology, Inje University College of Medicine, Busan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu B, Zhang Y, Jin M, Ni Q, Liang X, Ma X, Yao K, Li Q, Chen K. Association of selected polymorphisms of CCND1, p21, and caspase8 with colorectal cancer risk. Mol Carcinog 2010; 49:75-84. [PMID: 19795398 DOI: 10.1002/mc.20579] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has been well elucidated that the signal transduction of cell-cycle control pathway and apoptosis pathway plays an important role in the normal growth and differentiation of organisms. To test the hypothesis that mutants of key genes involved in cell-cycle regulation and apoptosis might contribute to the increased risk of colorectal cancer (CRC), a population-based case-control study was carried out in Jiashan County, Zhejiang Province. The study population was composed of 373 CRC cases and 838 controls. Five genetic variants including CCND1 G870A, p21 codon31 C/A, p21 3'UTR C/T, caspase8 IVS12-19G/A, and caspase8 6n del/ins were genotyped. The associations of the polymorphisms with CRC were estimated by logistical regression model after adjustment for the important covariates. The interactive effect among the five selected genetic polymorphisms on CRC was explored by multifactor dimensionality reduction (MDR) software. The significant association between five single-nucleotide polymorphisms (SNPs) and CRC risk was not observed, respectively. However, caspase8 del/del showed a marginally significant association with the increased risk of rectum cancer [adjusted odds ratio (OR) (95% confidence interval, CI) = 1.92 (0.97-3.79); P = 0.06]. Furthermore, the MDR analysis indicated that the best interactive model for CRC included three factors-CCND1 G870A, caspase8 IVS12-19G/A, and caspase8 6 n del/ins-with 53.44% testing balanced accuracy and 10/10 cross-validation consistency, but the model was no longer significant after the 1000 times permutation test (P = 0.25). Our findings suggest that the selected polymorphisms of p21, CCND1, and caspase8 may not contribute to the risk of colorectal cancer.
Collapse
Affiliation(s)
- Bing Liu
- Department of Epidemiology and Health Statistics, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang H, Li B, Bai SW, Wang HJ. Constitutively Active Akt Contributes to Vincristine Resistance in Human Retinoblastoma Cells. Cancer Invest 2009; 28:156-65. [DOI: 10.3109/07357900903179641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Palakurthy RK, Wajapeyee N, Santra MK, Gazin C, Lin L, Gobeil S, Green MR. Epigenetic silencing of the RASSF1A tumor suppressor gene through HOXB3-mediated induction of DNMT3B expression. Mol Cell 2009; 36:219-30. [PMID: 19854132 PMCID: PMC2776651 DOI: 10.1016/j.molcel.2009.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 06/26/2009] [Accepted: 10/06/2009] [Indexed: 12/31/2022]
Abstract
The RASSF1A tumor suppressor gene is epigenetically silenced in a variety of cancers. Here, we perform a genome-wide human shRNA screen and find that epigenetic silencing of RASSF1A requires the homeobox protein HOXB3. We show that HOXB3 binds to the DNA methyltransferase DNMT3B gene and increases its expression. DNMT3B, in turn, is recruited to the RASSF1A promoter, resulting in hypermethylation and silencing of RASSF1A expression. DNMT3B recruitment is facilitated through interactions with Polycomb repressor complex 2 and MYC, which is bound to the RASSF1A promoter. Mouse xenograft experiments indicate that the oncogenic activity of HOXB3 is due, at least in part, to epigenetic silencing of RASSF1A. Expression analysis in human lung adenocarcinoma samples reveals that RASSF1A silencing strongly correlates with overexpression of HOXB3 and DNMT3B. Analysis of human cancer cell lines indicates that the RASSF1A epigenetic silencing mechanism described here may be common in diverse cancer types.
Collapse
Affiliation(s)
| | | | - Manas K. Santra
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Claude Gazin
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ling Lin
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Stephane Gobeil
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Michael R. Green
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
38
|
Tang M, Xu W, Wang Q, Xiao W, Xu R. Potential of DNMT and its Epigenetic Regulation for Lung Cancer Therapy. Curr Genomics 2009; 10:336-52. [PMID: 20119531 PMCID: PMC2729998 DOI: 10.2174/138920209788920994] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 02/07/2023] Open
Abstract
Lung cancer, the leading cause of mortality in both men and women in the United States, is largely diagnosed at its advanced stages that there are no effective therapeutic alternatives. Although tobacco smoking is the well established cause of lung cancer, the underlying mechanism for lung tumorigenesis remains poorly understood. An important event in tumor development appears to be the epigenetic alterations, especially the change of DNA methylation patterns, which induce the most tumor suppressor gene silence. In one scenario, DNA methyltransferase (DNMT) that is responsible for DNA methylation accounts for the major epigenetic maintenance and alternation. In another scenario, DNMT itself is regulated by the environment carcinogens (smoke), epigenetic and genetic information. DNMT not only plays a pivotal role in lung tumorigenesis, but also is a promising molecular bio-marker for early lung cancer diagnosis and therapy. Therefore the elucidation of the DNMT and its related epigenetic regulation in lung cancer is of great importance, which may expedite the overcome of lung cancer.
Collapse
Affiliation(s)
- Mingqing Tang
- Engineering Research Center of Molecular Medicine, Ministry of Education, 362021, China & Institute of Molecular Medicine, Huaqiao University, Fujian, 362021, China
| | - William Xu
- Faculty of Science, University of New South Wales, 2052, Australia
| | - Qizhao Wang
- Engineering Research Center of Molecular Medicine, Ministry of Education, 362021, China & Institute of Molecular Medicine, Huaqiao University, Fujian, 362021, China
| | - Weidong Xiao
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruian Xu
- Engineering Research Center of Molecular Medicine, Ministry of Education, 362021, China & Institute of Molecular Medicine, Huaqiao University, Fujian, 362021, China
| |
Collapse
|
39
|
Wu X, Spitz MR, Lee JJ, Lippman SM, Ye Y, Yang H, Khuri FR, Kim E, Gu J, Lotan R, Hong WK. Novel susceptibility loci for second primary tumors/recurrence in head and neck cancer patients: large-scale evaluation of genetic variants. Cancer Prev Res (Phila) 2009; 2:617-24. [PMID: 19584075 PMCID: PMC2964280 DOI: 10.1158/1940-6207.capr-09-0025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was aimed to identify novel susceptibility variants for second primary tumor (SPT) or recurrence in curatively treated early-stage head and neck squamous cell carcinoma (HNSCC) patients. We constructed a custom chip containing a comprehensive panel of 9,645 chromosomal and mitochondrial single nucleotide polymorphisms (SNP) representing 998 cancer-related genes selected by a systematic prioritization schema. Using this chip, we genotyped 150 early-stage HNSCC patients with and 300 matched patients without SPT/recurrence from a prospectively conducted randomized trial and assessed the association of these SNPs with risk of SPT/recurrence. Individually, six chromosomal SNPs and seven mitochondrial SNPs were significantly associated with risk of SPT/recurrence after adjustment for multiple comparisons. A strong gene-dosage effect was observed when these SNPs were combined, as evidenced by a progressively increasing SPT/recurrence risk as the number of unfavorable genotypes increased (P for trend < 1.00 x 10(-20)). Several polygenic analyses suggest an important role of interconnected functional network and gene-gene interaction in modulating SPT/recurrence. Furthermore, incorporation of these genetic markers into a multivariate model improved significantly the discriminatory ability over the models containing only clinical and epidemiologic variables. This is the first large-scale systematic evaluation of germ-line genetic variants for their roles in HNSCC SPT/recurrence. The study identified several promising susceptibility loci and showed the cumulative effect of multiple risk loci in HNSCC SPT/recurrence. Furthermore, this study underscores the importance of incorporating germ-line genetic variation data with clinical and risk factor data in constructing prediction models for clinical outcomes.
Collapse
Affiliation(s)
- Xifeng Wu
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Margaret R. Spitz
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - J. Jack Lee
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Scott M. Lippman
- Department of Thoracic/Head & Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Yuanqing Ye
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Hushan Yang
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Fadlo R. Khuri
- Department of Hematology / Oncology (F.R.K.), Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| | - Edward Kim
- Department of Thoracic/Head & Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Jian Gu
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Reuben Lotan
- Department of Thoracic/Head & Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Waun K. Hong
- Department of Thoracic/Head & Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
40
|
Molecular analysis of the Ink4a/Rb1–Arf/Tp53 pathways in radon-induced rat lung tumors. Lung Cancer 2009; 63:348-53. [DOI: 10.1016/j.lungcan.2008.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/10/2008] [Accepted: 06/05/2008] [Indexed: 01/27/2023]
|
41
|
|
42
|
Kitamura H, Yazawa T, Sato H, Okudela K, Shimoyamada H. Small cell lung cancer: significance of RB alterations and TTF-1 expression in its carcinogenesis, phenotype, and biology. Endocr Pathol 2009; 20:101-7. [PMID: 19390995 DOI: 10.1007/s12022-009-9072-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Small cell lung cancer (SCLC) exhibits highly aggressive behavior and has a poor prognosis. While numerous investigations have been carried out, the exact mechanism of its carcinogenesis and aggressiveness is still unclear. SCLC is categorized as a neuroendocrine neoplasia and has a genetic profile characterized by universal alterations of the RB and TP53 genes. Epidemiological studies indicate the majority of SCLCs to be caused by smoking and the TP53 mutational pattern to be consistent with that evoked by smoke carcinogens; however, there is no direct evidence that such carcinogens induce alterations to RB in SCLC. While the importance of these alterations in the carcinogenesis of SCLC is strongly suggested, the exact molecular mechanism has been only little elucidated. SCLC cells almost always express mammalian achaete-scute homolog-1 (MASH1) and thyroid transcription factor-1 (TTF-1). MASH1 plays a critical role in neuroendocrine differentiation. TTF-1 is a characteristic marker of distal airway cells and pulmonary adenocarcinomas, but is also expressed in extrapulmonary neuroendocrine cancers. Thus, TTF-1 may well play a significant role in the development of neuroendocrine cancers. Recent studies indicate that the airway stem cell is committed to the neuroendocrine lineage through MASH1 and Notch signaling and that only RB-deleted neuroendocrine cells selectively proliferate in response to E2F3, eventually undergoing transformation to neuroendocrine cancer cells, probably in concert with TP53 gene aberrations. Thus, alterations of both the RB and TP53 genes are central to the carcinogenesis of SCLC, while many other factors including MASH1 and TTF-1 contribute to the development and biological behavior of SCLC.
Collapse
Affiliation(s)
- Hitoshi Kitamura
- Department of Pathology, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | | | | | | | | |
Collapse
|
43
|
Liu X, Wu WKK, Yu L, Sung JJY, Srivastava G, Zhang ST, Cho CH. Epinephrine stimulates esophageal squamous-cell carcinoma cell proliferation via beta-adrenoceptor-dependent transactivation of extracellular signal-regulated kinase/cyclooxygenase-2 pathway. J Cell Biochem 2008; 105:53-60. [PMID: 18452159 DOI: 10.1002/jcb.21802] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Esophageal cancer is the sixth leading causes of cancer-related death in the world. It is suggested that beta-adrenoceptor is involved in the control of cell proliferation, but its role in the pathogenesis of esophageal cancer remains unknown. We therefore studied the role of beta-adrenergic signaling in the regulation of growth of an esophageal squamous-cell carcinoma cell line HKESC-1. Results showed that both beta(1)- and beta(2)-adrenoceptors were expressed in HKESC-1 cells. Stimulation of beta-adrenoceptors with epinephrine significantly increased HKESC-1 cell proliferation accompanied by elevation of intracellular cyclic AMP levels, which were abolished by beta(1)- or beta(2)-selective antagonists. Epinephrine also increased extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation as well as cyclooxygenase-2 (COX-2) and cytosolic phospholipase A(2) expression, which were blocked by beta(1)- or beta(2)-selective antagonists. Moreover, epinephrine increased cyclin D(1), cyclin E(2), cyclin-dependent kinase (CDK)-4, CDK-6, and E(2)F-1 expression and retinoblastoma protein phosphorylation at Ser807/811, all of which were abrogated by beta(1)-adrenoceptor antagonist. Furthermore, epinephrine increased the expression of vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR)-1 and -2 in a beta(2)-adrenoceptor-, mitogen-activated protein kinase/ERK kinase (MEK)-, and COX-2-dependent manner. MEK or COX-2 inhibitor also significantly inhibited HKESC-1 cell proliferation induced by epinephrine. Collectively, we demonstrate that epinephrine stimulates esophageal squamous-cell carcinoma cell proliferation via beta-adrenoceptor-dependent transactivation of ERK/COX-2 pathway. Stimulation of beta(1)- and beta(2)-adrenoceptors also elicits a differential response on the expression of cell cycle regulators. These novel findings may shed new light on the understanding of beta-adrenergic signaling in the control of esophageal cancer cell growth.
Collapse
Affiliation(s)
- Xuan Liu
- Beijing Digestive Diseases Center and Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
OBJECTIVES The purpose of this study was to investigate whether pancreatic and duodenal homeobox factor 1 (PDX-1) could serve as a potential molecular target for the treatment of pancreatic cancer. METHODS Cell proliferation, invasion capacity, and protein levels of cell cycle mediators were determined in human pancreatic cancer cells transfected with mouse PDX-1 (mPDX-1) alone or with mPDX-1 short hairpin RNA (shRNA) and/or human PDX-1 shRNA (huPDX-1 shRNA). Tumor cell growth and apoptosis were also evaluated in vivo in PANC-1 tumor-bearing severe combined immunodeficient mice receiving multiple treatments of intravenous liposomal huPDX-1 shRNA. RESULTS mPDX-1 overexpression resulted in the significant increase of cell proliferation and invasion in MIA PaCa2, but not PANC-1 cells. This effect was blocked by knocking down mPDX-1 expression with mPDX-1 shRNA. Silencing of huPDX-1 expression in PANC-1 cells inhibited cell proliferation in vitro and suppressed tumor growth in vivo which was associated with increased tumor cell apoptosis. PDX-1 overexpression resulted in dysregulation of the cell cycle with up-regulation of cyclin D, cyclin E, and Cdk2 and down-regulation of p27. CONCLUSIONS PDX-1 regulates cell proliferation and invasion in human pancreatic cancer cells. Down-regulation of PDX-1 expression inhibits pancreatic cancer cell growth in vitro and in vivo, implying its use as a potential therapeutic target for the treatment of pancreatic cancer.
Collapse
|
45
|
Patwa TH, Zhao J, Misek DE, Lubman DM. Two-Dimensional Liquid Separations, Protein Microarrays, and Mass Spectrometry in Comprehensive Analysis of Posttranslational Modifications and Biomarker Discovery in Cancers. Clin Proteomics 2008. [DOI: 10.1002/9783527622153.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
46
|
Wang W, Spitz MR, Yang H, Lu C, Stewart DJ, Wu X. Genetic variants in cell cycle control pathway confer susceptibility to lung cancer. Clin Cancer Res 2007; 13:5974-81. [PMID: 17908995 DOI: 10.1158/1078-0432.ccr-07-0113] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE To test the hypothesis that common sequence variants of cell cycle control genes may affect lung cancer predisposition. EXPERIMENTAL DESIGN We explored lung cancer risk associations of 11 polymorphisms in seven cell cycle genes in a large case-control study including 1,518 Caucasian lung cancer patients and 1,518 controls. RESULTS When individuals with variant-containing genotypes were compared with homozygous wild-type carriers, a significantly increased lung cancer risk was identified for polymorphisms in p53 intron 6 [rs1625895; odds ratio (OR), 1.29; 95% confidence interval (95% CI), 1.08-1.55] and in p27 5' untranslated region (UTR; rs34330; OR, 1.27; 95% CI, 1.01-1.60). Compared with homozygous wild-types, the homozygous variant genotypes of STK15 F31I and CCND1 G870A were associated with a significantly altered lung cancer risk with ORs of 0.58 (95% CI, 0.37-0.90) and 1.26 (95% CI, 1.03-1.53), respectively. To assess the cumulative effects of all the investigated polymorphisms on lung carcinogenesis, we conducted a combined analysis and found that compared with low-risk individuals with few adverse alleles, individuals with more adverse alleles had an increased risk in a significant dose-dependent manner (P(trend) = 0.041). This pattern was more evident in ever smokers (P(trend) = 0.037), heavy smokers (P(trend) = 0.020), and older subjects (P(trend) = 0.011). Higher-order gene-gene interactions were evaluated using the classification and regression tree analysis, which indicated that STK15 F31I and p53 intron 6 polymorphisms might be associated with lung carcinogenesis in never/light-smokers and heavy smokers, respectively. CONCLUSIONS Our results suggest that cell cycle gene polymorphisms and smoking may function collectively to modulate the risk of lung cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
47
|
Motadi L, Misso N, Dlamini Z, Bhoola K. Molecular genetics and mechanisms of apoptosis in carcinomas of the lung and pleura: Therapeutic targets. Int Immunopharmacol 2007; 7:1934-47. [DOI: 10.1016/j.intimp.2007.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
|
48
|
Srinivasan SV, Mayhew CN, Schwemberger S, Zagorski W, Knudsen ES. RB loss promotes aberrant ploidy by deregulating levels and activity of DNA replication factors. J Biol Chem 2007; 282:23867-77. [PMID: 17556357 DOI: 10.1074/jbc.m700542200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The retinoblastoma tumor suppressor (RB) is functionally inactivated in many human cancers. Classically, RB functions to repress E2F-mediated transcription and inhibit cell cycle progression. Consequently, RB ablation leads to loss of cell cycle control and aberrant expression of E2F target genes. Emerging evidence indicates a role for RB in maintenance of genomic stability. Here, mouse adult fibroblasts were utilized to demonstrate that aberrant DNA content in RB-deficient cells occurs concomitantly with an increase in levels and chromatin association of DNA replication factors. Furthermore, following exposure to nocodazole, RB-proficient cells arrest with 4 n DNA content, whereas RB-deficient cells bypass the mitotic block, continue DNA synthesis, and accumulate cells with higher ploidy and micronuclei. Under this condition, RB-deficient cells also retain high levels of tethered replication factors, MCM7 and PCNA, indicating that DNA replication occurs in these cells under nonpermissive conditions. Exogenous expression of replication factors Cdc6 or Cdt1 in RB-proficient cells does not recapitulate the RB-deficient cell phenotype. However, ectopic E2F expression in RB-proficient cells elevated ploidy and bypassed the response to nocodazole-induced cessation of DNA replication in a manner analogous to RB loss. Collectively, these results demonstrate that deregulated S phase control is a key mechanism by which RB-deficient cells acquire elevated ploidy.
Collapse
Affiliation(s)
- Seetha V Srinivasan
- Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
49
|
Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. The activator protein-1 transcription factor in respiratory epithelium carcinogenesis. Mol Cancer Res 2007; 5:109-20. [PMID: 17314269 DOI: 10.1158/1541-7786.mcr-06-0311] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Respiratory epithelium cancers are the leading cause of cancer-related death worldwide. The multistep natural history of carcinogenesis can be considered as a gradual accumulation of genetic and epigenetic aberrations, resulting in the deregulation of cellular homeostasis. Growing evidence suggests that cross-talk between membrane and nuclear receptor signaling pathways along with the activator protein-1 (AP-1) cascade and its cofactor network represent a pivotal molecular circuitry participating directly or indirectly in respiratory epithelium carcinogenesis. The crucial role of AP-1 transcription factor renders it an appealing target of future nuclear-directed anticancer therapeutic and chemoprevention approaches. In the present review, we will summarize the current knowledge regarding the implication of AP-1 proteins in respiratory epithelium carcinogenesis, highlight the ongoing research, and consider the future perspectives of their potential therapeutic interest.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | | | | |
Collapse
|
50
|
Vischioni B, Oudejans JJ, Vos W, Rodriguez JA, Giaccone G. Frequent overexpression of aurora B kinase, a novel drug target, in non-small cell lung carcinoma patients. Mol Cancer Ther 2007; 5:2905-13. [PMID: 17121938 DOI: 10.1158/1535-7163.mct-06-0301] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The serine/threonine protein kinase aurora B, a key regulator of mitosis, is emerging as a novel drug target for cancer treatment. Aurora B overexpression has been previously documented by immunohistochemistry in several types of human tumors. We assessed aurora B expression in a series of 160 non-small cell lung cancer (NSCLC) samples (60% stage I, 21% stage II, 11% stage III, and 8% stage IV). In addition, we determined the expression of survivin and p16, two molecules also involved in cell cycle control. Aurora B was expressed selectively in tumor cells compared with normal epithelium. Aurora B expression was significantly correlated with expression of survivin in the nucleus (P < 0.0001), but not with expression of p16 (P = 0.134). High aurora B expression levels were significantly associated with older age (P = 0.012), male sex (P = 0.013), squamous cell carcinoma histology (P = 0.001), poor tumor differentiation grade (P = 0.007), and lymph node invasion (P = 0.037), in the subset of radically resected patients in our series. In addition, aurora B expression predicted shorter survival for the patients with adenocarcinoma histology, at both univariate (P = 0.020) and multivariate (P = 0.012) analysis. Survivin expression levels were neither associated with patient clinicopathologic characteristics nor with survival. However, expression of survivin in the nucleus was preferentially detected in stage I and II than in stage III and IV (P = 0.007) in the overall series of NSCLC samples. Taken together, our results suggest that aurora B may represent a valid target in NSCLC.
Collapse
Affiliation(s)
- Barbara Vischioni
- Division of Medical Oncology, Academic Hospital Vrije Universiteit, 1117 De Boelelaan, HV 1081 Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|