1
|
Domnich A, Massaro E, Icardi G, Orsi A. Multiplex molecular assays for the laboratory-based and point-of-care diagnosis of infections caused by seasonal influenza, COVID-19, and RSV. Expert Rev Mol Diagn 2024; 24:997-1008. [PMID: 39364620 DOI: 10.1080/14737159.2024.2408745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION SARS-CoV-2, seasonal influenza, and respiratory syncytial virus (RSV) are major causes of acute respiratory infections in all age groups and responsible for an enormous socio-economic burden. The recently coined term 'tripledemic' describes co-circulation of these three viruses, a novel epidemiological paradigm that poses profound public health implications. AREAS COVERED Real-time reverse transcription polymerase chain reaction (RT-PCR) is now considered the reference method for the diagnosis of SARS-CoV-2, influenza, and RSV infections. Syndromic-based multiplex RT-PCR panels that simultaneously detect several respiratory viruses have become increasingly common. This review explores available molecular diagnostics (MDx) platforms for the diagnosis of SARS-CoV-2, influenza, and RSV in the same biological sample. Within some limitations of the published validation and diagnostic accuracy studies, both laboratory-based and point-of-care multiplex panels proved highly performant in identifying SARS-CoV-2, influenza A, influenza B, and RSV. Improved operational efficiency and faster turnaround times make these assays potentially cost-effective or even cost-saving. EXPERT OPINION The adoption of multiplex MDx assays for the contemporary detection of SARS-CoV-2, influenza, RSV, and other respiratory pathogens will likely increase in the next few years. To maximize the clinical usefulness and cost-effectiveness of these assays, locally issued guidelines and protocols on their implementation should be adopted.
Collapse
Affiliation(s)
- Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Elvira Massaro
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Giancarlo Icardi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| | - Andrea Orsi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| |
Collapse
|
2
|
McIver CJ, Pratama R, Jose G, Caagbay D, Montgomery L, Bhardwaj N, Mukerjee C, Taylor PC, Stevens R. A novel molecular assay conducted on the BD Max system to facilitate reflex testing for vanA and vanB in clinical isolates of enterococci. Pathology 2024; 56:889-896. [PMID: 38981818 DOI: 10.1016/j.pathol.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 07/11/2024]
Abstract
Infections caused by vancomycin-resistant enterococci (VRE) are common. Real-time PCR assays targeting vanA and vanB facilitate screening of patients in healthcare settings to limit the risk of dissemination, especially amongst those at high-risk of infection or with limited treatment options. Such assays are commonly performed as reflex testing procedures where they augment phenotypic techniques and shorten turnaround time to benefit timely clinical management. 'Random access' and 'sample-to-result' real-time PCR platforms are suited for this application as they are of low complexity and less technically demanding. Modelled on these attributes, we configured a real-time PCR assay (VRE BD) for detection of vanA/B in clinical isolates of enterococci, adapted for the BD Max System (Becton Dickinson). We applied an unconventional approach by testing suspensions of microorganisms in water to circumvent the traditional pre-analytical genomic extraction process. Our objective of this study was to assess the performance of this assay for detection of VRE in cultures by validating against a traditional real-time PCR assay based on the LightCycler 2.0 platform (Roche, VRE RO). A high level of analytical sensitivity and specificity (≥99.0%) for both genes was obtained when testing suspensions derived from blood agar. Results for suspensions obtained from chromID VRE (Edwards Group) showed a similar level of performance for vanA detection (100%), but not for the vanB target (≥90.9%) where a lesser number of isolates were available for testing. However, our results for VRE detection in isolates from these media were repeatable and reproducible, and equated to positive and negative predictive values of ≥95.2% and ≥97.8%, respectively. Furthermore, the VRE BD assay was also able to accurately detect VRE in clinical and spiked BacT/ALERT (bioMérieux) blood cultures. Thus, the technical simplicity, short turnaround time and robustness of this high performing assay for VRE is suitable for reflex testing. In addition, the format developed for the BD Max platform has potential application for reflex testing other molecular targets of clinical importance.
Collapse
Affiliation(s)
- Christopher J McIver
- Microbiology Department, New South Wales Health Pathology, St George Hospital, Kogarah, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Ryanbi Pratama
- Microbiology Department, New South Wales Health Pathology, St George Hospital, Kogarah, NSW, Australia
| | - Gismin Jose
- Microbiology Department, New South Wales Health Pathology, St George Hospital, Kogarah, NSW, Australia
| | - Dale Caagbay
- Microbiology Department, New South Wales Health Pathology, St George Hospital, Kogarah, NSW, Australia
| | - Leanne Montgomery
- Microbiology Department, New South Wales Health Pathology, St George Hospital, Kogarah, NSW, Australia
| | - Narinder Bhardwaj
- Microbiology Department, New South Wales Health Pathology, St George Hospital, Kogarah, NSW, Australia
| | - Chinmoy Mukerjee
- Microbiology Department, New South Wales Health Pathology, St George Hospital, Kogarah, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Peter C Taylor
- Microbiology Department, New South Wales Health Pathology, St George Hospital, Kogarah, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Robert Stevens
- Microbiology Department, New South Wales Health Pathology, St George Hospital, Kogarah, NSW, Australia
| |
Collapse
|
3
|
Scarpaleggia M, Garzillo G, Lucente M, Fraccalvieri C, Randazzo N, Massaro E, Galano B, Ricucci V, Bruzzone B, Domnich A. Diagnostic Accuracy of Five Molecular Assays for the Detection of Dengue Virus. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1557. [PMID: 39336598 PMCID: PMC11434457 DOI: 10.3390/medicina60091557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: The steady spread of dengue virus (DENV) poses a profound public health threat worldwide. Reverse transcription real-time polymerase chain reaction (RT2-PCR) has been increasingly recognized as a reference method for the diagnosis of acute dengue infection. The goal of this study was to assess the diagnostic accuracy of five different RT2-PCR kits for the detection of DENV in a historically processed set of sera samples. Materials and Methods: In this retrospective study, 25 sera samples from routinely processed unique adult patients with a known DENV status (previously tested in both molecular and serological assays) were tested in parallel using four conventional (RealStar Dengue PCR Kit 3.0, Clonit'ngo Zika, Dengue & Chikungunya, BioPerfectus Zika Virus/Dengue Virus/Chikungunya Virus Real Time PCR Kit and Novaplex Tropical fever virus) and one sample-to-result (STANDARD M10 Arbovirus Panel) RT2-PCR assays. Additionally, an end-point dilution analysis was conducted in quintuplicate on six serial dilutions of an RNA preparation obtained from a culture-grown DENV serotype 1 strain for a total of 150 tests. Results: The overall accuracy of the evaluated tests ranged from 84% to 100%. In particular, the sensitivity of three conventional RT2-PCR assays (RealStar, Clonit'ngo and Novaplex) was 100% (95% CI: 79.6-100%), while it was lower (73.3%; 95% CI: 48.1-89.1%) for the BioPerfectus kit. The sample-to-result STANDARD M10 panel performed comparatively well, showing a sensitivity of 92.9% (95% CI: 68.5-98.7%). No false positive results were registered in any assay. The end-point dilution analysis suggested that the RealStar kit had the lowest limit of detection. Conclusions: Available RT2-PCR kits for the detection of DENV are highly specific and generally sensitive and, therefore, their implementation in diagnostic pathways is advisable.
Collapse
Affiliation(s)
- Marianna Scarpaleggia
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (M.S.); (G.G.); (E.M.)
| | - Giada Garzillo
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (M.S.); (G.G.); (E.M.)
| | - Miriana Lucente
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| | - Chiara Fraccalvieri
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| | - Nadia Randazzo
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| | - Elvira Massaro
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (M.S.); (G.G.); (E.M.)
| | - Barbara Galano
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| | - Valentina Ricucci
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| | - Bianca Bruzzone
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| | - Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (M.L.); (C.F.); (N.R.); (B.G.); (V.R.); (B.B.)
| |
Collapse
|
4
|
Zhang Y, Guo Y, Liu G, Zhou S, Su R, Ma Q, Ge Y, Lu YQ, Cui L, Wang G. Portable all-in-one microfluidic system for CRISPR-Cas13a-based fully integrated multiplexed nucleic acid detection. LAB ON A CHIP 2024; 24:3367-3376. [PMID: 38845509 DOI: 10.1039/d4lc00326h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Point-of-care testing of "sample in, answer out" is urgently needed for communicable diseases. Recently, rapid nucleic acid tests for infectious diseases have been developed for use in resource-limited areas, but they require types of equipment in central laboratories and are poorly integrated. In this work, a portable centrifugal microfluidic testing system is developed, integrated with magnetic bead-based nucleic acid extraction, recombinase-assisted amplification and CRISPR-Cas13a detection. The system, with the advantage of its power-supplied active rotating chip and highly programable flow control through integrated addressable active thermally-triggered wax valves, has a rapid turnaround time within 45 min, requiring only one user step. All reagents are preloaded into the chip and can be automatically released. By exploiting a multichannel chip, it is capable of simultaneously detecting 10 infectious viruses with limits of detection of 1 copy per reaction and 5 copies per reaction in plasmid samples and mock plasma samples, respectively. The system was used to analyse clinical plasma samples with good consistency compared to laboratory-based molecular testing. Moreover, the generalizability of our device is reported by successfully testing nasopharyngeal swabs and whole blood samples. The portable device does not require the operation of professional technicians, making it an excellent assay for on-site testing.
Collapse
Affiliation(s)
- Ya Zhang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
- Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu 210093, China
| | - Yue Guo
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Jiangsu 210009, China
- Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu 210009, China.
| | - Guozhen Liu
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
- Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu 210093, China
| | - Shiqi Zhou
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
- Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu 210093, China
| | - Rouyu Su
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
- Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu 210093, China
| | - Qian Ma
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
- Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu 210093, China
| | - Yiyue Ge
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Jiangsu 210009, China
- Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu 210009, China.
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
| | - Lunbiao Cui
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Jiangsu 210009, China
- Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu 210009, China.
| | - Guanghui Wang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
- Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu 210093, China
| |
Collapse
|
5
|
Hauner A, Onwuchekwa C, Ariën KK. Sample-to-result molecular diagnostic platforms and their suitability for infectious disease testing in low- and middle-income countries. Expert Rev Mol Diagn 2024; 24:423-438. [PMID: 38747017 DOI: 10.1080/14737159.2024.2353690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Diagnostics are an essential, undervalued part of the health-care system. For many diseases, molecular diagnostics are the gold standard, but are not easy to implement in Low- and Middle-Income Countries (LMIC). Sample-to-result (S2R) platforms combining all procedures in a closed system could offer a solution. In this paper, we investigated their suitability for implementation in LMIC. AREAS COVERED A scorecard was used to evaluate different platforms on a range of parameters. Most platforms scored fairly on the platform itself, ease-of-use and test consumables; however, shortcomings were identified in cost, distribution and test panels tailored to LMIC needs. The diagnostic coverage for common infectious diseases was found to have a wider coverage in high-income countries (HIC) than LMIC. A literature study showed that in LMIC, these platforms are mainly used as diagnostic tools or evaluation of diagnostic performance, with a minority assessing the operational characteristics or the clinical utility. In this narrative review, we identified various points for adaptation of S2R platforms to LMIC conditions. EXPERT OPINION For S2R platforms to be suitable for implementation in LMIC some modifications by the manufacturers could be considered. Furthermore, strengthening health systems and digitalization are vital; as are smaller, cheaper, faster, and sustainable technologies.
Collapse
Affiliation(s)
- Anne Hauner
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Conrad S, Gant Kanegusuku A, Conklin SE. Taking a step back from testing: Preanalytical considerations in molecular infectious disease diagnostics. Clin Biochem 2023; 115:22-32. [PMID: 36495954 PMCID: PMC9729171 DOI: 10.1016/j.clinbiochem.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Recent studies evaluating the preanalytical factors that impact the outcome of nucleic-acid based methods for the confirmation of SARS-CoV-2 have illuminated the importance of identifying variables that promoted accurate testing, while using scarce resources efficiently. The majority of laboratory errors occur in the preanalytical phase. While there are many resources identifying and describing mechanisms for main laboratory testing on automated platforms, there are fewer comprehensive resources for understanding important preanalytical and environmental factors that affect accurate molecular diagnostic testing of infectious diseases. This review identifies evidence-based factors that have been documented to impact the outcome of nucleic acid-based molecular techniques for the diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Stephanie Conrad
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | | | - Steven E Conklin
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA; Department of Anatomic & Clinical Pathology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
8
|
Chang Y, Wang Y, Li W, Wei Z, Tang S, Chen R. Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5471. [PMID: 37107752 PMCID: PMC10138381 DOI: 10.3390/ijerph20085471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Airborne viruses, such as COVID-19, cause pandemics all over the world. Virus-containing particles produced by infected individuals are suspended in the air for extended periods, actually resulting in viral aerosols and the spread of infectious diseases. Aerosol collection and detection devices are essential for limiting the spread of airborne virus diseases. This review provides an overview of the primary mechanisms and enhancement techniques for collecting and detecting airborne viruses. Indoor virus detection strategies for scenarios with varying ventilations are also summarized based on the excellent performance of existing advanced comprehensive devices. This review provides guidance for the development of future aerosol detection devices and aids in the control of airborne transmission diseases, such as COVID-19, influenza and other airborne transmission viruses.
Collapse
Affiliation(s)
- Yuqing Chang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Yuqian Wang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Wen Li
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (W.L.); (Z.W.)
| | - Zewen Wei
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (W.L.); (Z.W.)
| | - Shichuan Tang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; (Y.C.); (Y.W.); (S.T.)
| |
Collapse
|
9
|
Wilner OI, Yesodi D, Weizmann Y. Point-of-care nucleic acid tests: assays and devices. NANOSCALE 2023; 15:942-952. [PMID: 36515009 DOI: 10.1039/d2nr05385c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic (caused by the SARS_CoV_2 virus) has emphasized the need for quick, easy-to-operate, reliable, and affordable diagnostic tests and devices at the Point-of-Care (POC) for homes/fields/clinics. Such tests and devices will contribute significantly to the fight against the COVID-19 pandemic and any future infectious disease epidemic. Often, academic research studies and those from industry lack knowledge of each other's developments. Here, we introduced DNA Polymerase Chain Reaction (PCR) and isothermal amplification reactions and reviewed the current commercially available POC nucleic acid diagnostic devices. In addition, we reviewed the history and the recent advancements in an effort to develop reliable, quick, portable, cost-effective, and automatic point-of-care nucleic acid diagnostic devices, from sample to result. The purpose of this paper is to bridge the gap between academia and industry and to share important knowledge on this subject.
Collapse
Affiliation(s)
- Ofer I Wilner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Doron Yesodi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Yossi Weizmann
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
- Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
10
|
Gow I, Smith N, Stark D, Ellis J. Molecular Detection of Neglected Tropical Diseases: The Case for Automated Near-Point-of-Care Diagnosis of Leishmaniasis. Am J Trop Med Hyg 2023; 108:2-6. [PMID: 36450231 PMCID: PMC9833060 DOI: 10.4269/ajtmh.22-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/13/2022] [Indexed: 12/03/2022] Open
Abstract
Neglected tropical diseases affect those in poorer nations disproportionately across the globe. One example of these, leishmaniasis, is a debilitating and potentially fatal parasitic infection. Molecular detection of this disease can provide accurate and fast diagnosis, and with near point-of-care technologies, detection can be provided in many health-care settings. Traditionally, the perceived limitations to such detection methods have hindered their provision to resource-limited nations, but new technologies and techniques are helping to overcome these perceptions. The current pandemic offers an opportunity to maintain and develop further advances, ensuring molecular diagnostics are accessible to all.
Collapse
Affiliation(s)
- Ineka Gow
- School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Nicholas Smith
- School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Damien Stark
- Department of Microbiology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, NSW, Australia
| |
Collapse
|
11
|
Mandhan P, Sharma M, Pandey S, Chandel N, Chourasia N, Moun A, Sharma D, Sukar R, Singh N, Mathur S, Kotnala A, Negi N, Gupta A, Kumar A, Suresh Kumar R, Kumar P, Singh S. A Regional Pooling Intervention in a High-Throughput COVID-19 Diagnostic Laboratory to Enhance Throughput, Save Resources and Time Over a Period of 6 Months. Front Microbiol 2022; 13:858555. [PMID: 35756046 PMCID: PMC9218601 DOI: 10.3389/fmicb.2022.858555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
An effective and rapid diagnosis has great importance in tackling the ongoing COVID-19 pandemic through isolation of the infected individuals to curb the transmission and initiation of specialized treatment for the disease. It has been proven that enhanced testing capacities contribute to efficiently curbing SARS-CoV-2 transmission during the initial phases of the outbreaks. RT-qPCR is considered a gold standard for the diagnosis of COVID-19. However, in resource-limited countries expenses for molecular diagnosis limits the diagnostic capacities. Here, we present interventions of two pooling strategies as 5 sample pooling (P-5) and 10 sample pooling (P-10) in a high-throughput COVID-19 diagnostic laboratory to enhance throughput and save resources and time over a period of 6 months. The diagnostic capacity was scaled-up 2.15-folds in P-5 and 1.8-fold in P-10, reagents (toward RNA extraction and RT-qPCR) were preserved at 75.24% in P-5 and 86.21% in P-10, and time saved was 6,290.93 h in P-5 and 3147.3 h in P-10.
Collapse
Affiliation(s)
- Prerna Mandhan
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Mansi Sharma
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Sushmita Pandey
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Neha Chandel
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Nidhi Chourasia
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Amit Moun
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Divyani Sharma
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Rubee Sukar
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Niyati Singh
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Shubhangi Mathur
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Aarti Kotnala
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Neetu Negi
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Ashish Gupta
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Anuj Kumar
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - R Suresh Kumar
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Pramod Kumar
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Shalini Singh
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| |
Collapse
|
12
|
Jacobs MR, Colson JD, Rhoads DD. Recent advances in rapid antimicrobial susceptibility testing systems. Expert Rev Mol Diagn 2021; 21:563-578. [PMID: 33926351 DOI: 10.1080/14737159.2021.1924679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Until recently antimicrobial susceptibility testing (AST) methods based on the demonstration of phenotypic susceptibility in 16-24 h remained largely unchanged. AREAS COVERED Advances in rapid phenotypic and molecular-based AST systems. EXPERT OPINION AST has changed over the past decade, with many rapid phenotypic and molecular methods developed to demonstrate phenotypic or genotypic resistance, or biochemical markers of resistance such as β-lactamases associated with carbapenem resistance. Most methods still require isolation of bacteria from specimens before both legacy and newer methods can be used. Bacterial identification by MALDI-TOF mass spectroscopy is now widely used and is often key to the interpretation of rapid AST results. Several PCR arrays are available to detect the most frequent pathogens associated with bloodstream infections and their major antimicrobial resistance genes. Many advances in whole-genome sequencing of bacteria and fungi isolated by culture as well as directly from clinical specimens have been made but are not yet widely available. High cost and limited throughput are the major obstacles to uptake of rapid methods, but targeted use, continued development and decreasing costs are expected to result in more extensive use of these increasingly useful methods.
Collapse
Affiliation(s)
- Michael R Jacobs
- Emeritus Professor of Pathology and Emeritus Medical Director, Clinical Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jordan D Colson
- Microbiology Fellow, Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel D Rhoads
- Section Head of Microbiology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
13
|
Caruso G, Giammanco A, Virruso R, Fasciana T. Current and Future Trends in the Laboratory Diagnosis of Sexually Transmitted Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1038. [PMID: 33503917 PMCID: PMC7908473 DOI: 10.3390/ijerph18031038] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/18/2022]
Abstract
Sexually transmitted infections (STIs) continue to exert a considerable public health and social burden globally, particularly for developing countries. Due to the high prevalence of asymptomatic infections and the limitations of symptom-based (syndromic) diagnosis, confirmation of infection using laboratory tools is essential to choose the most appropriate course of treatment and to screen at-risk groups. Numerous laboratory tests and platforms have been developed for gonorrhea, chlamydia, syphilis, trichomoniasis, genital mycoplasmas, herpesviruses, and human papillomavirus. Point-of-care testing is now a possibility, and microfluidic and high-throughput omics technologies promise to revolutionize the diagnosis of STIs. The scope of this paper is to provide an updated overview of the current laboratory diagnostic tools for these infections, highlighting their advantages, limitations, and point-of-care adaptability. The diagnostic applicability of the latest molecular and biochemical approaches is also discussed.
Collapse
Affiliation(s)
- Giorgia Caruso
- U.O.C. of Microbiology and Virology, ARNAS “Civico, Di Cristina and Benfratelli”, 90127 Palermo, Italy
| | - Anna Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (A.G.); (T.F.)
| | - Roberta Virruso
- U.O.C. of Microbiology, Virology and Parassitology, A.O.U.P. “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Teresa Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (A.G.); (T.F.)
| |
Collapse
|
14
|
Migrating a lab-developed MERS-CoV real-time PCR to 3 "Sample to Result" systems: experiences on optimization and validation. Diagn Microbiol Infect Dis 2019; 94:349-354. [PMID: 30929995 PMCID: PMC7127711 DOI: 10.1016/j.diagmicrobio.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/21/2023]
Abstract
The goal of the study was to adapt our Middle East respiratory syndrome coronavirus (MERS-CoV) lab-developed test (LDT) to 3 “Sample to Result” (S2R) systems: BD MAX (BD), ELITe InGenius (ELITechGroup), and ARIES (Luminex). The BD MAX and InGenius system allowed use of lab-developed primers and TaqMan probes, while ARIES required conversion to MultiCode primers for melting curve analysis. Each device required ≤1 day of training and assay optimization. No discordant results were noted after analysis of 32 External Quality Control (EQC) samples. On a 10-fold dilution series of a MERS-CoV–positive EQC sample, InGenius obtained the highest detection rate. Laboratory technicians rated the ARIES as the user-friendliest. It also required the least hands-on time. BD MAX had the lowest turnaround time and highest throughput. While each device had distinguishing system properties with associated (dis)advantages, the 3 S2R systems were comparable in terms of assay development and validation.
Collapse
|
15
|
Bissonnette L, Bergeron MG. Portable devices and mobile instruments for infectious diseases point-of-care testing. Expert Rev Mol Diagn 2017; 17:471-494. [PMID: 28343420 DOI: 10.1080/14737159.2017.1310619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Rapidity, simplicity, and portability are highly desirable characteristics of tests and devices designed for performing diagnostics at the point of care (POC), either near patients managed in healthcare facilities or to offer bioanalytical alternatives in external settings. By reducing the turnaround time of the diagnostic cycle, POC diagnostics can reduce the dissemination, morbidity, and mortality of infectious diseases and provide tools to control the global threat of antimicrobial resistance. Areas covered: A literature search of PubMed and Google Scholar, and extensive mining of specialized publications, Internet resources, and manufacturers' websites have been used to organize and write this overview of the challenges and requirements associated with the development of portable sample-to-answer diagnostics, and showcase relevant examples of handheld devices, portable instruments, and less mobile systems which may or could be operated at POC. Expert commentary: Rapid (<1 h) diagnostics can contribute to control infectious diseases and antimicrobial resistant pathogens. Portable devices or instruments enabling sample-to-answer bioanalysis can provide rapid, robust, and reproducible testing at the POC or close from it. Beyond testing, to realize some promises of personalized/precision medicine, it will be critical to connect instruments to healthcare data management systems, to efficiently link decentralized testing results to the electronic medical record of patients.
Collapse
Affiliation(s)
- Luc Bissonnette
- a Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval , Québec City , Québec , Canada
| | - Michel G Bergeron
- a Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval , Québec City , Québec , Canada.,b Département de microbiologie-infectiologie et d'immunologie , Faculté de médecine, Université Laval , Québec City , Québec , Canada
| |
Collapse
|