1
|
Ozsoy F, Mohammed M, Jan N, Lulek E, Ertas YN. T Cell and Natural Killer Cell Membrane-Camouflaged Nanoparticles for Cancer and Viral Therapies. ACS APPLIED BIO MATERIALS 2024; 7:2637-2659. [PMID: 38687958 PMCID: PMC11110059 DOI: 10.1021/acsabm.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Extensive research has been conducted on the application of nanoparticles in the treatment of cancer and infectious diseases. Due to their exceptional characteristics and flexible structure, they are classified as highly efficient drug delivery systems, ensuring both safety and targeted delivery. Nevertheless, nanoparticles still encounter obstacles, such as biological instability, absence of selectivity, recognition as unfamiliar elements, and quick elimination, which restrict their remedial capacity. To surmount these drawbacks, biomimetic nanotechnology has been developed that utilizes T cell and natural killer (NK) cell membrane-encased nanoparticles as sophisticated methods of administering drugs. These nanoparticles can extend the duration of drug circulation and avoid immune system clearance. During the membrane extraction and coating procedure, the surface proteins of immunological cells are transferred to the biomimetic nanoparticles. Such proteins present on the surface of cells confer several benefits to nanoparticles, including prolonged circulation, enhanced targeting, controlled release, specific cellular contact, and reduced in vivo toxicity. This review focuses on biomimetic nanosystems that are derived from the membranes of T cells and NK cells and their comprehensive extraction procedure, manufacture, and applications in cancer treatment and viral infections. Furthermore, potential applications, prospects, and existing challenges in their medical implementation are highlighted.
Collapse
Affiliation(s)
- Fatma Ozsoy
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Mahir Mohammed
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
| | - Nasrullah Jan
- Department
of Pharmacy, The University of Chenab, Gujrat, Punjab 50700, Pakistan
| | - Elif Lulek
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Yavuz Nuri Ertas
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- UNAM−National
Nanotechnology Research Center, Bilkent
University, Ankara 06800, Turkey
| |
Collapse
|
2
|
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent in the human population. These viruses cause lifelong infections by establishing latency in neurons and undergo sporadic reactivations that promote recurrent disease and new infections. The success of HSVs in persisting in infected individuals is likely due to their multiple molecular determinants involved in escaping the host antiviral and immune responses. Importantly, HSVs infect and negatively modulate the function of dendritic cells (DCs), key immune cells that are involved in establishing effective and balanced immunity against viruses. Here, we review and discuss several molecular and cellular processes modulated by HSVs in DCs, such as autophagy, apoptosis, and the unfolded protein response. Given the central role of DCs in establishing optimal antiviral immunity, particular emphasis should be given to the outcome of the interactions occurring between HSVs and DCs.
Collapse
Affiliation(s)
- Farías Ma
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Duarte Lf
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tognarelli Ei
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - González Pa
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Zhang X, Zhang Z, Xia N, Zhao Q. Carbohydrate-containing nanoparticles as vaccine adjuvants. Expert Rev Vaccines 2021; 20:797-810. [PMID: 34101528 DOI: 10.1080/14760584.2021.1939688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Adjuvants are essential to vaccines for immunopotentiation in the elicitation of protective immunity. However, classical and widely used aluminum-based adjuvants have limited capacity to induce cellular response. There are increasing needs for appropriate adjuvants with improved profiles for vaccine development toward emerging pathogens. Carbohydrate-containing nanoparticles (NPs) with immunomodulatory activity and particulate nanocarriers for effective antigen presentation are capable of eliciting a more balanced humoral and cellular immune response.Areas covered: We reviewed several carbohydrates with immunomodulatory properties. They include chitosan, β-glucan, mannan, and saponins, which have been used in vaccine formulations. The mode of action, the preparation methods, characterization of these carbohydrate-containing NPs and the corresponding vaccines are presented.Expert opinion: Several carbohydrate-containing NPs have entered the clinical stage or have been used in licensed vaccines for human use. Saponin-containing NPs are being evaluated in a vaccine against SARS-CoV-2, the pathogen causing the on-going worldwide pandemic. Vaccines with carbohydrate-containing NPs are in different stages of development, from preclinical studies to late-stage clinical trials. A better understanding of the mode of action for carbohydrate-containing NPs as vaccine carriers and as immunostimulators will likely contribute to the design and development of new generation vaccines against cancer and infectious diseases.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Zhigang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China.,School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China.,The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| |
Collapse
|
4
|
Development of Delivery Systems Enhances the Potency of Cell-Based HIV-1 Therapeutic Vaccine Candidates. J Immunol Res 2021; 2021:5538348. [PMID: 33997055 PMCID: PMC8081596 DOI: 10.1155/2021/5538348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
An effective therapeutic vaccine to eradicate HIV-1 infection does not exist yet. Among different vaccination strategies, cell-based vaccines could achieve in clinical trials. Cell viability and low nucleic acid expression are the problems related to dendritic cells (DCs) and mesenchymal stem cells (MSCs), which are transfected with plasmid DNA. Thus, novel in vitro strategies are needed to improve DNA transfection into these cells. The recent study assessed immune responses generated by MSCs and DCs, which were derived from mouse bone marrow and modified with Nef antigen using novel methods in mice. For this purpose, an excellent gene transfection approach by mechanical methods was used. Our data revealed that the transfection efficacy of Nef DNA into the immature MSCs and DCs was improved by the combination of chemical and mechanical (causing equiaxial cyclic stretch) approaches. Also, chemical transfection performed two times with 48-hour intervals further increased gene expression in both cells. The groups immunized with Nef DC prime/rNef protein boost and then Nef MSC prime/rNef protein boost were able to stimulate high levels of IFN-γ, IgG2b, IgG2a, and Granzyme B directed toward Th1 responses in mice. Furthermore, the mesenchymal or dendritic cell-based immunizations were more effective compared to protein immunization for enhancement of the Nef-specific T-cell responses in mice. Hence, the use of chemical reagent and mechanical loading simultaneously can be an excellent method in delivering cargoes into DCs and MSCs. Moreover, DC- and MSC-based immunizations can be considered as promising approaches for protection against HIV-1 infections.
Collapse
|
5
|
Garaiova Z, Melikishvili S, Michlewska S, Ionov M, Pedziwiatr-Werbicka E, Waczulikova I, Hianik T, Gomez-Ramirez R, de la Mata FJ, Bryszewska M. Dendronized Gold Nanoparticles as Carriers for gp160 (HIV-1) Peptides: Biophysical Insight into Complex Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1542-1550. [PMID: 33475368 DOI: 10.1021/acs.langmuir.0c03159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unavailability of effective and safe human immunodeficiency virus (HIV) vaccines incites several approaches for development of the efficient antigen/adjuvant vaccination composite. In this study, three different dendronized gold nanoparticles (AuNPs 13-15) were investigated for a complexation ability with gp160 synthetic peptides derived from an HIV envelope. It has been shown that HIV peptides interacted with nanoparticles as evident from the changes in their secondary structures, restricted the mobility of the attached fluorescence dye, and enhanced peptide helicity confirmed by the fluorescence polarization and circular dichroism results. Transmission electron microscopy visualized complexes as cloud-like structures with attached nanoparticles. AuNP 13-15 nanoparticles bind negatively charged peptides depending on the number of functional groups; the fastest saturation and peptide retardation were observed for the most dendronized nanoparticle as indicated from dynamic light scattering, laser Doppler velocimetry, and agarose gel electrophoresis experiments. Dendronized gold nanoparticles can be considered one of the potential HIV peptide-based vaccination platforms.
Collapse
Affiliation(s)
- Zuzana Garaiova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava 842 48, Slovakia
| | - Sopio Melikishvili
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava 842 48, Slovakia
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-237, Poland
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-237, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-237, Poland
| | - Elzbieta Pedziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-237, Poland
| | - Iveta Waczulikova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava 842 48, Slovakia
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava 842 48, Slovakia
| | - Rafael Gomez-Ramirez
- Inorganic Chemistry Department, IQAR, University Alcala, Alcala de Henares 28801, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid 28034, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Francisco Javier de la Mata
- Inorganic Chemistry Department, IQAR, University Alcala, Alcala de Henares 28801, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid 28034, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-237, Poland
| |
Collapse
|
6
|
Karpenko LI, Apartsin EK, Dudko SG, Starostina EV, Kaplina ON, Antonets DV, Volosnikova EA, Zaitsev BN, Bakulina AY, Venyaminova AG, Ilyichev AA, Bazhan SI. Cationic Polymers for the Delivery of the Ebola DNA Vaccine Encoding Artificial T-Cell Immunogen. Vaccines (Basel) 2020; 8:vaccines8040718. [PMID: 33271964 PMCID: PMC7760684 DOI: 10.3390/vaccines8040718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Background: According to current data, an effective Ebola virus vaccine should induce both humoral and T-cell immunity. In this work, we focused our efforts on methods for delivering artificial T-cell immunogen in the form of a DNA vaccine, using generation 4 polyamidoamine dendrimers (PAMAM G4) and a polyglucin:spermidine conjugate (PG). Methods: Optimal conditions were selected for obtaining complexes of previously developed DNA vaccines with cationic polymers. The sizes, mobility and surface charge of the complexes with PG and PAMAM 4G have been determined. The immunogenicity of the obtained vaccine constructs was investigated in BALB/c mice. Results: It was shown that packaging of DNA vaccine constructs both in the PG envelope and the PAMAM 4G envelope results in an increase in their immunogenicity as compared with the group of mice immunized with the of vector plasmid pcDNA3.1 (a negative control). The highest T-cell responses were shown in mice immunized with complexes of DNA vaccines with PG and these responses significantly exceeded those in the groups of animals immunized with both the combination of naked DNAs and the combination DNAs coated with PAMAM 4G. In the group of animals immunized with complexes of the DNA vaccines with PAMAM 4G, no statistical differences were found in the ability to induce T-cell responses, as compared with the group of mice immunized with the combination of naked DNAs. Conclusions: The PG conjugate can be considered as a promising and safe means to deliver DNA-based vaccines. The use of PAMAM requires further optimization.
Collapse
Affiliation(s)
- Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
- Correspondence: (L.I.K.); (S.I.B.); Tel.: +7-383-363-47-00 (ext. 2001) (L.I.K. & S.I.B.)
| | - Evgeny K. Apartsin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.K.A.); (A.G.V.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Laboratoire de Chimie de Coordination, CNRS, 31077 Toulouse, France
| | - Sergei G. Dudko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Ekaterina V. Starostina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Olga N. Kaplina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Denis V. Antonets
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Boris N. Zaitsev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Anastasiya Yu. Bakulina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aliya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.K.A.); (A.G.V.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Sergei I. Bazhan
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
- Correspondence: (L.I.K.); (S.I.B.); Tel.: +7-383-363-47-00 (ext. 2001) (L.I.K. & S.I.B.)
| |
Collapse
|
7
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
8
|
Dykman LA. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev Vaccines 2020; 19:465-477. [PMID: 32306785 PMCID: PMC7196924 DOI: 10.1080/14760584.2020.1758070] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Vaccination remains very effective in stimulating protective immune responses against infections. An important task in antibody and vaccine preparation is to choose an optimal carrier that will ensure a high immune response. Particularly promising in this regard are nanoscale particle carriers. An antigen that is adsorbed or encapsulated by nanoparticles can be used as an adjuvant to optimize the immune response during vaccination. a very popular antigen carrier used for immunization and vaccination is gold nanoparticles, with are being used to make new vaccines against viral, bacterial, and parasitic infections. AREAS COVERED This review summarizes what is currently known about the use of gold nanoparticles as an antigen carrier and adjuvant to prepare antibodies in vivo and design vaccines against viral, bacterial, and parasitic infections. The basic principles, recent advances, and current problems in the use of gold nanoparticles are discussed. EXPERT OPINION Gold nanoparticles can be used as adjuvants to increase the effectiveness of vaccines by stimulating antigen-presenting cells and ensuring controlled antigen release. Studying the characteristics of the immune response obtained from the use of gold nanoparticles as a carrier and an adjuvant will permit the particles' potential for vaccine design to be increased.
Collapse
Affiliation(s)
- Lev A. Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
9
|
Soleymani S, Hadi A, Asgari F, Haghighipour N, Bolhassani A. Combination of Mechanical and Chemical Methods Improves Gene Delivery in Cell-based HIV Vaccines. Curr Drug Deliv 2020; 16:818-828. [PMID: 31549593 DOI: 10.2174/1567201816666190923152914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Novel vaccination approaches are required to control human immunodeficiency virus (HIV) infections. The membrane proximal external region (MPER) of Env gp41 subunit and the V3/glycans of Env gp120 subunit were known as potential antigenic targets for anti-HIV-1 vaccines. In this study, we prepared the modified dendritic cells (DCs) and mesenchymal stem cells (MSCs) with HIV-1 MPER-V3 gene using mechanical and chemical approaches. METHODS At first, MPER-V3 fusion DNA delivery was optimized in dendritic cells (DCs) and mesenchymal stem cells (MSCs) using three mechanical (i.e., uniaxial cyclic stretch, equiaxial cyclic stretch and shear stress bioreactors), and two chemical (i.e., TurboFect or Lipofectamine) methods. Next, the modified DCs and MSCs with MPER-V3 antigen were compared to induce immune responses in vivo. RESULTS Our data showed that the combination of equiaxial cyclic stretch loading and lipofectamine twice with 48 h intervals increased the efficiency of transfection about 60.21 ± 1.05 % and 65.06 ± 0.09 % for MSCs and DCs, respectively. Moreover, DCs and MSCs transfected with MPER-V3 DNA in heterologous DC or MSC prime/ peptide boost immunizations induced high levels of IgG2a, IgG2b, IFN-γ and IL-10 directed toward Th1 responses as well as an increased level of Granzyme B. Indeed, the modified MSCs and DCs with MPER-V3 DNA could significantly enhance the MPER/V3-specific T-cell responses compared to MPER/V3 peptide immunization. CONCLUSIONS These findings showed that the modified MSC-based immunization could elicit effective immune responses against HIV antigen similar to the modified DC-based immunization.
Collapse
Affiliation(s)
- Sepehr Soleymani
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran
| | - Amin Hadi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Asgari
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Hashemi V, Farhadi S, Ghasemi Chaleshtari M, Seashore-Ludlow B, Masjedi A, Hojjat-Farsangi M, Namdar A, Ajjoolabady A, Mohammadi H, Ghalamfarsa G, Jadidi-Niaragh F. Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. Int Immunopharmacol 2020; 83:106446. [PMID: 32244048 DOI: 10.1016/j.intimp.2020.106446] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has shown impressive outcomes, including the development of the first FDA-approved anti-cancer vaccine. However, the clinical application of DC-based cancer immunotherapy is associated with various challenges. Promising novel tools for the administration of cancer vaccines has emerged from recent developments in nanoscale biomaterials. One current strategy to enhance targeted drug delivery, while minimizing drug-related toxicities, is the use of nanoparticles (NPs). These can be utilized for antigen delivery into DCs, which have been shown to provide potent T cell-stimulating effects. Therefore, NP delivery represents one promising approach for creating an effective and stable immune response without toxic side effects. The current review surveys cancer immunotherapy with particular attention toward NP-based delivery methods that target DCs.
Collapse
Affiliation(s)
- Vida Hashemi
- Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shohreh Farhadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Brinton Seashore-Ludlow
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Ali Masjedi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Namdar
- Department of Oncology, Cross Cancer Institute, The University of Alberta, Edmonton, Alberta, Canada
| | - Amir Ajjoolabady
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Yonezawa S, Koide H, Asai T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv Drug Deliv Rev 2020; 154-155:64-78. [PMID: 32768564 PMCID: PMC7406478 DOI: 10.1016/j.addr.2020.07.022] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Small interfering RNA (siRNA) has been expected to be a unique pharmaceutic for the treatment of broad-spectrum intractable diseases. However, its unfavorable properties such as easy degradation in the blood and negative-charge density are still a formidable barrier for clinical use. For disruption of this barrier, siRNA delivery technology has been significantly advanced in the past two decades. The approval of Patisiran (ONPATTRO™) for the treatment of transthyretin-mediated amyloidosis, the first approved siRNA drug, is a most important milestone. Since lipid-based nanoparticles (LNPs) are used in Patisiran, LNP-based siRNA delivery is now of significant interest for the development of the next siRNA formulation. In this review, we describe the design of LNPs for the improvement of siRNA properties, bioavailability, and pharmacokinetics. Recently, a number of siRNA-encapsulated LNPs were reported for the treatment of intractable diseases such as cancer, viral infection, inflammatory neurological disorder, and genetic diseases. We believe that these contributions address and will promote the development of an effective LNP-based siRNA delivery system and siRNA formulation.
Collapse
Affiliation(s)
| | | | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
12
|
Ko EJ, Robert-Guroff M. Dendritic Cells in HIV/SIV Prophylactic and Therapeutic Vaccination. Viruses 2019; 12:v12010024. [PMID: 31878130 PMCID: PMC7019216 DOI: 10.3390/v12010024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are involved in human and simian immunodeficiency virus (HIV and SIV) pathogenesis but also play a critical role in orchestrating innate and adaptive vaccine-specific immune responses. Effective HIV/SIV vaccines require strong antigen-specific CD4 T cell responses, cytotoxic activity of CD8 T cells, and neutralizing/non-neutralizing antibody production at mucosal and systemic sites. To develop a protective HIV/SIV vaccine, vaccine regimens including DCs themselves, protein, DNA, mRNA, virus vectors, and various combinations have been evaluated in different animal and human models. Recent studies have shown that DCs enhanced prophylactic HIV/SIV vaccine efficacy by producing pro-inflammatory cytokines, improving T cell responses, and recruiting effector cells to target tissues. DCs are also targets for therapeutic HIV/SIV vaccines due to their ability to reverse latency, present antigen, and augment T and B cell immunity. Here, we review the complex interactions of DCs over the course of HIV/SIV prophylactic and therapeutic immunizations, providing new insights into development of advanced DC-targeted HIV/SIV vaccines.
Collapse
Affiliation(s)
- Eun-Ju Ko
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
- Correspondence: (E.-J.K.); (M.R.-G.)
| | - Marjorie Robert-Guroff
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: (E.-J.K.); (M.R.-G.)
| |
Collapse
|
13
|
Thalhauser S, Peterhoff D, Wagner R, Breunig M. Presentation of HIV-1 Envelope Trimers on the Surface of Silica Nanoparticles. J Pharm Sci 2019; 109:911-921. [PMID: 31682830 DOI: 10.1016/j.xphs.2019.10.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/19/2019] [Accepted: 10/25/2019] [Indexed: 11/25/2022]
Abstract
Inducing immune responses protecting from HIV infection or at least controlling replication poses a huge challenge to modern vaccinology. An increasingly discussed strategy to elicit a potent and broad neutralizing antibody response is the immobilization of HIV's trimeric envelope (Env) surface receptor on a nanoparticulate carrier. As a conceptual proof, we attached an Env variant (BG505 SOSIP.664) to highly stable and biocompatible silica nanoparticles (SiNPs) via site-specific covalent conjugation or nonspecific adsorption to SiNPs. First, we demonstrated the feasibility of SiNPs as platform for Env presentation by a thorough characterization process during which Env density, attachment stability, and antigenicity were evaluated for both formulations. Binding affinities to selected antibodies were in the low nanomolar range for both formulations confirming that the structural integrity of Env is retained after attachment. Second, we explored the recognition of SiNP conjugates by antigen presenting cells. Here, the uptake of Env attached to SiNPs via a site-specific covalent conjugation was 4.5-fold enhanced, whereas adsorbed Env resulted only in a moderate 1.4-fold increase compared with Env in its soluble form. Thus, we propose SiNPs with site-specifically and covalently conjugated Env preferably in a high density as a promising candidate for further investigations as vaccine platform.
Collapse
Affiliation(s)
- Stefanie Thalhauser
- Department of Pharmaceutical Technology, University Regensburg, Universitaetsstrasse. 31, 93040 Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany.
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University Regensburg, Universitaetsstrasse. 31, 93040 Regensburg, Germany.
| |
Collapse
|
14
|
Hobernik D, Bros M. DNA Vaccines-How Far From Clinical Use? Int J Mol Sci 2018; 19:ijms19113605. [PMID: 30445702 PMCID: PMC6274812 DOI: 10.3390/ijms19113605] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Two decades ago successful transfection of antigen presenting cells (APC) in vivo was demonstrated which resulted in the induction of primary adaptive immune responses. Due to the good biocompatibility of plasmid DNA, their cost-efficient production and long shelf life, many researchers aimed to develop DNA vaccine-based immunotherapeutic strategies for treatment of infections and cancer, but also autoimmune diseases and allergies. This review aims to summarize our current knowledge on the course of action of DNA vaccines, and which factors are responsible for the poor immunogenicity in human so far. Important optimization steps that improve DNA transfection efficiency comprise the introduction of DNA-complexing nano-carriers aimed to prevent extracellular DNA degradation, enabling APC targeting, and enhanced endo/lysosomal escape of DNA. Attachment of virus-derived nuclear localization sequences facilitates nuclear entry of DNA. Improvements in DNA vaccine design include the use of APC-specific promotors for transcriptional targeting, the arrangement of multiple antigen sequences, the co-delivery of molecular adjuvants to prevent tolerance induction, and strategies to circumvent potential inhibitory effects of the vector backbone. Successful clinical use of DNA vaccines may require combined employment of all of these parameters, and combination treatment with additional drugs.
Collapse
Affiliation(s)
- Dominika Hobernik
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany.
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
15
|
Wei X, Zhang G, Ran D, Krishnan N, Fang RH, Gao W, Spector SA, Zhang L. T-Cell-Mimicking Nanoparticles Can Neutralize HIV Infectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802233. [PMID: 30252965 PMCID: PMC6334303 DOI: 10.1002/adma.201802233] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/27/2018] [Indexed: 05/18/2023]
Abstract
To improve human immunodeficiency virus (HIV) treatment and prevention, therapeutic strategies that can provide effective and broad-spectrum neutralization against viral infection are highly desirable. Inspired by recent advances of cell-membrane coating technology, herein, plasma membranes of CD4+ T cells are collected and coated onto polymeric cores. The resulting T-cell-membrane-coated nanoparticles (denoted as "TNPs") inherit T cell surface antigens critical for HIV binding, such as CD4 receptor and CCR5 or CXCR4 coreceptors. The TNPs act as decoys for viral attack and neutralize HIV by diverting the viruses away from their intended host targets. This decoy strategy, which simulates host cell functions for viral neutralization rather than directly suppressing viral replication machinery, has the potential to overcome HIV genetic diversity while not eliciting high selective pressure. In this study, it is demonstrated that TNPs selectively bind with gp120, a key envelope glycoprotein of HIV, and inhibit gp120-induced killing of bystander CD4+ T cells. Furthermore, when added to HIV viruses, TNPs effectively neutralize the viral infection of peripheral mononuclear blood cells and human-monocyte-derived macrophages in a dose-dependent manner. Overall, by leveraging natural T cell functions, TNPs show great potential as a new therapeutic agent against HIV infection.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gang Zhang
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Danni Ran
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Stephen A Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
16
|
Overcoming immunogenicity issues of HIV p24 antigen by the use of innovative nanostructured lipid carriers as delivery systems: evidences in mice and non-human primates. NPJ Vaccines 2018; 3:46. [PMID: 30302284 PMCID: PMC6167354 DOI: 10.1038/s41541-018-0086-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 12/23/2022] Open
Abstract
HIV is one of the deadliest pandemics of modern times, having already caused 35 million deaths around the world. Despite the huge efforts spent to develop treatments, the virus cannot yet be eradicated and continues to infect new people. Spread of the virus remains uncontrolled, thus exposing the worldwide population to HIV danger, due to the lack of efficient vaccines. The latest clinical trials describe the challenges associated with developing an effective prophylactic HIV vaccine. These immunological obstacles will only be overcome by smart and innovative solutions applied to the design of vaccine formulations. Here, we describe the use of nanostructured lipid carriers (NLC) for the delivery of p24 protein as a model HIV antigen, with the aim of increasing its immunogenicity. We have designed vaccine formulations comprising NLC grafted with p24 antigen, together with cationic NLC optimized for the delivery of immunostimulant CpG. This tailored system significantly enhanced immune responses against p24, in terms of specific antibody production and T-cell activation in mice. More importantly, the capacity of NLC to induce specific immune responses against this troublesome HIV antigen was further supported by a 7-month study on non-human primates (NHP). This work paves the way toward the development of a future HIV vaccine, which will also require the use of envelope antigens. To date, HIV vaccines have resulted in poor or absent protection. A team led by Fabrice P. Navarro at the CEA LETI use the conserved HIV capsid protein p24 vectorized into cationic nanostructured lipid carriers (NLC-p24) along with NLC-delivered CpG. Owing to their small size, NLCs gain access to lymph nodes and deliver antigen directly to antigen presenting cells. Anti-p24 responses have been associated with effective HIV control, making them an attractive vaccine antigen, but they are poorly immunogenic. NLC-p24 shows a good safety profile while at the same time being able to elicit robust humoral and cellular immune responses in both mice and Cynomolgus macaques. NLC-mediated delivery of both p24 and CpG results in more effective immune stimulation than delivery of free antigen and adjuvant. These findings demonstrate the possibility of priming effective responses to a potent but otherwise poorly immunogenic HIV antigen.
Collapse
|
17
|
Chen L, Glass JJ, De Rose R, Sperling C, Kent SJ, Houston ZH, Fletcher NL, Rolfe BE, Thurecht KJ. Influence of Charge on Hemocompatibility and Immunoreactivity of Polymeric Nanoparticles. ACS APPLIED BIO MATERIALS 2018; 1:756-767. [DOI: 10.1021/acsabm.8b00220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Joshua J. Glass
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Robert De Rose
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology, Monash University, Melbourne, Victoria 3800, Australia
| | - Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden D-01069, Germany
| | - Stephen J. Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
18
|
Abstract
Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90024.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509; .,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509.,Los Angeles Biomedical Research Institute, Torrance, California 90502
| | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW A major focus in HIV vaccine research is the development of suitable antigens that elicit broadly neutralizing antibody responses targeting HIV's envelope protein (Env). Delivery of Env in a repetitive manner on particle-based carriers allows higher avidity interactions and is therefore expected to efficiently engage B cells, thus leading to affinity maturation that results in superior antibody responses characterized by improved breadth, potency, and durability. This review summarizes current work that is evaluating diverse types of such particulate carriers for Env delivery. RECENT FINDINGS Various types of particle scaffolds are being investigated, encompassing group-specific antigen-derived virus-like particles, bacteria-derived proteins that self-assemble into symmetrical nanoparticles, as well as liposomes assembled from membrane components and recombinantly produced Env isoforms. Env-derived antigens from peptides over selected isolates to improved, stabilized next-generation designer Envs have been attached to such carriers. Immunological evaluation in animal models showed that these structures often elicit superior humoral immune responses. SUMMARY The findings reviewed here emphasize the potential of particle-based delivery modalities to elicit better antibody responses. Together with advances in Env antigen design, these approaches may synergistically act together on the way to obtain vaccine candidates that potentially induce protective immune responses against HIV.
Collapse
|
20
|
Singh L, Kruger HG, Maguire GE, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 2017; 4:105-131. [PMID: 28748089 PMCID: PMC5507392 DOI: 10.1177/2049936117713593] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infectious diseases are the leading cause of mortality worldwide, with viruses in particular making global impact on healthcare and socioeconomic development. In addition, the rapid development of drug resistance to currently available therapies and adverse side effects due to prolonged use is a serious public health concern. The development of novel treatment strategies is therefore required. The interaction of nanostructures with microorganisms is fast-revolutionizing the biomedical field by offering advantages in both diagnostic and therapeutic applications. Nanoparticles offer unique physical properties that have associated benefits for drug delivery. These are predominantly due to the particle size (which affects bioavailability and circulation time), large surface area to volume ratio (enhanced solubility compared to larger particles), tunable surface charge of the particle with the possibility of encapsulation, and large drug payloads that can be accommodated. These properties, which are unlike bulk materials of the same compositions, make nanoparticulate drug delivery systems ideal candidates to explore in order to achieve and/or improve therapeutic effects. This review presents a broad overview of the application of nanosized materials for the treatment of common viral infections.
Collapse
Affiliation(s)
- Lavanya Singh
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E.M. Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Raveen Parboosing
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
21
|
Glass JJ, Chen L, Alcantara S, Crampin EJ, Thurecht KJ, De Rose R, Kent SJ. Charge Has a Marked Influence on Hyperbranched Polymer Nanoparticle Association in Whole Human Blood. ACS Macro Lett 2017; 6:586-592. [PMID: 35650842 DOI: 10.1021/acsmacrolett.7b00229] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this study, we synthesize charge-varied hyperbranched polymers (HBPs) and demonstrate surface charge as a key parameter directing their association with specific human blood cell types. Using fresh human blood, we investigate the association of 5 nm HBPs with six white blood cell populations in their natural milieu by flow cytometry. While most cell types associate with cationic HBPs at 4 °C, at 37 °C phagocytic cells display similar (monocyte, dendritic cell) or greater (granulocyte) association with anionic HBPs compared to cationic HBPs. Neutral HBPs display remarkable stealth properties. Notably, these charge-association patterns are not solely defined by the plasma protein corona and are material and/or size dependent. As HBPs progress toward clinical use as imaging and drug delivery agents, the ability to engineer HBPs with defined biological properties is increasingly important. This knowledge can be used in the rational design of HBPs for more effective delivery to desired cell targets.
Collapse
Affiliation(s)
- Joshua J. Glass
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Department of Microbiology and Immunology, Peter Doherty Institute
for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Liyu Chen
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Centre for Advanced Imaging and Australian Institute for Bioengineering
and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sheilajen Alcantara
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Department of Microbiology and Immunology, Peter Doherty Institute
for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Edmund J. Crampin
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kristofer J. Thurecht
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Centre for Advanced Imaging and Australian Institute for Bioengineering
and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert De Rose
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Department of Microbiology and Immunology, Peter Doherty Institute
for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephen J. Kent
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Department of Microbiology and Immunology, Peter Doherty Institute
for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Melbourne
Sexual Health Centre and Department of Infectious Diseases, Alfred
Health, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
22
|
Carabineiro SAC. Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines. Molecules 2017; 22:E857. [PMID: 28531163 PMCID: PMC6154615 DOI: 10.3390/molecules22050857] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 11/20/2022] Open
Abstract
Nowadays, gold is used in (nano-)medicine, usually in the form of nanoparticles, due to the solid proofs given of its therapeutic effects on several diseases. Gold also plays an important role in the vaccine field as an adjuvant and a carrier, reducing toxicity, enhancing immunogenic activity, and providing stability in storage. An even brighter golden future is expected for gold applications in this area.
Collapse
Affiliation(s)
- Sónia Alexandra Correia Carabineiro
- Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE-LCM, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
23
|
Aikins ME, Bazzill J, Moon JJ. Vaccine nanoparticles for protection against HIV infection. Nanomedicine (Lond) 2017; 12:673-682. [PMID: 28244816 DOI: 10.2217/nnm-2016-0381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The development of a successful vaccine against HIV is a major global challenge. Antiretroviral therapy is the standard treatment against HIV-1 infection. However, only 46% of the eligible people received the therapy in 2015. Furthermore, suboptimal adherence poses additional obstacles. Therefore, there is an urgent need for an HIV-1 vaccine. The most promising clinical trial to date is Phase III RV144, which for the first time demonstrated the feasibility of vaccine-mediated immune protection against HIV-1. Nevertheless, its 31% efficacy and limited durability underscore major hurdles. Here, we discuss recent progress in HIV-1 vaccine development with a special emphasis on nanovaccines, which are at the forefront of efforts to develop a successful HIV-1 vaccine.
Collapse
Affiliation(s)
- Marisa E Aikins
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph Bazzill
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
In vitro toxicity assessment of oral nanocarriers. Adv Drug Deliv Rev 2016; 106:381-401. [PMID: 27544694 DOI: 10.1016/j.addr.2016.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 02/08/2023]
Abstract
The fascinating properties of nanomaterials opened new frontiers in medicine. Nanocarriers are useful systems in transporting drugs to site-specific targets. The unique physico-chemical characteristics making nanocarriers promising devices to treat diseases may also be responsible for potential adverse effects. In order to develop functional nano-based drug delivery systems, efficacy and safety should be carefully evaluated. To date, no common testing strategy to address nanomaterial toxicological challenges has been generated. Different cell culture models are currently used to evaluate nanocarrier safety using conventional in vitro assays, but overall they have generated a huge amount of conflicting data. In this review we describe state-of-the-art approaches for in vitro testing of orally administered nanocarriers, highlighting the importance of developing harmonized and validated standard operating procedures. These procedures should be applied in a safe-by-design context with the aim to reduce and/or eliminate the uncertainties and risks associated with nanomedicine development.
Collapse
|
25
|
Glass JJ, Yuen D, Rae J, Johnston APR, Parton RG, Kent SJ, De Rose R. Human immune cell targeting of protein nanoparticles--caveospheres. NANOSCALE 2016; 8:8255-8265. [PMID: 27031090 DOI: 10.1039/c6nr00506c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.
Collapse
Affiliation(s)
- Joshua J Glass
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3010, Australia and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - James Rae
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD 4072, Australia and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD 4072, Australia and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3010, Australia and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia and Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia.
| | - Robert De Rose
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3010, Australia and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|