1
|
Al-Noshokaty TM, Elballal MS, Helal GK, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Midan HM, Zaki MB, Abd-Elmawla MA, Rizk NI, Elrebehy MA, Zewail MB, Mohammed OA, Doghish AS. miRNAs driving diagnosis, prognosis and progression in Merkel cell carcinoma. Pathol Res Pract 2023; 249:154763. [PMID: 37595447 DOI: 10.1016/j.prp.2023.154763] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Merkel cell carcinoma (MCC) is a rare, aggressive form of skin malignancy with a high recurrence commonly within two to three years of initial diagnosis. The incidence of MCC has nearly doubled in the past few decades. Options for diagnosing, assessing, and treating MCC are limited. MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules that play an important role in controlling many different aspects of cell biology. Many miRNAs are aberrantly expressed in distinct types of cancer, with some serving as tumor suppressors and others as oncomiRs. Therefore, the future holds great promise for the utilization of miRNAs in enhancing diagnostic, prognostic, and therapeutic approaches for MCC. Accordingly, the goal of this article is to compile, summarize, and discuss the latest research on miRNAs in MCC, highlighting their potential clinical utility as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829 Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
2
|
Garrido-Palacios A, Rojas Carvajal AM, Núñez-Negrillo AM, Cortés-Martín J, Sánchez-García JC, Aguilar-Cordero MJ. MicroRNA Dysregulation in Early Breast Cancer Diagnosis: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24098270. [PMID: 37175974 PMCID: PMC10179484 DOI: 10.3390/ijms24098270] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer continues to be the leading cause of death in women worldwide. Mammography, which is the current gold standard technique used to diagnose it, presents strong limitations in early ages where breast cancer is much more aggressive and fatal. MiRNAs present in numerous body fluids might represent a new line of research in breast cancer biomarkers, especially oncomiRNAs, known to play an important role in the suppression and development of neoplasms. The aim of this systematic review and meta-analysis was to evaluate dysregulated miRNA biomarkers and their diagnostic accuracy in breast cancer. Two independent researchers reviewed the included studies according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. A protocol for this review was registered in PROSPERO with the registration number "CRD42021256338". Observational case-control-based studies analyzing concentrations of microRNAs which have been published within the last 10 years were selected, and the concentrations of miRNAs in women with breast cancer and healthy controls were analyzed. Random-effects meta-analyses of miR-155 were performed on the studies which provided enough data to calculate diagnostic odds ratios. We determined that 34 microRNAs were substantially dysregulated and could be considered biomarkers of breast cancer. Individually, miR-155 provided better diagnostic results than mammography on average. However, when several miRNAs are used to screen, forming a panel, sensitivity and specificity rates improve, and they can be associated with classic biomarkers such us CA-125 or CEA. Based on the results of our meta-analysis, miR-155 might be a promising diagnostic biomarker for this patient population.
Collapse
Affiliation(s)
- Alejandro Garrido-Palacios
- CTS367, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
| | - Ana María Rojas Carvajal
- CTS367, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
| | - Ana María Núñez-Negrillo
- CTS367, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
- Department of Nursing, Faculty of Health Science, University of Granada, 18001 Granada, Spain
| | - Jonathan Cortés-Martín
- Department of Nursing, Faculty of Health Science, University of Granada, 18001 Granada, Spain
- CTS1068, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
| | - Juan Carlos Sánchez-García
- Department of Nursing, Faculty of Health Science, University of Granada, 18001 Granada, Spain
- CTS1068, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
| | - María José Aguilar-Cordero
- CTS367, Andalusian Plan for Research, Development and Innovation, University of Granada, 18001 Granada, Spain
- Department of Nursing, Faculty of Health Science, University of Granada, 18001 Granada, Spain
| |
Collapse
|
3
|
Gupta J, Kareem Al-Hetty HRA, Aswood MS, Turki Jalil A, Azeez MD, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The key role of microRNA-766 in the cancer development. Front Oncol 2023; 13:1173827. [PMID: 37205191 PMCID: PMC10185842 DOI: 10.3389/fonc.2023.1173827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer is caused by defects in coding and non-coding RNAs. In addition, duplicated biological pathways diminish the efficacy of mono target cancer drugs. MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that regulate many target genes and play a crucial role in physiological processes such as cell division, differentiation, cell cycle, proliferation, and apoptosis, which are frequently disrupted in diseases such as cancer. MiR-766, one of the most adaptable and highly conserved microRNAs, is notably overexpressed in several diseases, including malignant tumors. Variations in miR-766 expression are linked to various pathological and physiological processes. Additionally, miR-766 promotes therapeutic resistance pathways in various types of tumors. Here, we present and discuss evidence implicating miR-766 in the development of cancer and treatment resistance. In addition, we discuss the potential applications of miR-766 as a therapeutic cancer target, diagnostic biomarker, and prognostic indicator. This may shed light on the development of novel therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Hussein Riyadh Abdul Kareem Al-Hetty
- Department of Nursing, Al-Maarif University College, Ramadi, Anbar, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | - Murtadha Sh. Aswood
- Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Azogues, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| |
Collapse
|
4
|
Mirzajani E, Vahidi S, Norollahi SE, Samadani AA. Novel biomarkers of microRNAs in gastric cancer; an overview from diagnosis to treatment. Microrna 2022; 11:12-24. [PMID: 35319404 DOI: 10.2174/2211536611666220322160242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
The fourth frequent disease in the world and the second cause of cancer-related death is gastric cancer (GC). In this way, over 80% of diagnoses are made in the middle to advanced degrees of the disease, underscoring the requirement for innovative biomarkers that can be identified quickly. Meaningly, biomarkers that can complement endoscopic diagnosis and be used to detect patients with a high risk of GC are desperately needed. These biomarkers will allow for the accurate prediction of therapy response and prognosis in GC patients, as well as the development of an optimal treatment strategy for each individual. Conspicoiusly, microRNAs (miRNAs) and small noncoding RNA regulates the expression of target mRNA and thereby modifies critical biological mechanisms. According to the data, abnormally miRNAs expression in GC is linked to tumor growth, carcinogenesis, aggression and distant metastasis. Importantly, miRNA expression patterns and next-generation sequencing (NGS) can also be applied to analyze kinds of tissues and cancers. Given the high death rates and poor prognosis of GC, and the absence of a clinical diagnostic factor that is adequately sensitive to GC, research into novel sensitive and specific markers for GC diagnosis is critical. In this review,we evaluate the latest research findings that suggest the feasibility and clinical utility of miRNAs in GC.
Collapse
Affiliation(s)
- Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sogand Vahidi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
miRNA-574-5p downregulates ZNF70 and influences the progression of human esophageal squamous cell carcinoma through reactive oxygen species generation and MAPK pathway activation. Anticancer Drugs 2021; 31:282-291. [PMID: 32053575 DOI: 10.1097/cad.0000000000000833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is growing evidence shown that microRNAs (miRNAs) are associated with cancer and can play a role in human cancers as oncogenes or tumor suppressor genes. miRNA-574-5p is a candidate oncogene in various types of cancer, but little is known about biological functions of miR-574-5p in esophageal squamous cell carcinoma (ESCC). In this study, we observe that the expression of miR-574-5p is not only increased in human ESCC tissues but also remarkably increased in cell lines correlates with ZNF70. In vitro, we explored the role of miR-574-5p in ESCC progression via transfection of the miR-574-5p inhibitor into ECA-109 cells. The results show miR-574-5p serve as a tumor promoter regulating cells proliferation and apoptosis in ESCC through mitochondrial-mediated reactive oxygen species (ROS) generation and MAPK pathways. Furthermore, ZNF70 has been proved to as a functional target for miR-574-5p to regulate cells poliferation and apoptosis. In summary, these results suggest that miR-574-5p serves as tumor promoter to promote proliferation and inhibit apoptosis of ESCC cells by targeting ZNF70 via mitochondrial-mediated ROS generation and MAPK pathways. The miR-574-5p/ZNF70 pathway provides a new insight into the molecular mechanisms that the occurrence and development of ESCC and it provides a novel therapeutic target for ESCC.
Collapse
|
6
|
Zhang R, Zhang W, Xu B, Lv C, Hou J, Zhang G. Long intergenic non-coding RNA 1939 eliminates proliferation and migration of human renal cell carcinoma (RCC) cells by down-regulation of miR-154. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2020; 48:695-702. [PMID: 32138544 DOI: 10.1080/21691401.2020.1725024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Renal carcinoma (RCC) is widely accepted as a malignant tumour of urinary system. Long intergenic non-coding RNA 1939 (LINC01939) is a novel lncRNA which was found to be down-regulated in RCC. Thus, we set out to explore the effect and regulation mechanism of LINC01939 in RCC. LINC01939 and miR-154 in RCC tissues and cell lines were detected using qRT-PCR assay. To examine cellular viability of ACHN and CAKI-1 cells, cell counting kit-8 (CCK-8) assay was exploited here. Flow cytometric analysis was conducted to examine apoptosis. Cell mobility was valued through wound healing assays. Western blotting was applied for examination of proteins related to proliferation, apoptosis, migration and Wnt/β-catenin/Notch. LINC01939 was down-regulated in RCC tissues. LINC01939 overexpression impeded proliferation and migration, and induced apoptosis. Further study found that the overexpression of LINC01939 strongly suppressed miR-154 expression. Then, the inhibiting effect of overexpressed LINC01939 on proliferation and mobility and the promoting role of LINC01939 in apoptosis were abolished by the combination of miR-154 mimic. Finally, we found that overexpressed LINC01939 inactivated Wnt/β-catenin and Notch through suppressing miR-154. Up-regulation of LINC01939 inhibited proliferation and migration of RCC cells by down-regulating miR-154.
Collapse
Affiliation(s)
- Rongyuan Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Weijie Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Baocai Xu
- Department of Urology, Jining No, 1 People's Hospital, Jining, China
| | - Chuan Lv
- Department of Urology, Jining No, 1 People's Hospital, Jining, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Jiangsu, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Jiangsu, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Jiangsu, China
| |
Collapse
|
7
|
Prostaglandin E1 protects cardiomyocytes against hypoxia-reperfusion induced injury via the miR-21-5p/FASLG axis. Biosci Rep 2020; 39:221373. [PMID: 31782491 PMCID: PMC6923339 DOI: 10.1042/bsr20190597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Prostaglandin-E1 (PGE1) is a potent vasodilator with anti-inflammatory and antiplatelet effects. However, the mechanism by which PGE1 contributes to the amelioration of cardiac injury remains unclear. Methods: The present study was designed to investigate how PGE1 protects against hypoxia/reoxygenation (H/R)-induced injuries by regulating microRNA-21-5p (miR-21-5p) and fas ligand (FASLG). Rat H9C2 cells and isolated primary cardiomyocytes were cultured under hypoxic conditions for 6 h (6H, hypoxia for 6 h), and reoxygenated for periods of 6 (6R, reoxygenation for 6 h), 12, and 24 h, respectively. Cells from the 6H/6R group were treated with various doses of PGE1; after which, their levels of viability and apoptosis were detected. Results: The 6H/6R treatment regimen induced the maximum level of H9C2 cell apoptosis, which was accompanied by the highest levels of Bcl-2-associated X protein (Bax) and cleaved-caspase-3 expression and the lowest level of B-cell lymphoma 2 (Bcl-2) expression. Treatment with PGE1 significantly diminished the cell cytotoxicity and apoptosis induced by the 6H/6R regimen, and also decreased expression of IL-2, IL-6, P-p65, TNF-α, and cleaved-caspase-3. In addition, we proved that PGE1 up-regulated miR-21-5p expression in rat cardiomyocytes exposed to conditions that produce H/R injury. FASLG was a direct target of miR-21-5p, and PGE1 reduced the ability of H/R-injured rat cardiomyocytes to undergo apoptosis by affecting the miR-21-5p/FASLG axis. In addition, we proved that PGE1 could protect primary cardiomyocytes against H/R-induced injuries. Conclusions: These results indicate that PGE1 exerts cardioprotective effects in H9C2 cells during H/R by regulating the miR-21-5p/FASLG axis.
Collapse
|
8
|
Abolghasemi M, Tehrani SS, Yousefi T, Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M, Kafil HS, Bastami M, Edalati M, Eyvazi S, Naghizadeh M, Targhazeh N, Yousefi B, Safa A, Majidinia M, Rameshknia V. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J Cell Physiol 2019; 235:5008-5029. [PMID: 31724738 DOI: 10.1002/jcp.29396] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most lethal malignancies in women in the world. Various factors are involved in the development and promotion of the malignancy; most of them involve changes in the expression of certain genes, such as microRNAs (miRNAs). MiRNAs can regulate signaling pathways negatively or positively, thereby affecting tumorigenesis and various aspects of cancer progression, particularly breast cancer. Besides, accumulating data demonstrated that miRNAs are a novel tool for prognosis and diagnosis of breast cancer patients. Herein, we will review the roles of these RNA molecules in several important signaling pathways, such as transforming growth factor, Wnt, Notch, nuclear factor-κ B, phosphoinositide-3-kinase/Akt, and extracellular-signal-regulated kinase/mitogen activated protein kinase signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Maryam Abolghasemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Ghamari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Naghizadeh
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Babol University Of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rameshknia
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
9
|
Zou X, Li M, Huang Z, Zhou X, Liu Q, Xia T, Zhu W. Circulating miR-532-502 cluster derived from chromosome X as biomarkers for diagnosis of breast cancer. Gene 2019; 722:144104. [PMID: 31493506 DOI: 10.1016/j.gene.2019.144104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/17/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Xuan Zou
- First Clinical College of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, PR China
| | - Minghui Li
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Zebo Huang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China; Department of Oncology, the Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi 214062, Jiangsu Province, PR China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Qingxie Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Tiansong Xia
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China.
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China; Department of Oncology and Radiotherapy, Nanjing Pukou Central Hospital, 166 Shanghe Street, Pukou District, Nanjing 211800, PR China.
| |
Collapse
|
10
|
Mura M, Jaksik R, Lalik A, Biernacki K, Kimmel M, Rzeszowska-Wolny J, Fujarewicz K. A mathematical model as a tool to identify microRNAs with highest impact on transcriptome changes. BMC Genomics 2019; 20:114. [PMID: 30727966 PMCID: PMC6366035 DOI: 10.1186/s12864-019-5464-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/21/2019] [Indexed: 01/06/2023] Open
Abstract
Background Rapid changes in the expression of many messenger RNA (mRNA) species follow exposure of cells to ionizing radiation. One of the hypothetical mechanisms of this response may include microRNA (miRNA) regulation, since the amounts of miRNAs in cells also vary upon irradiation. To address this possibility, we designed experiments using cancer-derived cell lines transfected with luciferase reporter gene containing sequences targeted by different miRNA species in its 3′- untranslated region. We focus on the early time-course response (1 h past irradiation) to eliminate secondary mRNA expression waves. Results Experiments revealed that the irradiation-induced changes in the mRNA expression depend on the miRNAs which interact with mRNA. To identify the strongest interactions, we propose a mathematical model which predicts the mRNA fold expression changes, caused by perturbation of microRNA-mRNA interactions. Model was applied to experimental data including various cell lines, irradiation doses and observation times, both ours and literature-based. Comparison of modelled and experimental mRNA expression levels given miRNA level changes allows estimating how many and which miRNAs play a significant role in transcriptome response to stress conditions in different cell types. As an example, in the human melanoma cell line the comparison suggests that, globally, a major part of the irradiation-induced changes of mRNA expression can be explained by perturbed miRNA-mRNA interactions. A subset of about 30 out of a few hundred miRNAs expressed in these cells appears to account for the changes. These miRNAs play crucial roles in regulatory mechanisms observed after irradiation. In addition, these miRNAs have a higher average content of GC and a higher number of targeted transcripts, and many have been reported to play a role in the development of cancer. Conclusions Our proposed mathematical modeling approach may be used to identify miRNAs which participate in responses of cells to ionizing radiation, and other stress factors such as extremes of temperature, exposure to toxins, and drugs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5464-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marzena Mura
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland. .,, Ardigen S.A., ul. Bobrzyńskiego 14, 30-348, Cracow, Poland.
| | - Roman Jaksik
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland
| | - Anna Lalik
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland
| | - Krzysztof Biernacki
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, USA
| | - Marek Kimmel
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Departments of Statistics and Bioengineering, Rice University, MS 138, 6100 Main, Houston, TX, 77005, USA
| | - Joanna Rzeszowska-Wolny
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland. .,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland.
| | - Krzysztof Fujarewicz
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland
| |
Collapse
|
11
|
Oztemur Islakoglu Y, Noyan S, Aydos A, Gur Dedeoglu B. Meta-microRNA Biomarker Signatures to Classify Breast Cancer Subtypes. ACTA ACUST UNITED AC 2018; 22:709-716. [DOI: 10.1089/omi.2018.0157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Senem Noyan
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | - Alp Aydos
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | | |
Collapse
|
12
|
Changjun L, Feizhou H, Dezhen P, Zhao L, Xianhai M. MiR-545-3p/MT1M axis regulates cell proliferation, invasion and migration in hepatocellular carcinoma. Biomed Pharmacother 2018; 108:347-354. [PMID: 30227328 DOI: 10.1016/j.biopha.2018.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
Studies have shown that metallothionein 1 M (MT1M) is a tumor suppressor gene which is frequently down-regulated in human hepatocellular carcinoma (HCC). The methylation of MT1M promoter region is one of the important transcriptional regulation mechanisms that contribute to the loss of its expression. In our study, we found that there are still half of the 55 HCC tumor tissues in our cohort do not share the promoter methylation of MT1M. So, we speculated there maybe another mechanism participating in the downregulation of MT1M in HCC. Then, we provided evidences that miR-545-3p, which served as a tumor promoter, post-transcriptionally regulate MT1M in HCC through binding to its untranslated region (3'UTR). Taking together, we investigated the role of miR-545-3p in the process of HCC through regulating MT1M.
Collapse
Affiliation(s)
- Liu Changjun
- Department of Hepatobiliary Surgery, Hunan People's Hospital, Changsha 410005, China; Department of General surgery, the Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Huang Feizhou
- Department of General surgery, the Third Xiangya Hospital of Central South University, Changsha 410013, China.
| | - Peng Dezhen
- Department of Medicine-Neurology, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lei Zhao
- Department of Hepatobiliary Surgery, Hunan People's Hospital, Changsha 410005, China
| | - Mao Xianhai
- Department of Hepatobiliary Surgery, Hunan People's Hospital, Changsha 410005, China
| |
Collapse
|
13
|
Zhang H, Shi X, Chang W, Li Y, Wang L, Wang L. Epigenetic alterations of the Igf2 promoter and the effect of miR‑483‑5p on its target gene expression in esophageal squamous cell carcinoma. Mol Med Rep 2017; 17:2251-2256. [PMID: 29207103 PMCID: PMC5783471 DOI: 10.3892/mmr.2017.8134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most widespread malignancies in China. MicroRNAs (miRNAs/miRs) are endogenous evolutionarily-conserved small non-coding RNAs that are able to regulate ESCC formation and deterioration by negatively regulating specific target genes. In the present study, the expression levels of miR-483-5p and its associated mRNAs were measured by quantitative polymerase chain reaction (PCR) analysis, and the methylation levels of the insulin-like growth factor 2 (Igf2) promoter were detected via the methylation-specific PCR method in serum and tissues from patients with ESCC. The results demonstrated that the expression level of miR-483-5p was significantly upregulated in preoperative serum and cancer tissues from patients with ESCC (P<0.01), and the miR-483-5p expression levels were correlated with the tumor, node, metastasis stage (P<0.05) and lymph node metastasis (P<0.05). In addition, the mRNA levels of miR-483-5p target genes (Rho GDP dissociation inhibitor α, activated leukocyte cell adhesion molecule, and suppressor of cytokine signaling 3) in cancer tissues were significantly decreased compared with adjacent non-cancerous tissues. These results indicated that miR-483-5p and its target genes may be involved in the developmental process of ESCC. The Igf2 levels in cancer tissues were significantly increased compared with adjacent non-cancerous tissues (P<0.01). Additionally, the methylation levels of the Igf2 promoter region were 31.82 and 54.55% in cancer tissues and adjacent non-cancerous tissues, respectively, suggesting that low methylation of the Igf2 gene promoter region may promote the expression of Igf2 and miR-483-5p; this, in turn, induces the degradation of miR-483-5p target genes, and leads to the upregulation of oncogenes and the downregulation of tumor suppressors, which promotes the development of ESCC.
Collapse
Affiliation(s)
- Han Zhang
- School of Life Sciences and Biotechnology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453007, P.R. China
| | - Xiaowei Shi
- School of Life Sciences and Biotechnology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453007, P.R. China
| | - Weidong Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Yingying Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Li Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Linsong Wang
- School of Life Sciences and Biotechnology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453007, P.R. China
| |
Collapse
|
14
|
Prediction Potential of Serum miR-155 and miR-24 for Relapsing Early Breast Cancer. Int J Mol Sci 2017; 18:ijms18102116. [PMID: 28994735 PMCID: PMC5666798 DOI: 10.3390/ijms18102116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/02/2023] Open
Abstract
Oncogenic microRNAs (oncomiRs) accumulate in serum due to their increased stability and thus serve as biomarkers in breast cancer (BC) pathogenesis. Four oncogenic microRNAs (miR-155, miR-19a, miR-181b, and miR-24) and one tumor suppressor microRNA (let-7a) were shown to differentiate between high- and low-risk early breast cancer (EBC) and reflect the surgical tumor removal and adjuvant therapy. Here we applied the longitudinal multivariate data analyses to stochastically model the serum levels of each of the oncomiRs using the RT-PCR measurements in the EBC patients (N = 133) that were followed up 4 years after diagnosis. This study identifies that two of the studied oncomiRs, miR-155 and miR-24, are highly predictive of EBC relapse. Furthermore, combining the oncomiR level with Ki-67 expression further specifies the relapse probability. Our data move further the notion that oncomiRs in serum enable not only monitoring of EBC but also are a very useful tool for predicting relapse independently of any other currently analyzed characteristics in EBC patients. Our approach can be translated into medical practice to estimate individual relapse risk of EBC patients.
Collapse
|
15
|
Zhao YX, Liu HC, Ying WY, Wang CY, Yu YJ, Sun WJ, Liu JF. microRNA‑372 inhibits proliferation and induces apoptosis in human breast cancer cells by directly targeting E2F1. Mol Med Rep 2017; 16:8069-8075. [PMID: 28944922 PMCID: PMC5779890 DOI: 10.3892/mmr.2017.7591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 04/19/2017] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is the most prevalent cancer and the leading cause of cancer-associated mortalities among women worldwide today. Accumulating evidence suggested that miR-372 may serve important roles in the initiation and development of various human cancers. However, the role of miR-372 in breast cancer remains unknown. The present study demonstrated that the expression level of miR-372 in human breast cancer tissues and cell lines is significantly reduced compared with normal breast tissues cell lines. Furthermore, results of functional assays indicated that miR-372 inhibits cell proliferation and induces apoptosis in the MCF-7 human breast cancer cell line. E2F1 was identified as a direct functional target of miR-372 in breast cancer. In conclusion, the findings revealed that miR-372 may have the potential to act as a novel molecule for the diagnosis and therapy of patients with breast cancer.
Collapse
Affiliation(s)
- Ya-Xin Zhao
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hua-Cheng Liu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wei-Yang Ying
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Cheng-Yu Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yao-Jun Yu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wei-Jian Sun
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jie-Fan Liu
- Department of General Practice, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
16
|
Arrighetti N, Cossa G, De Cecco L, Stucchi S, Carenini N, Corna E, Gandellini P, Zaffaroni N, Perego P, Gatti L. PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells. Toxicol Appl Pharmacol 2016; 310:9-19. [DOI: 10.1016/j.taap.2016.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 12/19/2022]
|
17
|
Cancer Salivary Biomarkers for Tumours Distant to the Oral Cavity. Int J Mol Sci 2016; 17:ijms17091531. [PMID: 27626410 PMCID: PMC5037806 DOI: 10.3390/ijms17091531] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/23/2022] Open
Abstract
The analysis of saliva as a diagnostic approach for systemic diseases was proposed just two decades ago, but recently great interest in the field has emerged because of its revolutionary potential as a liquid biopsy and its usefulness as a non-invasive sampling method. Multiple molecules isolated in saliva have been proposed as cancer biomarkers for diagnosis, prognosis, drug monitoring and pharmacogenetic studies. In this review, we focus on the current status of the salivary diagnostic biomarkers for different cancers distant to the oral cavity, noting their potential use in the clinic and their applicability in personalising cancer therapies.
Collapse
|
18
|
Das K, Garnica O, Dhandayuthapani S. Modulation of Host miRNAs by Intracellular Bacterial Pathogens. Front Cell Infect Microbiol 2016; 6:79. [PMID: 27536558 PMCID: PMC4971075 DOI: 10.3389/fcimb.2016.00079] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment.
Collapse
Affiliation(s)
| | | | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl Paso, TX, USA
| |
Collapse
|
19
|
Huo L, Wang Y, Gong Y, Krishnamurthy S, Wang J, Diao L, Liu CG, Liu X, Lin F, Symmans WF, Wei W, Zhang X, Sun L, Alvarez RH, Ueno NT, Fouad TM, Harano K, Debeb BG, Wu Y, Reuben J, Cristofanilli M, Zuo Z. MicroRNA expression profiling identifies decreased expression of miR-205 in inflammatory breast cancer. Mod Pathol 2016; 29:330-46. [PMID: 26916073 DOI: 10.1038/modpathol.2016.38] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/09/2016] [Accepted: 01/09/2016] [Indexed: 02/07/2023]
Abstract
Inflammatory breast cancer is the most aggressive form of breast cancer. Identifying new biomarkers to be used as therapeutic targets is in urgent need. Messenger RNA expression profiling studies have indicated that inflammatory breast cancer is a transcriptionally heterogeneous disease, and specific molecular targets for inflammatory breast cancer have not been well established. We performed microRNA expression profiling in inflammatory breast cancer in comparison with locally advanced noninflammatory breast cancer in this study. Although many microRNAs were differentially expressed between normal breast tissue and tumor tissue, most of them did not show differential expression between inflammatory and noninflammatory tumor samples. However, by microarray analysis, quantitative reverse transcription PCR, and in situ hybridization, we showed that microRNA-205 expression was decreased not only in tumor compared with normal breast tissue, but also in inflammatory breast cancer compared with noninflammatory breast cancer. Lower expression of microRNA-205 correlated with worse distant metastasis-free survival and overall survival in our cohort. A small-scale immunohistochemistry analysis showed coexistence of decreased microRNA-205 expression and decreased E-cadherin expression in some ductal tumors. MicroRNA-205 may serve as a therapeutic target in advanced breast cancer including inflammatory breast cancer.
Collapse
Affiliation(s)
- Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Gong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuping Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Lin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William F Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinna Zhang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Sun
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricardo H Alvarez
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tamer M Fouad
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenichi Harano
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bisrat G Debeb
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
miR-601 is a prognostic marker and suppresses cell growth and invasion by targeting PTP4A1 in breast cancer. Biomed Pharmacother 2016; 79:247-53. [PMID: 27044835 DOI: 10.1016/j.biopha.2016.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/18/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNA) play important roles in the initiation and progression of breast cancer. Here, we investigated the role of miR-601 in breast cancer and found that its expression was significantly down-regulated in breast cancer tissues compared with matched adjacent non-cancerous breast tissues. Moreover, we found that down-regulation of miR-601 was closely associated with distant metastasis and poor distant metastasis-free survival in breast cancer. In addition, miR-601 levels were inversely correlated with metastatic potential of human breast cancer cell lines. Further experiments showed that ectopic overexpression of miR-601 suppressed breast cancer cell proliferation, migration and invasion, whereas miR-601 knockdown promoted breast cancer cell proliferation, migration and invasion. Furthermore, protein tyrosine phosphatase type IVA 1 (PTP4A1) was identified as a direct target of miR-601. Overexpression of miR-601 repressed PTP4A1 mRNA and protein expression. Conversely, inhibition of miR-601 increased PTP4A1 mRNA and protein expression. Taken together, our data suggest that miR-601 inhibits growth and invasion of breast cancer cells by targeting PTP4A1 and that miR-601 is a potential biomarker for prognosis and therapeutic target in breast cancer.
Collapse
|
21
|
Lu K, Wang J, Song Y, Zhao S, Liu H, Tang D, Pan B, Zhao H, Zhang Q. miRNA-24-3p promotes cell proliferation and inhibits apoptosis in human breast cancer by targeting p27Kip1. Oncol Rep 2015; 34:995-1002. [PMID: 26044523 DOI: 10.3892/or.2015.4025] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/15/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are often aberrantly expressed in breast cancer and are postulated to play a role in its initiation and progression. In the present study, we found that the expression level of miR-24-3p was upregulated in breast cancer in comparison with the level in adjacent normal tissues. Overexpression of miR-24-3p was able to promote cell proliferation and inhibit cell apoptosis in MDA-MB-435 and MDA-MB-468 cells. With the bioinformatic method, we further identified that p27Kip1 is a direct target of miR-24-3p, and its protein level was negatively regulated by miR-24-3p. Therefore, the data reported here demonstrate that miR-24-3p is an important regulator in breast cancer, and imply that the miR-24-3p/p27Kip1 axis has potential as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Kangping Lu
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jingxuan Wang
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Song
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shu Zhao
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hang Liu
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Dabei Tang
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Bo Pan
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hong Zhao
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qingyuan Zhang
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
22
|
Oztemur Y, Bekmez T, Aydos A, Yulug IG, Bozkurt B, Dedeoglu BG. A ranking-based meta-analysis reveals let-7 family as a meta-signature for grade classification in breast cancer. PLoS One 2015; 10:e0126837. [PMID: 25978727 PMCID: PMC4433233 DOI: 10.1371/journal.pone.0126837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/08/2015] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is one of the most important causes of cancer-related deaths worldwide in women. In addition to gene expression studies, the progressing work in the miRNA area including miRNA microarray studies, brings new aspects to the research on the cancer development and progression. Microarray technology has been widely used to find new biomarkers in research and many transcriptomic microarray studies are available in public databases. In this study, the breast cancer miRNA and mRNA microarray studies were collected according to the availability of their data and clinical information, and combined by a newly developed ranking-based meta-analysis approach to find out candidate miRNA biomarkers (meta-miRNAs) that classify breast cancers according to their grades and explain the relation between miRNAs and mRNAs. This approach provided meta-miRNAs specific to breast cancer grades, pointing out let-7 family members as grade classifiers. The qRT-PCR studies performed with independent breast tumors confirmed the potential biomarker role of let-7 family members (meta-miRNAs). The concordance between the meta-mRNAs and miRNA target genes specific to tumor grade (common genes) supported the idea of mRNAs as miRNA targets. The pathway analysis results showed that most of the let-7 family miRNA targets, and also common genes, were significantly taking part in cancer-related pathways. The qRT-PCR studies, together with bioinformatic analyses, confirmed the results of meta-analysis approach, which is dynamic and allows combining datasets from different platforms.
Collapse
Affiliation(s)
| | - Tufan Bekmez
- Gazi University, Faculty of Dentistry, Ankara, Turkey
| | - Alp Aydos
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | - Isik G. Yulug
- Bilkent University, Molecular Biology and Genetics Department, Ankara, Turkey
| | - Betul Bozkurt
- Ankara Numune Training and Research Hospital, Department of General Surgery, Ankara, Turkey
| | | |
Collapse
|
23
|
Wang F, Ren X, Zhang X. Role of microRNA-150 in solid tumors. Oncol Lett 2015; 10:11-16. [PMID: 26170969 DOI: 10.3892/ol.2015.3170] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 02/17/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of small endogenous noncoding RNAs and their altered expression has been associated with various cellular functions, including cell development, proliferation, differentiation, apoptosis, signal transduction, tumorigenesis and cancer progression. Accumulating evidence has indicated that miRNA (miR)-150 plays an essential regulatory role in normal hematopoiesis and tumorigenesis; therefore, miR-150 may be a potential biomarker and therapeutic target in the diagnosis and treatment of various malignancies. The aim of the present review was to summarize the current knowledge on the functions and regulatory mechanism of miR-150 as an oncogene or tumor suppressor gene in solid tumors. In addition, its potential application as a tumor biomarker, targeted therapeutic strategy and index of prognosis in various cancer types was investigated.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China ; National Clinical Research Center of Cancer, Tianjin 300060, P.R. China ; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, P.R. China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China ; National Clinical Research Center of Cancer, Tianjin 300060, P.R. China ; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, P.R. China
| | - Xinwei Zhang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China ; National Clinical Research Center of Cancer, Tianjin 300060, P.R. China ; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, P.R. China
| |
Collapse
|
24
|
Chen J, Sun D, Chu H, Gong Z, Zhang C, Gong B, Li Y, Li N, Jiang L. Screening of differential microRNA expression in gastric signet ring cell carcinoma and gastric adenocarcinoma and target gene prediction. Oncol Rep 2015; 33:2963-71. [PMID: 25964059 DOI: 10.3892/or.2015.3935] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/10/2015] [Indexed: 01/15/2023] Open
Abstract
Gastric signet ring cell carcinoma (GSRCC) is a unique pathological type of gastric carcinoma that is extremely invasive and has a poor prognosis after diagnosis. The expression of microRNAs has been closely linked to the carcinogenesis of gastric cancer and has been considered as a powerful prognostic marker. Distinctive expression of miRNAs in GSRCC was investigated in the present study. Samples of GSRCC were compared to that of intestinal gastric adenocarcinoma using Agilent microarray technique, and two differentially expressed miRNAs were identified, hsa-miR-665 and hsa-miR‑95. qRT-PCR verification showed downregulation of both miRNAs in signet ring cell carcinoma and upregulation in gastric adenocarcinoma, which was not consistent with the results obtained by the microarray. Target gene prediction using online databases conferred two strong candidate genes, GLI2 and PLCG1. GO/KO analysis of these two genes showed close correlations with carcinogenesis and chemoresistance. It was concluded that hsa-miR-665 and hsa-miR-95 were downregulated in GSRCC but upregulated in intestinal gastric adenocarcinoma, and the relatively differential expression of the miRNAs negatively controlling their target genes could be closely related to the high invasive metastasis and chemoresistance of GSRCC.
Collapse
Affiliation(s)
- Jian Chen
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Di Sun
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Hongjin Chu
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Zhaohua Gong
- Department of Oncology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Chenglin Zhang
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Benjiao Gong
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yan Li
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ning Li
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Lixin Jiang
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
25
|
Sui X, Wang X, Han W, Li D, Xu Y, Lou F, Zhou J, Gu X, Zhu J, Zhang C, Pan H. MicroRNAs-mediated cell fate in triple negative breast cancers. Cancer Lett 2015; 361:8-12. [PMID: 25748387 DOI: 10.1016/j.canlet.2015.02.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as major modulators of posttranscriptional protein-coding gene expression in diverse biological processes including cell survival, cell cycle arrest, senescence, autophagy, and differentiation. The control of miRNAs plays an important role in cancer initiation and metastasis. Triple negative breast cancer (TNBC) is a distinct breast cancer subtype, which is defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu). Due to its high recurrence rate and poor prognosis, TNBC represents a challenge for breast cancer therapy. In recent years, a large number of microRNAs have been identified to play a crucial role in TNBC and some of them were found to be correlated with worse prognosis of TNBC. Thus, understanding the novel function of miRNAs may allow us to develop promising therapeutic targets for the treatment of TNBC patients.
Collapse
Affiliation(s)
- Xinbing Sui
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Da Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yinghua Xu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Fang Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xidong Gu
- Department of Breast Surgery, The First affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Zhu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Cheng Zhang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
26
|
Hui Z, Yiling C, Wenting Y, XuQun H, ChuanYi Z, Hui L. miR-491-5p functions as a tumor suppressor by targeting JMJD2B in ERα-positive breast cancer. FEBS Lett 2015; 589:812-21. [PMID: 25725194 DOI: 10.1016/j.febslet.2015.02.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
The involvement of miR-491-5p in breast cancer development is unclear. This study showed that miR-491-5p is significantly downregulated in ERα-positive breast cancer tissues and cell lines and is generally hypermethylated in ERα-positive breast cancer. MiR-491-5p overexpression significantly suppressed estrogen signaling and estrogen-stimulated proliferation of breast cancer cells. Furthermore, the histone demethylase JMJD2B was identified as a direct target of miR-491-5p. The ectopic expression of JMJD2B abrogated the phenotypic changes induced by miR-491-5p in breast cancer cells. Collectively, our data indicate that miR-491-5p plays a tumor suppressor role in the development and progression of breast caner and may be a novel therapeutic target against ERα-positive breast cancer.
Collapse
Affiliation(s)
- Zeng Hui
- The 3rd Division of Oncology of the People's Hospital of Huangpi District and the Third Affiliated Hospital of Jianghan University, Wuhan 430300, China
| | - Chen Yiling
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - You Wenting
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huang XuQun
- Department of Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, 435000, China
| | - Zhou ChuanYi
- Department of Radiation Oncology Yueyang Second People's Hospital, Yueyang 414000, China
| | - Li Hui
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
27
|
Alcantara D, Leal MP, García-Bocanegra I, García-Martín ML. Molecular imaging of breast cancer: present and future directions. Front Chem 2014; 2:112. [PMID: 25566530 PMCID: PMC4270251 DOI: 10.3389/fchem.2014.00112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022] Open
Abstract
Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumor is located in the body, but also to visualize the expression and activity of specific molecules (e.g., proteases and protein kinases) and biological processes (e.g., apoptosis, angiogenesis, and metastasis) that influence tumor behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.
Collapse
Affiliation(s)
- David Alcantara
- Laboratory of Metabolomics and Molecular Imaging, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga) Malaga, Spain
| | - Manuel Pernia Leal
- Laboratory of Metabolomics and Molecular Imaging, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga) Malaga, Spain
| | - Irene García-Bocanegra
- Laboratory of Metabolomics and Molecular Imaging, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga) Malaga, Spain
| | - Maria L García-Martín
- Laboratory of Metabolomics and Molecular Imaging, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga) Malaga, Spain
| |
Collapse
|
28
|
Cell-free microRNAs as cancer biomarkers: the odyssey of miRNAs through body fluids. Med Oncol 2014; 31:295. [PMID: 25362261 DOI: 10.1007/s12032-014-0295-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/16/2014] [Indexed: 12/13/2022]
Abstract
Cell-free microRNAs (cfmiRNAs), also known as extracellular or secretory microRNAs, are an emerging class of miRNAs that are released or secreted by cells. These miRNAs are transferred through various body fluids. A growing body of research has recently revealed that cancer cells also secrete their distinctive cfmiRNAs to the extracellular environment highlighting the contribution of cfmiRNAs to cancer progression. CfmiRNAs show high stability in the body fluids. Three pathways have been proposed for their entry into the body fluids: passive release from broken, injured and dead cells; active secretion through microvesicles; and active secretion via microvesicle-free protein-dependent route. Active pathways seem to play leading roles in the delivery of miRNAs. Detection of cfmiRNAs is of particular relevance to their translation into the clinic. Much effort has been devoted to the development of highly sensitive and efficient approaches for detection purposes. Nevertheless, some barriers such as finding a unique internal control for all cancer types remain to be bypassed. This review aims to provide an insight into the promises represented by cfmiRNAs as cancer biomarkers and describes advances made in the identification of numerous types of extracellular miRNAs that have potential for use in the diagnosis of a variety of cancers.
Collapse
|
29
|
Godlewski J, Krichevsky AM, Johnson MD, Chiocca EA, Bronisz A. Belonging to a network--microRNAs, extracellular vesicles, and the glioblastoma microenvironment. Neuro Oncol 2014; 17:652-62. [PMID: 25301812 DOI: 10.1093/neuonc/nou292] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/09/2014] [Indexed: 12/14/2022] Open
Abstract
The complexity of glioblastoma multiforme (GBM) and its distinct pathophysiology belong to a unique brain microenvironment and its cellular interactions. Despite extensive evidence of a role for microRNAs in GBM cells, little is known about microRNA-dependent communication between different cellular compartments of the microenvironment that may contribute to the tumor phenotype. While the majority of microRNAs are found intracellularly, a significant number of microRNAs have been observed outside of cells, often encapsulated in secreted extracellular vesicles (EVs). The function of these circulating/secreted microRNAs has not been explored in the context of the brain tumor microenvironment. Establishing how microRNAs are involved in the regulation of oncogenic signaling networks between tumor cells and stroma is likely to add a needed additional layer of complexity to the tumor network, consisting of intercellular communication. More importantly, microRNA/EV signaling may provide an additional therapeutic target for this deadly disease.
Collapse
Affiliation(s)
- Jakub Godlewski
- Department of Neurosurgery (J.G., M.D.J., E.A.C., A.B.); Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K)
| | - Anna M Krichevsky
- Department of Neurosurgery (J.G., M.D.J., E.A.C., A.B.); Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K)
| | - Mark D Johnson
- Department of Neurosurgery (J.G., M.D.J., E.A.C., A.B.); Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K)
| | - E Antonio Chiocca
- Department of Neurosurgery (J.G., M.D.J., E.A.C., A.B.); Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K)
| | - Agnieszka Bronisz
- Department of Neurosurgery (J.G., M.D.J., E.A.C., A.B.); Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.M.K)
| |
Collapse
|
30
|
Berindan-Neagoe I, Monroig PDC, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin 2014; 64:311-36. [PMID: 25104502 PMCID: PMC4461198 DOI: 10.3322/caac.21244] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023] Open
Abstract
The interplay between abnormalities in genes coding for proteins and noncoding microRNAs (miRNAs) has been among the most exciting yet unexpected discoveries in oncology over the last decade. The complexity of this network has redefined cancer research as miRNAs, produced from what was once considered "genomic trash," have shown to be crucial for cancer initiation, progression, and dissemination. Naturally occurring miRNAs are very short transcripts that never produce a protein or amino acid chain, but act by regulating protein expression during cellular processes such as growth, development, and differentiation at the transcriptional, posttranscriptional, and/or translational level. In this review article, miRNAs are presented as ubiquitous players involved in all cancer hallmarks. The authors also describe the most used methods to detect their expression, which have revealed the identity of hundreds of miRNAs dysregulated in cancer cells or tumor microenvironment cells. Furthermore, the role of miRNAs as hormones and as reliable cancer biomarkers and predictors of treatment response is discussed. Along with this, the authors explore current strategies in designing miRNA-targeting therapeutics, as well as the associated challenges that research envisions to overcome. Finally, a new wave in molecular oncology translational research is introduced: the study of long noncoding RNAs.
Collapse
Affiliation(s)
- Ioana Berindan-Neagoe
- Department of Functional Genomics, The Oncology Institute, Research Center for Functional Genomics, Biomedicine and Translational Medicine, Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | | |
Collapse
|
31
|
miR-24 promotes the proliferation and invasion of HCC cells by targeting SOX7. Tumour Biol 2014; 35:10731-6. [PMID: 25073511 DOI: 10.1007/s13277-014-2018-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 01/19/2023] Open
Abstract
Accumulating evidence shows that microRNAs (miRNAs) are involved in the development and progression of multiple tumors, including hepatocellular carcinoma (HCC). Recent studies have found that miR-24 acts as an oncogene in several tumors; however, the function of miR-24 in HCC remains unclear. In this study, we found that miR-24 was increased in HCC tissues and cell lines. Inhibition of miR-24 by inhibitor significantly suppressed HCC cells proliferation, migration, and invasion. Furthermore, the sex-determining region Y (SRY)-box 7 (SOX7), a putative tumor suppressor, was found to be a target of miR-24 in HCC cells. Forced expression of SOX7 substantially attenuated the oncogenic effects of miR-24. Those results strongly suggest that miR-24 plays important role in HCC development partially by targeting SOX7.
Collapse
|
32
|
Roy DM, Walsh LA. Candidate prognostic markers in breast cancer: focus on extracellular proteases and their inhibitors. BREAST CANCER-TARGETS AND THERAPY 2014; 6:81-91. [PMID: 25114586 PMCID: PMC4090043 DOI: 10.2147/bctt.s46020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) is the complex network of proteins that surrounds cells in multicellular organisms. Due to its diverse nature and composition, the ECM has a multifaceted role in both normal tissue homeostasis and pathophysiology. It provides structural support, segregates tissues from one another, and regulates intercellular communication. Furthermore, the ECM sequesters a wide range of growth factors and cytokines that may be released upon specific and well-coordinated cues. Regulation of the ECM is performed by the extracellular proteases, which are tasked with cleaving and remodeling this intricate and diverse protein matrix. Accordingly, extracellular proteases are differentially expressed in various tissue types and in many diseases such as cancer. In fact, metastatic dissemination of tumor cells requires degradation of extracellular matrices by several families of proteases, including metalloproteinases and serine proteases, among others. Extracellular proteases are emerging as strong candidate cancer biomarkers for aiding and predicting patient outcome. Not surprisingly, inhibition of these protumorigenic enzymes in animal models of metastasis has shown impressive therapeutic effects. As such, many of these proteolytic inhibitors are currently in various phases of clinical investigation. In addition to direct approaches, aberrant expression of extracellular proteases in disease states may also facilitate the selective delivery of other therapeutic or imaging agents. Herein, we outline extracellular proteases that are either bona fide or probable prognostic markers in breast cancer. Furthermore, using existing patient data and multiple robust statistical analyses, we highlight several extracellular proteases and associated inhibitors (eg, uPA, ADAMs, MMPs, TIMPs, RECK) that hold the greatest potential as clinical biomarkers. With the recent advances in high-throughput technology and targeted therapies, the incorporation of extracellular protease status in breast cancer patient management may have a profound effect on improving outcomes in this deadly disease.
Collapse
Affiliation(s)
- David M Roy
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Logan A Walsh
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|