1
|
Carrano G, Arrieta-Aguirre I, Díez A, Bregón-Villahoz M, Fernandez-de-Larrinoa I, Moragues MD. Anti-Candida Antibodies of Patients with Invasive Candidiasis Inhibit Growth, Alter Cell Wall Structure, and Kill Candida albicans In Vitro. Mycopathologia 2024; 189:16. [PMID: 38324097 PMCID: PMC10850236 DOI: 10.1007/s11046-023-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024]
Abstract
Invasive candidiasis (IC), caused by Candida yeasts, particularly Candida albicans, poses a significant threat with high mortality rates. Diagnosis is challenging due to Candida's common presence in human microbiota. To address this, our research group developed an immunofluorescence assay detecting Candida albicans Germ Tube Antibodies (CAGTA) in IC patients. CAGTA, indicative of invasive processes, is associated with a lower mortality rate in ICU patients. Based on this premise, this study aims to provide results regarding the lack of knowledge about the potential activity of CAGTA against invasive infections in humans caused by the fungus Candida albicans. Therefore, in order to characterize the activity of CAGTA produced by patients with IC, we used sera from 29 patients with IC caused by either C. albicans or non-albicans Candida species. Whole serum IgG antibodies were fractionated into anti-blastospores, CAGTA-enriched, and purified CAGTA and the assessments included XTT colorimetric assays for metabolic activity, CFU counts for viability, and microscopy for growth, viability, and morphological analysis. The CAGTA-enriched IgG fraction significantly reduced the metabolic activity and viability of C. albicans compared to anti-blastospores. Purified CAGTA altered germ tube cell wall surfaces, as revealed by electron microscopy, and exhibited fungicidal properties by DiBAC fluorescent staining. In conclusion, antibodies in response to invasive candidiasis have antifungal activity against Candida albicans, influencing metabolic activity, viability, and cell wall structure, leading to cell death. These findings suggest the potential utility of CAGTA as diagnostic markers and support the possibility of developing immunization protocols against Candida infections.
Collapse
Affiliation(s)
- Giulia Carrano
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Araba, Spain.
| | - Inés Arrieta-Aguirre
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Ander Díez
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Marta Bregón-Villahoz
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Iñigo Fernandez-de-Larrinoa
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Gipuzkoa, Spain
| | - María-Dolores Moragues
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| |
Collapse
|
2
|
Kaur G, Chawla S, Kumar P, Singh R. Advancing Vaccine Strategies against Candida Infections: Exploring New Frontiers. Vaccines (Basel) 2023; 11:1658. [PMID: 38005990 PMCID: PMC10674196 DOI: 10.3390/vaccines11111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Candida albicans, along with several non-albicans Candida species, comprise a prominent fungal pathogen in humans, leading to candidiasis in various organs. The global impact of candidiasis in terms of disease burden, suffering, and fatalities is alarmingly high, making it a pressing global healthcare concern. Current treatment options rely on antifungal drugs such as azoles, polyenes, and echinocandins but are delimited due to the emergence of drug-resistant strains and associated adverse effects. The current review highlights the striking absence of a licensed antifungal vaccine for human use and the urgent need to shift our focus toward developing an anti-Candida vaccine. A number of factors affect the development of vaccines against fungal infections, including the host, intraspecies and interspecies antigenic variations, and hence, a lack of commercial interest. In addition, individuals with a high risk of fungal infection tend to be immunocompromised, so they are less likely to respond to inactivated or subunit whole organisms. Therefore, it is pertinent to discover newer and novel alternative strategies to develop safe and effective vaccines against fungal infections. This review article provides an overview of current vaccination strategies (live attenuated, whole-cell killed, subunit, conjugate, and oral vaccine), including their preclinical and clinical data on efficacy and safety. We also discuss the mechanisms of immune protection against candidiasis, including the role of innate and adaptive immunity and potential biomarkers of protection. Challenges, solutions, and future directions in vaccine development, namely, exploring novel adjuvants, harnessing the trained immunity, and utilizing immunoinformatics approaches for vaccine design and development, are also discussed. This review concludes with a summary of key findings, their implications for clinical practice and public health, and a call to action for continued investment in candidiasis vaccine research.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Chandigarh College of Technology (CCT), Chandigarh Group of Colleges (CGC), Landran, Mohali 140307, India
| | - Sonam Chawla
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Piyush Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Ritu Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| |
Collapse
|
3
|
Zhao Z, Sun Y, Li M, Yu Q. Construction of Candida albicans Adhesin-Exposed Synthetic Cells for Preventing Systemic Fungal Infection. Vaccines (Basel) 2023; 11:1521. [PMID: 37896925 PMCID: PMC10611093 DOI: 10.3390/vaccines11101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The development of efficient fungal vaccines is urgent for preventing life-threatening systemic fungal infections. In this study, we prepared a synthetic, cell-based fungal vaccine for preventing systemic fungal infections using synthetic biology techniques. The synthetic cell EmEAP1 was constructed by transforming the Escherichia coli chassis using a de novo synthetic fragment encoding the protein mChEap1 that was composed of the E. coli OmpA peptide, the fluorescence protein mCherry, the Candida albicans adhesin Eap1, and the C-terminally transmembrane region. The EmEAP1 cells highly exposed the mChEap1 on the cell surface under IPTG induction. The fungal vaccine was then prepared by mixing the EmEAP1 cells with aluminum hydroxide gel and CpG. Fluorescence quantification revealed that the fungal vaccine was stable even after 112 days of storage. After immunization in mice, the vaccine resided in the lymph nodes, inducing the recruitment of CD11c+ dendritic cells. Moreover, the vaccine strongly activated the CD4+ T splenocytes and elicited high levels of anti-Eap1 IgG. By the prime-boost immunization, the vaccine prolonged the survival time of the mice infected by the C. albicans cells and attenuated fungal colonization together with inflammation in the kidneys. This study sheds light on the development of synthetic biology-based fungal vaccines for the prevention of life-threatening fungal infections.
Collapse
Affiliation(s)
- Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Ying Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Tianjin 300350, China
| |
Collapse
|
4
|
Yang L, Cheng T, Shao J. Perspective on receptor-associated immune response to Candida albicans single and mixed infections: Implications for therapeutics in oropharyngeal candidiasis. Med Mycol 2023; 61:myad077. [PMID: 37533203 DOI: 10.1093/mmy/myad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Oropharyngeal candidiasis (OPC), commonly known as 'thrush', is an oral infection that usually dismantles oral mucosal integrity and malfunctions local innate and adaptive immunities in compromised individuals. The major pathogen responsible for the occurrence and progression of OPC is the dimorphic opportunistic commensal Candida albicans. However, the incidence induced by non-albicans Candida species including C. glabrata, C. tropicalis, C. dubliniensis, C. parapsilosis, and C. krusei are increasing in company with several oral bacteria, such as Streptococcus mutans, S. gordonii, S. epidermidis, and S. aureus. In this review, the microbiological and infection features of C. albicans and its co-contributors in the pathogenesis of OPC are outlined. Since the invasion and concomitant immune response lie firstly on the recognition of oral pathogens through diverse cellular surface receptors, we subsequently emphasize the roles of epidermal growth factor receptor, ephrin-type receptor 2, human epidermal growth factor receptor 2, and aryl hydrocarbon receptor located on oral epithelial cells to delineate the underlying mechanism by which host immune recognition to oral pathogens is mediated. Based on these observations, the therapeutic approaches to OPC comprising conventional and non-conventional antifungal agents, fungal vaccines, cytokine and antibody therapies, and antimicrobial peptide therapy are finally overviewed. In the face of newly emerging life-threatening microbes (C. auris and SARS-CoV-2), risks (biofilm formation and interconnected translocation among diverse organs), and complicated clinical settings (HIV and oropharyngeal cancer), the research on OPC is still a challenging task.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Ting Cheng
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| |
Collapse
|
5
|
Targeting Virulence Factors of Candida albicans with Natural Products. Foods 2022; 11:foods11192951. [PMID: 36230026 PMCID: PMC9562657 DOI: 10.3390/foods11192951] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products derived from natural resources, including nutritional functional food, play an important role in human health. In recent years, the study of anti-fungal and other properties of agri-foods and derived functional compounds has been a hot research topic. Candida albicans is a parasitic fungus that thrives on human mucosal surfaces, which are colonized through opportunistic infection. It is the most prevalent cause of invasive fungal infection in immunocompromised individuals, resulting in a wide variety of clinical symptoms. Moreover, the efficacy of classical therapeutic medications such as fluconazole is often limited by the development of resistance. There is an ongoing need for the development of novel and effective antifungal therapy and medications. Infection of C. albicans is influenced by a great quantity of virulence factors, like adhesion, invasion-promoting enzymes, mycelial growth, and phenotypic change, and among others. Furthermore, various natural products especially from food sources that target C. albicans virulence factors have been researched, providing promising prospects for C. albicans prevention and treatment. In this review, we discuss the virulence factors of C. albicans and how functional foods and derived functional compounds affect them. Our hope is that this review will stimulate additional thoughts and suggestions regarding nutritional functional food and therapeutic development for patients afflicted with C. albicans.
Collapse
|
6
|
Chitosan hydrogel loaded with recombinant protein containing epitope C from HSP90 of Candida albicans induces protective immune responses against systemic candidiasis. Int J Biol Macromol 2021; 173:327-340. [PMID: 33482211 DOI: 10.1016/j.ijbiomac.2021.01.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/23/2022]
Abstract
We reported previously a recombinant protein (rP-HSP90C) containing epitope C from heat shock protein 90 of Candida albicans mediates protective immune responses against systemic candidiasis. However, it exhibits weak immunogenicity. Therefore, we evaluated the potential and mechanisms of thermosensitive chitosan hydrogel (CH-HG) as an adjuvant in rP-HSP90C vaccine. CH-HG synthesized by ionic cross-linking showed buffering capacity and control-released rP-HSP90C in vitro. In comparison to naked rP-HSP90C, CH-HG-loaded rP-HSP90C (CH-HG/rP-HSP90C) not only evoked a long-lasting rP-HSP90C-specific IgG, but also enhanced Th1, Th2, Th17 responses and the ratio of Th1/Th2 in vivo; Meanwhile, CH-HG/rP-HSP90C provoked a stronger CTL response than rP-HSP90C. Notably, CH-HG increased the protective immune responses against systemic candidiasis in rP-HSP90C-immunized mice since CH-HG/rP-HSP90C enhanced the survival rate of infected mice, and diminished the CFUs in kidneys compared to rP-HSP90C, which were similar to that of QuilA. Further in vitro investigation displayed CH-HG upgraded the expressions of costimulators, MHCs and cytokines in BMDCs compared to rP-HSP90C;CH-HG also promoted cellular uptake, endosomal escape and "cross-presentation" of rP-HSP90C. In addition, it recruited immune cells at the injection site. Our study demonstrated that CH-HG can be an efficient adjuvant in fungal vaccines.
Collapse
|
7
|
Vaccination with Secreted Aspartyl Proteinase 2 Protein from Candida parapsilosis Can Enhance Survival of Mice during C. tropicalis-Mediated Systemic Candidiasis. Infect Immun 2020; 88:IAI.00312-20. [PMID: 32661125 DOI: 10.1128/iai.00312-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
The rising incidence of non-albicans Candida species globally, along with the emergence of drug resistance, is a cause for concern. This study investigated the protective efficacy of secreted aspartyl proteinase 2 (Sap2) in systemic C. tropicalis infection. Vaccination with recombinant Sap2 (rSap2) protein from C. parapsilosis enhanced survival of mice compared to rSap2 vaccinations from C. albicans (P = 0.02), C. tropicalis (P = 0.06), and sham immunization (P = 0.04). Compared to sham-immunized mice, the fungal CFU number was significantly reduced in organs of Sap2-parapsilosis-immunized mice. Histopathologically, increased neutrophilic recruitment was observed in Sap2-parapsilosis- and Sap2-tropicalis-immunized mice. Among different rSap2 proteins, Sap2-parapsilosis vaccination induced increased titers of Sap2-specific Ig, IgG, and IgM antibodies, which could bind whole fungus. Between different groups, sera from Sap2-parapsilosis-vaccinated mice exhibited increased C. tropicalis biofilm inhibition ability in vitro and enhanced neutrophil-mediated fungal killing. Passive transfer of anti-Sap2-parapsilosis immune serum in naive mice significantly reduced fungal burdens compared to those in mice receiving anti-sham immune serum. Higher numbers of plasma cells and Candida-binding B cells in Sap2-vaccinated mice suggest a role of B cells during early stages of Sap2-mediated immune response. Additionally, increased levels of Th1/Th2/Th17 cytokines observed in Sap2-parapsilosis-vaccinated mice indicate immunomodulatory properties of Sap2. Epitope analysis performed using identified B-cell epitopes provides a basis to understand differences in immunogenicity observed among Sap2-antigens and can aid the development of a multivalent or multiepitope anti-Candida vaccine(s). In summary, our results suggest that Sap2-parapsilosis vaccination can improve mouse survival during C. tropicalis infection by inducing both humoral and cellular immunity, and higher titers of Sap2-induced antibodies are beneficial during systemic candidiasis.
Collapse
|
8
|
Carrano G, Paulone S, Lainz L, Sevilla MJ, Blasi E, Moragues MD. Anti-Candidaalbicans germ tube antibodies reduce in vitro growth and biofilm formation of C. albicans. Rev Iberoam Micol 2019; 36:9-16. [PMID: 30686747 DOI: 10.1016/j.riam.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/11/2018] [Accepted: 07/25/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Invasive candidiasis by Candida albicans is associated with high morbidity and mortality, due in part to the late implementation of an appropriate antifungal therapy hindered by the lack of an early diagnosis. AIMS We aimed to evaluate the in vitro antifungal activity of the antibodies against C. albicans germ tubes (CAGTA) raised in a rabbit model of candidemia. METHODS We measured the effect of CAGTA activity by colorimetric XTT and crystal violet assays, and colony forming units count, both on C. albicans planktonic cells and during the course of biofilm formation and maturation. Viability and cell morphology were assessed by optical, fluorescent or scanning electron microscopy. RESULTS CAGTA ≥50μg/ml caused a strong inhibition of C. albicans blastospores growth, and DiBAC fluorescent staining evidenced a fungicidal activity. Moreover, electron microscopy images revealed that CAGTA induced morphological alterations of the surface of C. albicans germ tubes grown free as well as in biofilm. Interestingly, CAGTA ≥80μg/ml reduced the amount of C. albicans biofilm, and this effect started at the initial adhesion stage of the biofilm formation, during the first 90min. CONCLUSIONS This is the first report showing that CAGTA reduce C. albicans growth, and impair its metabolic activity and ability to form biofilm in vitro. The antigens recognized by CAGTA could be the basis for the development of immunization protocols that might protect against Candida infections.
Collapse
Affiliation(s)
- Giulia Carrano
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain; Department of Nursing I, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Simona Paulone
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy; PhD Programme in Clinical Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucía Lainz
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - María-Jesús Sevilla
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Elisabetta Blasi
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy; PhD Programme in Clinical Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
9
|
De Bernardis F, Graziani S, Tirelli F, Antonopoulou S. Candida vaginitis: virulence, host response and vaccine prospects. Med Mycol 2018. [PMID: 29538739 DOI: 10.1093/mmy/myx139] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vulvovaginal candidiasis is a common mucosal infection affecting a large proportion of women with some of them affected by recurrent often intractable forms of the disease. Thus, there is an increasing interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in animal models of vaginal candidiasis, the components of the host-fungus interaction at the mucosal level.The evidence of an immune response in the vaginal compartment was very encouraging to identify the proper targets for new strategies for vaccination or immunotherapy of vaginal candidiasis. Aspartyl-proteinase (Sap2), which is an important immunodominant antigens and virulence factors of C.albicans acting in mucosal infections, was assembled with virosomes and a vaccine PEV7 was obtained. The results obtained in the mouse model and in the clinical trial conducted by Pevion on women have evidenced that the vaccine PEV7, intravaginally administered, has an encouraging therapeutic potential for the treatment of recurrent vulvovaginal candidiasis. This opens the way to a modality for anti-Candida protection at mucosal level.
Collapse
Affiliation(s)
- Flavia De Bernardis
- Department. of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Sofia Graziani
- Department. of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Flavio Tirelli
- Università Cattolica del Sacro Cuore, Largo F. Vito, 1, 00168 Rome, Italy
| | - Stavroula Antonopoulou
- Departmentt. of Clinical Microbiology, G. Gennimatas General Hospital, 154 Avenue Mesogeion, 11527, Athens, Greece.,Department of Genetics and Biotechnology, Faculty of Biology, National Kapodistrian University of Athens, Avenue oulof Palme, Ano Ilisia 15784, Athens, Greece
| |
Collapse
|
10
|
De-La-Torre J, Quindós G, Marcos-Arias C, Marichalar-Mendia X, Gainza ML, Eraso E, Acha-Sagredo A, Aguirre-Urizar JM. Oral Candida colonization in patients with chronic periodontitis. Is there any relationship? Rev Iberoam Micol 2018; 35:134-139. [PMID: 30082174 DOI: 10.1016/j.riam.2018.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/13/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Candida can be implicated in the pathology of chronic periodontitis. AIMS To analyze the oral Candida carriage in patients suffering from chronic periodontitis (CP) and its correlation with the severity of this condition. METHODS Microbiological samples were taken from 155 patients using the oral rinse (OR) technique and by using paper points in the periodontal pockets (GPP). These patients were divided into 3 groups: 89 patients without CP (control), 47 with moderate CP, and 19 with severe CP. Samples were cultured in a Candida chromogenic agar for Candida. Species were identified by microbiological and molecular methods. RESULTS Candida was isolated in the OR of 45 (50.6%), 21 (44.7%), and 11 (57.9%) patients, respectively, and in the GPP of 32 (36%), 14 (29.2%), and 10 (42.6%) patients from the control, moderate CP and severe CP groups, respectively. Candida was isolated more frequently and in a greater burden in OR than in GPP (p<0.01). Candida albicans was the most prevalent species. GPP of patients with CP had poor fungal biodiversity (p<0.01). CONCLUSIONS Colonization by Candida was present in the samples of patients without CP, and with both moderate and severe CP. Nonetheless, patients with severe CP had a higher rate of Candida colonization, especially by C. albicans.
Collapse
Affiliation(s)
- Janire De-La-Torre
- Department of Immunology, Microbiology and Parasitology, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain; Department of Stomatology II, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain.
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Cristina Marcos-Arias
- Department of Immunology, Microbiology and Parasitology, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Xabier Marichalar-Mendia
- Department of Stomatology II, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - María Luisa Gainza
- Department of Dental Surgery, Faculty of Dental Surgery, University of Malta, Malta
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Amelia Acha-Sagredo
- Department of Stomatology II, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - José Manuel Aguirre-Urizar
- Department of Stomatology II, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| |
Collapse
|
11
|
Sui X, Yan L, Jiang YY. The vaccines and antibodies associated with Als3p for treatment of Candida albicans infections. Vaccine 2017; 35:5786-5793. [DOI: 10.1016/j.vaccine.2017.08.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/14/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
|
12
|
Abstract
Polysaccharides are abundant natural polymers found in plants, animals and microorganisms with exceptional properties and essential roles to sustain life. They are well known for their high nutritive value and the positive effects on our immune and digestive functions and detoxification system. The knowledge and recognition of the important role they play for promoting and maintaining human health and wellbeing is continuously increasing. This review describes some important polysaccharides (e.g. mucilages and gums, glycosamine glycans and chitin/chitosan) and their medical, cosmetic and pharmaceutical applications, with emphasis on the relationship between structure and function. Next, the use of polysaccharides as nutraceuticals and vaccines is discussed in more detail. An analysis of the trends and challenges in polysaccharide research concludes the paper.
Collapse
Affiliation(s)
- Jan E.G. van Dam
- Wageningen UR Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | | | - Carmen G. Boeriu
- Wageningen UR Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
13
|
Yu W, Hu T. Conjugation with an Inulin–Chitosan Adjuvant Markedly Improves the Immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 Fusion Protein. Mol Pharm 2016; 13:3626-3635. [DOI: 10.1021/acs.molpharmaceut.6b00138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weili Yu
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Hu
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Pellon A, Ramirez-Garcia A, Buldain I, Antoran A, Rementeria A, Hernando FL. Immunoproteomics-Based Analysis of the Immunocompetent Serological Response to Lomentospora prolificans. J Proteome Res 2016; 15:595-607. [PMID: 26732945 DOI: 10.1021/acs.jproteome.5b00978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The filamentous fungus Lomentospora prolificans is an emerging pathogen causing severe infections mainly among the immunocompromised population. These diseases course with high mortality rates due to great virulence of the fungus, its inherent resistance to available antifungals, and absence of specific diagnostic tools. Despite being widespread in humanized environments, L. prolificans rarely causes infections in immunocompetent individuals likely due to their developed protective immune response. In this study, conidial and hyphal immunomes against healthy human serum IgG were analyzed, identifying immunodominant antigens and establishing their prevalence among the immunocompetent population. Thirteen protein spots from each morph were detected as reactive against at least 70% of serum samples, and identified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Hence, the most seroprevalent antigens were WD40 repeat 2 protein, malate dehydrogenase, and DHN1, in conidia, and heat shock protein (Hsp) 70, Hsp90, ATP synthase β subunit, and glyceraldehyde-3-phosphate dehydrogenase, in hyphae. More interestingly, the presence of some of these seroprevalent antigens was determined on the cell surface, as Hsp70, enolase, or Hsp90. Thus, we have identified a diverse set of antigenic proteins, both in the entire proteome and cell surface subproteome, which may be used as targets to develop innovative therapeutic or diagnostic tools.
Collapse
Affiliation(s)
- Aize Pellon
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Aitziber Antoran
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| |
Collapse
|
15
|
De-la-Torre J, Marichalar-Mendia X, Varona-Barquin A, Marcos-Arias C, Eraso E, Aguirre-Urizar JM, Quindós G. Caries andCandidacolonisation in adult patients in Basque Country (Spain). Mycoses 2016; 59:234-240. [DOI: 10.1111/myc.12453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Janire De-la-Torre
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
- Departamento de Estomatología II; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Xabier Marichalar-Mendia
- Departamento de Estomatología II; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Aketza Varona-Barquin
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Cristina Marcos-Arias
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Elena Eraso
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - José Manuel Aguirre-Urizar
- Departamento de Estomatología II; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Guillermo Quindós
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| |
Collapse
|
16
|
Godoy JSR, Kioshima ÉS, Abadio AKR, Felipe MSS, de Freitas SM, Svidzinski TIE. Structural and functional characterization of the recombinant thioredoxin reductase from Candida albicans as a potential target for vaccine and drug design. Appl Microbiol Biotechnol 2015; 100:4015-25. [DOI: 10.1007/s00253-015-7223-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 11/24/2022]
|
17
|
De Bernardis F, Arancia S, Sandini S, Graziani S, Norelli S. Studies of Immune Responses in Candida vaginitis. Pathogens 2015; 4:697-707. [PMID: 26473934 PMCID: PMC4693159 DOI: 10.3390/pathogens4040697] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 01/12/2023] Open
Abstract
The widespread occurrence of vaginal candidiasis and the development of resistance against anti-fungal agents has stimulated interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in an animal model of vaginal candidiasis, the mechanisms that play a role in the induction of mucosal immunity against C. albicans and the interaction between innate and adaptive immunity. Our studies evidenced the elicitation of cell-mediated immunity (CMIs) and antibody (Abs)-mediated immunity with a Th1 protective immunity. An immune response of this magnitude in the vagina was very encouraging to identify the proper targets for new strategies for vaccination or immunotherapy of vaginal candidiasis. Overall, our data provide clear evidence that it is possible to prevent C. albicans vaginal infection by active intravaginal immunization with aspartyl proteinase expressed as recombinant protein. This opens the way to a modality for anti-Candida protection at the mucosa. The recombinant protein Sap2 was assembled with virosomes, and a vaccine PEVION7 (PEV7) was obtained. The results have given evidence that the vaccine, constituted of virosomes and Secretory aspartyl proteinase 2 (Sap2) (PEV7), has an encouraging therapeutic potential for the treatment of recurrent vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Flavia De Bernardis
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Silvia Arancia
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Silvia Sandini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sofia Graziani
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sandro Norelli
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
18
|
Acute kidney injury, an Id reaction and HSP90. Am J Med Sci 2015; 350:157-8. [PMID: 26230574 DOI: 10.1097/maj.0000000000000472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Moriyama B, Gordon LA, McCarthy M, Henning SA, Walsh TJ, Penzak SR. Emerging drugs and vaccines for candidemia. Mycoses 2014; 57:718-33. [PMID: 25294098 DOI: 10.1111/myc.12265] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 11/27/2022]
Abstract
Candidemia and other forms of invasive candidiasis are important causes of morbidity and mortality. The evolving challenge of antimicrobial resistance among fungal pathogens continues to highlight the need for potent, new antifungal agents. MEDLINE, EMBASE, Scopus and Web of Science searches (up to January 2014) of the English-language literature were performed with the keywords 'Candida' or 'Candidemia' or 'Candidiasis' and terms describing investigational drugs with activity against Candida spp. Conference abstracts and the bibliographies of pertinent articles were also reviewed for relevant reports. ClinicalTrials.gov was searched for relevant clinical trials. Currently available antifungal agents for the treatment of candidemia are summarised. Investigational antifungal agents with potential activity against Candida bloodstream infections and other forms of invasive candidiasis and vaccines for prevention of Candida infections are also reviewed as are selected antifungal agents no longer in development. Antifungal agents currently in clinical trials include isavuconazole, albaconazole, SCY-078, VT-1161 and T-2307. Further data are needed to determine the role of these compounds in the treatment of candidemia and other forms of invasive candidiasis. The progressive reduction in antimicrobial drug development may result in a decline in antifungal drug discovery. Still, there remains a critical need for new antifungal agents to treat and prevent invasive candidiasis and other life-threatening mycoses.
Collapse
Affiliation(s)
- Brad Moriyama
- Pharmacy Department, NIH Clinical Center, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|