1
|
Botta L, Cesarini S, Zippilli C, Bizzarri BM, Fanelli A, Saladino R. Multicomponent reactions in the synthesis of antiviral compounds. Curr Med Chem 2021; 29:2013-2050. [PMID: 34620058 DOI: 10.2174/0929867328666211007121837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multicomponent reactions are one-pot processes for the synthesis of highly functionalized hetero-cyclic and hetero-acyclic compounds, often endowed with biological activity. OBJECTIVE Multicomponent reactions are considered green processes with high atom economy. In addition, they present advantages compared to the classic synthetic methods such as high efficiency and low wastes production. METHOD In these reactions two or more reagents are combined together in the same flask to yield a product containing almost all the atoms of the starting materials. RESULTS The scope of this review is to present an overview of the application of multicomponent reactions in the synthesis of compounds endowed with antiviral activity. The syntheses are classified depending on the viral target. CONCLUSION Multicomponent reactions can be applied to all the stages of the drug discovery and development process making them very useful in the search for new agents active against emerging (viral) pathogens.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Silvia Cesarini
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Claudio Zippilli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | | | - Angelica Fanelli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Raffaele Saladino
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| |
Collapse
|
2
|
Xia Z, Wang L, Li S, Tang W, Sun F, Wu Y, Miao L, Cao Z. ML-SA1, a selective TRPML agonist, inhibits DENV2 and ZIKV by promoting lysosomal acidification and protease activity. Antiviral Res 2020; 182:104922. [DOI: 10.1016/j.antiviral.2020.104922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
|
3
|
Zellweger RM, Cano J, Mangeas M, Taglioni F, Mercier A, Despinoy M, Menkès CE, Dupont-Rouzeyrol M, Nikolay B, Teurlai M. Socioeconomic and environmental determinants of dengue transmission in an urban setting: An ecological study in Nouméa, New Caledonia. PLoS Negl Trop Dis 2017; 11:e0005471. [PMID: 28369149 PMCID: PMC5395238 DOI: 10.1371/journal.pntd.0005471] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/18/2017] [Accepted: 03/08/2017] [Indexed: 11/23/2022] Open
Abstract
Background Dengue is a mosquito-borne virus that causes extensive morbidity and economic loss in many tropical and subtropical regions of the world. Often present in cities, dengue virus is rapidly spreading due to urbanization, climate change and increased human movements. Dengue cases are often heterogeneously distributed throughout cities, suggesting that small-scale determinants influence dengue urban transmission. A better understanding of these determinants is crucial to efficiently target prevention measures such as vector control and education. The aim of this study was to determine which socioeconomic and environmental determinants were associated with dengue incidence in an urban setting in the Pacific. Methodology An ecological study was performed using data summarized by neighborhood (i.e. the neighborhood is the unit of analysis) from two dengue epidemics (2008–2009 and 2012–2013) in the city of Nouméa, the capital of New Caledonia. Spatial patterns and hotspots of dengue transmission were assessed using global and local Moran’s I statistics. Multivariable negative binomial regression models were used to investigate the association between dengue incidence and various socioeconomic and environmental factors throughout the city. Principal findings The 2008–2009 epidemic was spatially structured, with clusters of high and low incidence neighborhoods. In 2012–2013, dengue incidence rates were more homogeneous throughout the city. In all models tested, higher dengue incidence rates were consistently associated with lower socioeconomic status (higher unemployment, lower revenue or higher percentage of population born in the Pacific, which are interrelated). A higher percentage of apartments was associated with lower dengue incidence rates during both epidemics in all models but one. A link between vegetation coverage and dengue incidence rates was also detected, but the link varied depending on the model used. Conclusions This study demonstrates a robust spatial association between dengue incidence rates and socioeconomic status across the different neighborhoods of the city of Nouméa. Our findings provide useful information to guide policy and help target dengue prevention efforts where they are needed most. Dengue virus is rapidly spreading throughout tropical and subtropical regions worldwide, possibly aided by environmental change, urbanization and/or increase in human mobility. Already present in 120 countries, dengue virus causes extensive disease burden and generates large economic costs. As dengue is mosquito-borne, its transmission pattern is strongly influenced by climate. However, dengue cases are not always distributed evenly throughout cities, where climate can be assumed to be homogenous. This suggests that other factors which are heterogeneously distributed in cities could play a role in dengue transmission, such as socioeconomic status and environmental factors (both natural and built). Identifying those factors is crucial to develop and target dengue prevention interventions, such as mosquito control and education. Our study uses dengue incidence statistics from two large epidemics in Nouméa, the capital of New Caledonia, to investigate which socioeconomic or environmental factors correlate with dengue incidence in an urban setting. Dengue incidence was consistently higher in neighborhoods where socioeconomic status was lower (i.e. lower revenue or higher unemployment) and often higher where the proportion of single-family houses in all buildings was higher. Our data suggest that, if resources are limited, prevention measures should be targeted in priority towards neighborhoods of lower socioeconomic status.
Collapse
Affiliation(s)
- Raphaël M. Zellweger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Epidemiology of Infectious Diseases Expertise and Research Unit, Institut Pasteur in New Caledonia, Institut Pasteur International Network, Nouméa, New Caledonia
- * E-mail:
| | - Jorge Cano
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Morgan Mangeas
- IRD, UMR ESPACE-DEV (UR/UA/UG/UM/IRD), Nouméa, New Caledonia
| | - François Taglioni
- University of Reunion Island, UMR Prodig/OIES (Cregur), Reunion Island, France
| | - Alizé Mercier
- IRD, UMR ESPACE-DEV (UR/UA/UG/UM/IRD), Nouméa, New Caledonia
- CIRAD/INRA, UMR Contrôle des Maladies Animales Exotiques et Emergentes (CMAEE), Montpellier, France
| | - Marc Despinoy
- IRD, UMR ESPACE-DEV (UR/UA/UG/UM/IRD), Nouméa, New Caledonia
| | - Christophe E. Menkès
- IRD / Sorbonne Universités (UPMC, Université Paris 06) / CNRS / MNHN, LOCEAN – UMR 7159, Nouméa, New Caledonia
| | - Myrielle Dupont-Rouzeyrol
- Dengue and Arboviruses Expertise and Research Unit, Institut Pasteur in New Caledonia, Institut Pasteur International Network, Noumea, New Caledonia
| | - Birgit Nikolay
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France
- CNRS, URA3012, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - Magali Teurlai
- Epidemiology of Infectious Diseases Expertise and Research Unit, Institut Pasteur in New Caledonia, Institut Pasteur International Network, Nouméa, New Caledonia
| |
Collapse
|
4
|
Balasubramanian A, Teramoto T, Kulkarni AA, Bhattacharjee AK, Padmanabhan R. Antiviral activities of selected antimalarials against dengue virus type 2 and Zika virus. Antiviral Res 2016; 137:141-150. [PMID: 27889529 DOI: 10.1016/j.antiviral.2016.11.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/23/2022]
Abstract
In a previous study, twelve antimalarial compounds, amodiaquine (AQ) and derivatives, were shown to have potent anti-dengue viral (DENV) activity by using the stable DENV2 Renilla luciferase reporter replicon expressing BHK-21 cells, infectivity (plaque), and the qRT-PCR assays. In this study, we performed molecular modeling on these compounds to determine their stereo-electronic properties required for optimal antiviral activity. Based on the similarity of calculated stereo-electronic profiles, specifically the electrostatic potential profiles of the compounds, and in silico screening of related compounds from literature, we identified three additional compounds, Quinacrine (QC), Mefloquine (MQ), and GSK369796. Analysis of their antiviral activities indicated that all three compounds have high anti-DENV activity in the DENV2 replicon expressing cells with EC50 values of 5.30 ± 1.31 μM (QC), 3.22 ± 0.37 μM (MQ), and 5.06 ± 0.86 μM (GSK369796). The infectivity assays revealed the EC50 values of 7.09 ± 1.67 μM (QC), 4.36 ± 0.31 μM (MQ) and 3.03 ± 0.35 μM (GSK369796). The mode of action of these compounds is through inhibition of autophagy, thereby affecting DENV2 replication. Moreover, these compounds also showed antiviral activity against the rapidly emerging Zika virus (ZIKV) with EC50 values of 2.27 ± 0.14 μM (QC), 3.95 ± 0.21 μM (MQ), and 2.57 ± 0.09 μM (GSK369796).
Collapse
Affiliation(s)
- Anuradha Balasubramanian
- Department of Microbiology & Immunology, Georgetown University School of Medicine, Washington DC, USA
| | - Tadahisa Teramoto
- Department of Microbiology & Immunology, Georgetown University School of Medicine, Washington DC, USA
| | - Amol A Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington DC, USA
| | - Apurba K Bhattacharjee
- Department of Microbiology & Immunology, Georgetown University School of Medicine, Washington DC, USA.
| | - Radhakrishnan Padmanabhan
- Department of Microbiology & Immunology, Georgetown University School of Medicine, Washington DC, USA.
| |
Collapse
|
5
|
Abstract
Antiviral therapeutics with profiles of high potency, low resistance, panserotype, and low toxicity remain challenging, and obtaining such agents continues to be an active area of therapeutic development. Due to their unique three-dimensional structural features, spirooxindoles have been identified as privileged chemotypes for antiviral drug development. Among them, spiro-pyrazolopyridone oxindoles have been recently reported as potent inhibitors of dengue virus NS4B, leading to the discovery of an orally bioavailable preclinical candidate (R)-44 with excellent in vivo efficacy in a dengue viremia mouse model. This review highlights recent advances in the development of biologically active spirooxindoles for their antiviral potential, primarily focusing on the structure-activity relationships (SARs) and modes of action, as well as future directions to achieve more potent analogues toward a viable antiviral therapy.
Collapse
Affiliation(s)
- Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Eric A. Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Pei-Yong Shi
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| |
Collapse
|
6
|
Troupin A, Londono-Renteria B, Conway MJ, Cloherty E, Jameson S, Higgs S, Vanlandingham DL, Fikrig E, Colpitts TM. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection. Biochim Biophys Acta Gen Subj 2016; 1860:1898-909. [PMID: 27241849 PMCID: PMC4949077 DOI: 10.1016/j.bbagen.2016.05.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/27/2016] [Accepted: 05/26/2016] [Indexed: 11/17/2022]
Abstract
Background Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant human disease and mortality in the tropics and subtropics. By examining the effects of virus infection on gene expression, and interactions between virus and vector, new targets for prevention of infection and novel treatments may be identified in mosquitoes. We previously performed a microarray analysis of the Aedes aegypti transcriptome during infection with DENV and found that mosquito ubiquitin protein Ub3881 (AAEL003881) was specifically and highly down-regulated. Ubiquitin proteins have multiple functions in insects, including marking proteins for proteasomal degradation, regulating apoptosis and mediating innate immune signaling. Methods We used qRT-PCR to quantify gene expression and infection, and RNAi to reduce Ub3881 expression. Mosquitoes were infected with DENV through blood feeding. We transfected DENV protein expression constructs to examine the effect of Ub3881 on protein degradation. We used site-directed mutagenesis and transfection to determine what amino acids are involved in Ub3881-mediated protein degradation. Immunofluorescence, Co-immunoprecipitation and Western blotting were used to examine protein interactions and co-localization. Results The overexpression of Ub3881, but not related ubiquitin proteins, decreased DENV infection in mosquito cells and live Ae. aegypti. The Ub3881 protein was demonstrated to be involved in DENV envelope protein degradation and reduce the number of infectious virions released. Conclusions We conclude that Ub3881 has several antiviral functions in the mosquito, including specific viral protein degradation. General significance Our data highlights Ub3881 as a target for future DENV prevention strategies in the mosquito transmission vector. A novel mosquito ubiquitin, Ub3881, is identified in Aedes aegypti. Ub3881 is shown to have antiviral functions during dengue virus infection of the mosquito. Ub3881 targets a dengue viral protein for degradation during infection. Future dengue virus prevention strategies could incorporate Ub3881 as a target to prevent mosquito infection.
Collapse
Affiliation(s)
- Andrea Troupin
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Berlin Londono-Renteria
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Michael J Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, United States
| | - Erin Cloherty
- Department of Tropical Medicine, Tulane University School of Public Health, New Orleans, LA 70112, United States
| | - Samuel Jameson
- Department of Tropical Medicine, Tulane University School of Public Health, New Orleans, LA 70112, United States
| | - Stephen Higgs
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, United States; Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Dana L Vanlandingham
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, United States; Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States
| | - Tonya M Colpitts
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States.
| |
Collapse
|
7
|
Abstract
The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50,>20 M). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients.
Collapse
|
8
|
Londono-Renteria B, Troupin A, Conway MJ, Vesely D, Ledizet M, Roundy CM, Cloherty E, Jameson S, Vanlandingham D, Higgs S, Fikrig E, Colpitts TM. Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein. PLoS Pathog 2015; 11:e1005202. [PMID: 26491875 PMCID: PMC4619585 DOI: 10.1371/journal.ppat.1005202] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ≥5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.
Collapse
Affiliation(s)
- Berlin Londono-Renteria
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Andrea Troupin
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Michael J Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, Michigan, United States of America
| | - Diana Vesely
- L2 Diagnostics, New Haven, Connecticut, United States of America
| | - Michael Ledizet
- L2 Diagnostics, New Haven, Connecticut, United States of America
| | - Christopher M. Roundy
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Erin Cloherty
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Samuel Jameson
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Dana Vanlandingham
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephen Higgs
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Tonya M. Colpitts
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
CD8+ T Cells Can Mediate Short-Term Protection against Heterotypic Dengue Virus Reinfection in Mice. J Virol 2015; 89:6494-505. [PMID: 25855749 DOI: 10.1128/jvi.00036-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/06/2015] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Dengue virus (DENV) is a major public health threat worldwide. Infection with one of the four serotypes of DENV results in a transient period of protection against reinfection with all serotypes (cross-protection), followed by lifelong immunity to the infecting serotype. While a protective role for neutralizing antibody responses is well established, the contribution of T cells to reinfection is less clear, especially during heterotypic reinfection. This study investigates the role of T cells during homotypic and heterotypic DENV reinfection. Mice were sequentially infected with homotypic or heterotypic DENV serotypes, and T cell subsets were depleted before the second infection to assess the role of DENV-primed T cells during reinfection. Mice primed nonlethally with DENV were protected against reinfection with either a homotypic or heterotypic serotype 2 weeks later. Homotypic priming induced a robust neutralizing antibody response, whereas heterotypic priming elicited binding, but nonneutralizing antibodies. CD8(+) T cells were required for protection against heterotypic, but not homotypic, reinfection. These results suggest that T cells can contribute crucially to protection against heterotypic reinfection in situations where humoral responses alone may not be protective. Our findings have important implications for vaccine design, as they suggest that inducing both humoral and cellular responses during vaccination may maximize protective efficacy across all DENV serotypes. IMPORTANCE Dengue virus is present in more than 120 countries in tropical and subtropical regions. Infection with dengue virus can be asymptomatic, but it can also progress into the potentially lethal severe dengue disease. There are four closely related dengue virus serotypes. Infection with one serotype results in a transient period of resistance against all serotypes (cross-protection), followed by lifelong resistance to the infecting serotype, but not the other ones. The duration and mechanisms of the transient cross-protection period remain elusive. This study investigates the contribution of cellular immunity to cross-protection using mouse models of DENV infection. Our results demonstrate that cellular immunity is crucial to mediate cross-protection against reinfection with a different serotype, but not for protection against reinfection with the same serotype. A better understanding of the mediators responsible for the cross-protection period is important for vaccine design, as an ideal vaccine against dengue virus should efficiently protect against all serotypes.
Collapse
|
10
|
Zou B, Chan WL, Ding M, Leong SY, Nilar S, Seah PG, Liu W, Karuna R, Blasco F, Yip A, Chao A, Susila A, Dong H, Wang QY, Xu HY, Chan K, Wan KF, Gu F, Diagana TT, Wagner T, Dix I, Shi PY, Smith PW. Lead optimization of spiropyrazolopyridones: a new and potent class of dengue virus inhibitors. ACS Med Chem Lett 2015; 6:344-8. [PMID: 25878766 DOI: 10.1021/ml500521r] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/02/2015] [Indexed: 12/24/2022] Open
Abstract
Spiropyrazolopyridone 1 was identified, as a novel dengue virus (DENV) inhibitor, from a DENV serotype 2 (DENV-2) high-throughput phenotypic screen. As a general trend within this chemical class, chiral resolution of the racemate revealed that R enantiomer was significantly more potent than the S. Cell-based lead optimization of the spiropyrazolopyridones focusing on improving the physicochemical properties is described. As a result, an optimal compound 14a, with balanced in vitro potency and pharmacokinetic profile, achieved about 1.9 log viremia reduction at 3 × 50 mg/kg (bid) or 3 × 100 mg/kg (QD) oral doses in the dengue in vivo mouse efficacy model.
Collapse
Affiliation(s)
- Bin Zou
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Wai Ling Chan
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Mei Ding
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Seh Yong Leong
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Shahul Nilar
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Peck Gee Seah
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Wei Liu
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Ratna Karuna
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Francesca Blasco
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Andy Yip
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Alex Chao
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Agatha Susila
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Hongping Dong
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Qing Yin Wang
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Hao Ying Xu
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Katherine Chan
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Kah Fei Wan
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Feng Gu
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Thierry T. Diagana
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Trixie Wagner
- Novartis Institute for Biomedical Research, Basel CH-4056, Switzerland
| | - Ina Dix
- Novartis Institute for Biomedical Research, Basel CH-4056, Switzerland
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| | - Paul W. Smith
- Novartis Institute for Tropical Diseases, 10 Biopolis Road #05-01 Chromos, Singapore 138670, Singapore
| |
Collapse
|
11
|
Brecher MB, Li Z, Zhang J, Chen H, Lin Q, Liu B, Li H. Refolding of a fully functional flavivirus methyltransferase revealed that S-adenosyl methionine but not S-adenosyl homocysteine is copurified with flavivirus methyltransferase. Protein Sci 2014; 24:117-28. [PMID: 25352331 DOI: 10.1002/pro.2594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/09/2023]
Abstract
Methylation of flavivirus RNA is vital for its stability and translation in the infected host cell. This methylation is mediated by the flavivirus methyltransferase (MTase), which methylates the N7 and 2'-O positions of the viral RNA cap by using S-adenosyl-l-methionine (SAM) as a methyl donor. In this report, we demonstrate that SAM, in contrast to the reaction by-product S-adenosyl-l-homocysteine, which was assumed previously, is copurified with the Dengue (DNV) and West Nile virus MTases produced in Escherichia coli (E. coli). This endogenous SAM can be removed by denaturation and refolding of the MTase protein. The refolded MTase of DNV serotype 3 (DNV3) displays methylation activity comparable to native enzyme, and its crystal structure at 2.1 Å is almost identical to that of native MTase. We characterized the binding of Sinefungin (SIN), a previously described SAM-analog inhibitor of MTase function, to the native and refolded DNV3 MTase by isothermal titration calorimetry, and found that SIN binds to refolded MTase with more than 16 times the affinity of SIN binding to the MTase purified natively. Moreover, we show that SAM is also copurified with other flavivirus MTases, indicating that purification by refolding may be a generally applicable tool for studying flavivirus MTase inhibition.
Collapse
Affiliation(s)
- Matthew B Brecher
- Wadsworth Center, New York State Department of Health, Albany, New York, 12208
| | | | | | | | | | | | | |
Collapse
|
12
|
Noble CG, Li SH, Dong H, Chew SH, Shi PY. Crystal structure of dengue virus methyltransferase without S-adenosyl-L-methionine. Antiviral Res 2014; 111:78-81. [PMID: 25241250 PMCID: PMC7113791 DOI: 10.1016/j.antiviral.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 01/03/2023]
Abstract
Flavivirus methyltransferase is a genetically-validated antiviral target. Crystal structures of almost all available flavivirus methyltransferases contain S-adenosyl-L-methionine (SAM), the methyl donor molecule that co-purifies with the enzymes. This raises a possibility that SAM is an integral structural component required for the folding of dengue virus (DENV) methyltransferase. Here we exclude this possibility by solving the crystal structure of DENV methyltransferase without SAM. The SAM ligand was removed from the enzyme through a urea-mediated denaturation-and-renaturation protocol. The crystal structure of the SAM-depleted enzyme exhibits a vacant SAM-binding pocket, with a conformation identical to that of the SAM-enzyme co-crystal structure. Functionally, equivalent enzymatic activities (N-7 methylation, 2'-O methylation, and GMP-enzyme complex formation) were detected for the SAM-depleted and SAM-containing recombinant proteins. These results clearly indicate that the SAM molecule is not an essential component for the correct folding of DENV methyltransferase. Furthermore, the results imply a potential antiviral approach to search for inhibitors that can bind to the SAM-binding pocket and compete against SAM binding. To demonstrate this potential, we have soaked crystals of DENV methyltransferase without a bound SAM with the natural product Sinefungin and show that preformed crystals are capable of binding ligands in this pocket.
Collapse
Affiliation(s)
- Christian G Noble
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, 05-01 Chromos, Singapore 138670, Singapore
| | - Shi-Hua Li
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, 05-01 Chromos, Singapore 138670, Singapore
| | - Hongping Dong
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, 05-01 Chromos, Singapore 138670, Singapore
| | - Sock Hui Chew
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, 05-01 Chromos, Singapore 138670, Singapore
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, 05-01 Chromos, Singapore 138670, Singapore.
| |
Collapse
|
13
|
Zellweger RM, Shresta S. Mouse models to study dengue virus immunology and pathogenesis. Front Immunol 2014; 5:151. [PMID: 24782859 PMCID: PMC3989707 DOI: 10.3389/fimmu.2014.00151] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/21/2014] [Indexed: 02/01/2023] Open
Abstract
The development of a compelling murine model of dengue virus (DENV) infection has been challenging, because DENV clinical isolates do not readily replicate or cause pathology in immunocompetent mice. However, research using immunocompromised mice and/or mouse-adapted viruses allows investigation of questions that may be impossible to address in human studies. In this review, we discuss the potential strengths and limitations of existing mouse models of dengue disease. Human studies are descriptive by nature; moreover, the strain, time, and sequence of infection are often unknown. In contrast, in mice, the conditions of infection are well defined and a large number of experimental parameters can be varied at will. Therefore, mouse models offer an opportunity to experimentally test hypotheses that are based on epidemiological observations. In particular, gain-of-function or loss-of-function models can be established to assess how different components of the immune system (either alone or in combination) contribute to protection or pathogenesis during secondary infections or after vaccination. In addition, mouse models have been used for pre-clinical testing of anti-viral drugs or for vaccine development studies. Conclusions based on mouse experiments must be extrapolated to DENV-infection in humans with caution due to the inherent limitations of animal models. However, research in mouse models is a useful complement to in vitro and epidemiological data, and may delineate new areas that deserve attention during future human studies.
Collapse
Affiliation(s)
- Raphaël M Zellweger
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Sujan Shresta
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|