1
|
Huang J, Wang S, Lu X, Suo L, Wang M, Yue J, Lin R, Mao X, Li Q, Yan J. Molecular epidemiology of Burkholderia pseudomallei in Hainan Province of China based on O-antigen. INFECTIOUS MEDICINE 2024; 3:100150. [PMID: 39697185 PMCID: PMC11652903 DOI: 10.1016/j.imj.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 12/20/2024]
Abstract
Background Burkholderia pseudomallei is a gram-negative bacterium widely found in Southeast Asia and northern Australia. This bacterium, which lacks an available vaccine, is the causative agent of melioidosis and has properties that potentially enable its exploitation as a bioweapon. Methods Polymerase chain reaction assays targeting each of the lipopolysaccharide (LPS) genetic types were used to investigate genotype frequencies in B. pseudomallei populations. Silver staining, gas chromatography-mass spectrometry (GC-MS), and immunofluorescence were used to characterize LPS. Results In our study, a total of 169 clinical B. pseudomallei isolates were collected from Hainan Province, China between 2004 and 2016. The results showed that LPS genotype A was the predominant type, comprising 91.1% of the samples, compared with only 8.9% of LPS genotype B. The majority of patients were male and were diagnosed with sepsis or pneumonia. Silver staining and GC-MS demonstrated that LPS genotypes A and B exhibited distinct phenotypes and molecular structures. Immunofluorescence tests showed there was no cross-reaction between LPS genotypes A and B. Conclusions This is the first report on the molecular epidemiology of B. pseudomallei based on O-antigen in China. Tracking the regional distribution of different LPS genotypes offers significant insights relevant to the development and administration of LPS-based vaccines.
Collapse
Affiliation(s)
- Jinzhu Huang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shiwei Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaoxue Lu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Liangpeng Suo
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Minyang Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Juanjuan Yue
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rong Lin
- Department of Pneumology, People's Hospital of Sanya, Sanya 572022, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
2
|
Multicomponent Gold-Linked Glycoconjugate Vaccine Elicits Antigen-Specific Humoral and Mixed T H1-T H17 Immunity, Correlated with Increased Protection against Burkholderia pseudomallei. mBio 2021; 12:e0122721. [PMID: 34182777 PMCID: PMC8263005 DOI: 10.1128/mbio.01227-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a fatal disease with a high mortality rate. The intrinsic resistance to commonly used antibiotics combined with the complex bacterial life cycle has hampered the development of preventive and therapeutic interventions and vaccines. Furthermore, the need of humoral and cell-mediated immunity in protection against B. pseudomallei has complicated the development of effective vaccines. Antigen delivery vaccine platforms that promote humoral and cellular responses while maintaining a safe profile are a roadblock to developing subunit vaccines against intracellular pathogens. Gold nanoparticles (AuNPs) were used for the delivery of multicomponent antigens with the goal of inducing vaccine-mediated immunity, promoting protection against melioidosis disease. Different nanoglycoconjugates using predicted immunogenic protein candidates, Hcp1, FlgL, OpcP, OpcP1, OmpW, and hemagglutinin, were covalently coupled to AuNPs, together with the lipopolysaccharide (LPS) from Burkholderia thailandensis, which acted as an additional antigen. Animals immunized with individually coupled (AuNP-protein-LPS) formulations containing OpcP or OpcP1, together with CpG as an adjuvant, showed a significant increase in protection, whereas a nanovaccine combination (AuNP-Combo2-LPS) showed significant and complete protection against a lethal intranasal B. pseudomallei challenge. Animals immunized with AuNP-Combo2-LPS showed robust humoral antigen-specific (IgG and IgA) responses with higher IgG2c titer, indicating a TH1-skewed response and promotion of macrophage uptake. In addition, immunization with the nanovaccine combination resulted in a mixed antigen-specific TH1-TH17 cytokine profile after immunization. This study provides the basis for an elegant and refined multicomponent glycoconjugate vaccine formulation capable of eliciting both humoral and cell-mediated responses against lethal B. pseudomallei challenge.
Collapse
|
3
|
Wang G, Zarodkiewicz P, Valvano MA. Current Advances in Burkholderia Vaccines Development. Cells 2020; 9:E2671. [PMID: 33322641 PMCID: PMC7762980 DOI: 10.3390/cells9122671] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
The genus Burkholderia includes a wide range of Gram-negative bacterial species some of which are pathogenic to humans and other vertebrates. The most pathogenic species are Burkholderia mallei, Burkholderia pseudomallei, and the members of the Burkholderia cepacia complex (Bcc). B. mallei and B. pseudomallei, the cause of glanders and melioidosis, respectively, are considered potential bioweapons. The Bcc comprises a subset of Burkholderia species associated with respiratory infections in people with chronic granulomatous disease and cystic fibrosis. Antimicrobial treatment of Burkholderia infections is difficult due to the intrinsic multidrug antibiotic resistance of these bacteria; prophylactic vaccines provide an attractive alternative to counteract these infections. Although commercial vaccines against Burkholderia infections are still unavailable, substantial progress has been made over recent years in the development of vaccines against B. pseudomallei and B. mallei. This review critically discusses the current advances in vaccine development against B. mallei, B. pseudomallei, and the Bcc.
Collapse
Affiliation(s)
| | | | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.W.); (P.Z.)
| |
Collapse
|
4
|
Dyke JS, Huertas-Diaz MC, Michel F, Holladay NE, Hogan RJ, He B, Lafontaine ER. The Peptidoglycan-associated lipoprotein Pal contributes to the virulence of Burkholderia mallei and provides protection against lethal aerosol challenge. Virulence 2020; 11:1024-1040. [PMID: 32799724 PMCID: PMC7567441 DOI: 10.1080/21505594.2020.1804275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 11/07/2022] Open
Abstract
BURKHOLDERIA MALLEI is a highly pathogenic bacterium that causes the fatal zoonosis glanders. The organism specifies multiple membrane proteins, which represent prime targets for the development of countermeasures given their location at the host-pathogen interface. We investigated one of these proteins, Pal, and discovered that it is involved in the ability of B. mallei to resist complement-mediated killing and replicate inside host cells in vitro, is expressed in vivo and induces antibodies during the course of infection, and contributes to virulence in a mouse model of aerosol infection. A mutant in the pal gene of the B. mallei wild-type strain ATCC 23344 was found to be especially attenuated, as BALB/c mice challenged with the equivalent of 5,350 LD50 completely cleared infection. Based on these findings, we tested the hypothesis that a vaccine containing the Pal protein elicits protective immunity against aerosol challenge. To achieve this, the pal gene was cloned in the vaccine vector Parainfluenza Virus 5 (PIV5) and mice immunized with the virus were infected with a lethal dose of B. mallei. These experiments revealed that a single dose of PIV5 expressing Pal provided 80% survival over a period of 40 days post-challenge. In contrast, only 10% of mice vaccinated with a PIV5 control virus construct survived infection. Taken together, our data establish that the Peptidoglycan-associated lipoprotein Pal is a critical virulence determinant of B. mallei and effective target for developing a glanders vaccine.
Collapse
Affiliation(s)
- Jeremy S. Dyke
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | | | - Frank Michel
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Nathan E. Holladay
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
5
|
Multicomponent gold nano-glycoconjugate as a highly immunogenic and protective platform against Burkholderia mallei. NPJ Vaccines 2020; 5:82. [PMID: 32963813 PMCID: PMC7483444 DOI: 10.1038/s41541-020-00229-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/14/2020] [Indexed: 01/20/2023] Open
Abstract
Burkholderia mallei (Bm) is a facultative intracellular pathogen and the etiological agent of glanders, a highly infectious zoonotic disease occurring in equines and humans. The intrinsic resistance to antibiotics, lack of specific therapy, high mortality, and history as a biothreat agent, prompt the need of a safe and effective vaccine. However, the limited knowledge of protective Bm-specific antigens has hampered the development of a vaccine. Further, the use of antigen-delivery systems that enhance antigen immunogenicity and elicit robust antigen-specific immune responses has been limited and could improve vaccines against Bm. Nanovaccines, in particular gold nanoparticles (AuNPs), have been investigated as a strategy to broaden the repertoire of vaccine-mediated immunity and as a tool to produce multivalent vaccines. To synthesize a nano-glycoconjugate vaccine, six predicted highly immunogenic antigens identified by a genome-wide bio- and immuno-informatic analysis were purified and coupled to AuNPs along with lipopolysaccharide (LPS) from B. thailandensis. Mice immunized intranasally with individual AuNP-protein-LPS conjugates, showed variable degrees of protection against intranasal Bm infection, while an optimized combination formulation (containing protein antigens OmpW, OpcP, and Hemagglutinin, along with LPS) showed complete protection against lethality in a mouse model of inhalational glanders. Animals immunized with different nano-glycoconjugates showed robust antigen-specific antibody responses. Moreover, serum from animals immunized with the optimized nano-glycoconjugate formulation showed sustained antibody responses with increased serum-mediated inhibition of adherence and opsonophagocytic activity in vitro. This study provides the basis for the rational design and construction of a multicomponent vaccine platform against Bm.
Collapse
|
6
|
Tapia D, Sanchez-Villamil JI, Torres AG. Emerging role of biologics for the treatment of melioidosis and glanders. Expert Opin Biol Ther 2019; 19:1319-1332. [PMID: 31590578 PMCID: PMC6981286 DOI: 10.1080/14712598.2019.1677602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
Introduction: Two important pathogenic species within the genus Burkholderia, namely Burkholderia pseudomallei (Bpm) and Burkholderia mallei (Bm), are the causative agents of the life-threatening diseases melioidosis and glanders, respectively. Due to their high mortality rate and potential for aerosolization, they have gained interest as potential biothreat agents and are classified as Tier 1 Select Agents.Areas covered: The manuscript provides an overview of the literature covering the efforts taken in the last 10 years to develop new therapeutics measures against both Bpm and Bm, with attention on novel therapeutic agents.Expert Opinion: As a result of the complicated antibiotic regimens necessary to treat these infections, development of novel therapeutics is needed to treat both diseases. In recent years, the understanding of the pathogenesis of Burkholderia has improved significantly and so have the efforts to develop novel therapeutic agents with high efficacy, either alone, or in combination with conventional antibiotics.
Collapse
Affiliation(s)
- Daniel Tapia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Javier I. Sanchez-Villamil
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
7
|
Trottmann F, Franke J, Richter I, Ishida K, Cyrulies M, Dahse H, Regestein L, Hertweck C. Cyclopropanol Warhead in Malleicyprol Confers Virulence of Human- and Animal-Pathogenic Burkholderia Species. Angew Chem Int Ed Engl 2019; 58:14129-14133. [PMID: 31353766 PMCID: PMC6790655 DOI: 10.1002/anie.201907324] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/20/2019] [Indexed: 12/16/2022]
Abstract
Burkholderia species such as B. mallei and B. pseudomallei are bacterial pathogens causing fatal infections in humans and animals (glanders and melioidosis), yet knowledge on their virulence factors is limited. While pathogenic effects have been linked to a highly conserved gene locus (bur/mal) in the B. mallei group, the metabolite associated to the encoded polyketide synthase, burkholderic acid (syn. malleilactone), could not explain the observed phenotypes. By metabolic profiling and molecular network analyses of the model organism B. thailandensis, the primary products of the cryptic pathway were identified as unusual cyclopropanol-substituted polyketides. First, sulfomalleicyprols were identified as inactive precursors of burkholderic acid. Furthermore, a highly reactive upstream metabolite, malleicyprol, was discovered and obtained in two stabilized forms. Cell-based assays and a nematode infection model showed that the rare natural product confers cytotoxicity and virulence.
Collapse
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Jakob Franke
- Institute of Organic Chemistry, BMWZLeibniz University Hannover30167HannoverGermany
| | - Ingrid Richter
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Keishi Ishida
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Michael Cyrulies
- Department Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology (HKI)07745JenaGermany
| | - Hans‐Martin Dahse
- Department Infection BiologyLeibniz Institute for Natural Product Research and Infection Biology (HKI)07745JenaGermany
| | - Lars Regestein
- Department Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology (HKI)07745JenaGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
- Natural Product ChemistryFaculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
8
|
Trottmann F, Franke J, Richter I, Ishida K, Cyrulies M, Dahse H, Regestein L, Hertweck C. Cyclopropanol Warhead in Malleicyprol Confers Virulence of Human‐ and Animal‐Pathogenic
Burkholderia
Species. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Jakob Franke
- Institute of Organic Chemistry, BMWZ Leibniz University Hannover 30167 Hannover Germany
| | - Ingrid Richter
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Michael Cyrulies
- Department Bio Pilot Plant Leibniz Institute for Natural Product Research and Infection Biology (HKI) 07745 Jena Germany
| | - Hans‐Martin Dahse
- Department Infection Biology Leibniz Institute for Natural Product Research and Infection Biology (HKI) 07745 Jena Germany
| | - Lars Regestein
- Department Bio Pilot Plant Leibniz Institute for Natural Product Research and Infection Biology (HKI) 07745 Jena Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
- Natural Product Chemistry Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
9
|
Lafontaine ER, Chen Z, Huertas-Diaz MC, Dyke JS, Jelesijevic TP, Michel F, Hogan RJ, He B. The autotransporter protein BatA is a protective antigen against lethal aerosol infection with Burkholderia mallei and Burkholderia pseudomallei. Vaccine X 2019; 1:100002. [PMID: 33826684 PMCID: PMC6668238 DOI: 10.1016/j.jvacx.2018.100002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/06/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Burkholderia mallei and Burkholderia pseudomallei are the causative agents of glanders and melioidosis, respectively. There is no vaccine to protect against these highly-pathogenic and intrinsically antibiotic-resistant bacteria, and there is concern regarding their use as biological warfare agents. For these reasons, B. mallei and B. pseudomallei are classified as Tier 1 organisms by the U.S. Federal Select Agent Program and the availability of effective countermeasures represents a critical unmet need. METHODS Vaccines (subunit and vectored) containing the surface-exposed passenger domain of the conserved Burkholderia autotransporter protein BatA were administered to BALB/c mice and the vaccinated animals were challenged with lethal doses of wild-type B. mallei and B. pseudomallei strains via the aerosol route. Mice were monitored for signs of illness for a period of up to 40 days post-challenge and tissues from surviving animals were analyzed for bacterial burden at study end-points. RESULTS A single dose of recombinant Parainfluenza Virus 5 (PIV5) expressing BatA provided 74% and 60% survival in mice infected with B. mallei and B. pseudomallei, respectively. Vaccination with PIV5-BatA also resulted in complete bacterial clearance from the lungs and spleen of 78% and 44% of animals surviving lethal challenge with B. pseudomallei, respectively. In contrast, all control animals vaccinated with a PIV5 construct expressing an irrelevant antigen and infected with B. pseudomallei were colonized in those tissues. CONCLUSION Our study indicates that the autotransporter BatA is a valuable target for developing countermeasures against B. mallei and B. pseudomallei and demonstrates the utility of the PIV5 viral vaccine delivery platform to elicit cross-protective immunity against the organisms.
Collapse
Affiliation(s)
- Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Zhenhai Chen
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Maria Cristina Huertas-Diaz
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Jeremy S. Dyke
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Tomislav P. Jelesijevic
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Frank Michel
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| |
Collapse
|
10
|
Exploitation of the bilosome platform technology to formulate antibiotics and enhance efficacy of melioidosis treatments. J Control Release 2019; 298:202-212. [DOI: 10.1016/j.jconrel.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022]
|
11
|
Hogan RJ, Lafontaine ER. Antibodies Are Major Drivers of Protection against Lethal Aerosol Infection with Highly Pathogenic Burkholderia spp. mSphere 2019; 4:e00674-18. [PMID: 30602525 PMCID: PMC6315082 DOI: 10.1128/msphere.00674-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Burkholderia pseudomallei and Burkholderia mallei are the causative agents of melioidosis and glanders, respectively. There is no vaccine to protect against these highly pathogenic bacteria, and there is concern regarding their emergence as global public health (B. pseudomallei) and biosecurity (B. mallei) threats. In this issue of mSphere, an article by Khakhum and colleagues (N. Khakhum, P. Bharaj, J. N. Myers, D. Tapia, et al., mSphere 4:e00570-18, 2019, https://doi.org/10.1128/mSphere.00570-18) describes a novel vaccination platform with excellent potential for cross-protection against both Burkholderia species. The report also highlights the importance of antibodies in immunity against these facultative intracellular organisms.
Collapse
Affiliation(s)
- Robert J Hogan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Eric R Lafontaine
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
12
|
MarR Family Transcription Factors from Burkholderia Species: Hidden Clues to Control of Virulence-Associated Genes. Microbiol Mol Biol Rev 2018; 83:83/1/e00039-18. [PMID: 30487164 DOI: 10.1128/mmbr.00039-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Species within the genus Burkholderia exhibit remarkable phenotypic diversity. Genomic plasticity, including genome reduction and horizontal gene transfer, has been correlated with virulence traits in several species. However, the conservation of virulence genes in species otherwise considered to have limited potential for infection suggests that phenotypic diversity may not be explained solely on the basis of genetic diversity. Instead, differential organization and control of gene regulatory networks may underlie many phenotypic differences. In this review, we evaluate how regulation of gene expression by members of the multiple antibiotic resistance regulator (MarR) family of transcription factors may contribute to shaping the physiological diversity of Burkholderia species, with a focus on the clinically relevant human pathogens. All Burkholderia species encode a relatively large number of MarR proteins, a feature common to bacteria that must respond to environmental changes such as those associated with host invasion. However, evolution of gene regulatory networks has likely resulted in orthologous transcription factors controlling disparate sets of genes. Adaptation to, and survival in, diverse habitats, including a human or plant host, is key to the success of Burkholderia species as (opportunistic) pathogens, and recent reports suggest that control of virulence-associated genes by MarR proteins features prominently among the survival strategies employed by these species. We suggest that identification of MarR regulons will contribute significantly to clarification of virulence determinants and phenotypic diversity.
Collapse
|
13
|
Abstract
Burkholderia pseudomallei is a Gram-negative environmental bacterium and the aetiological agent of melioidosis, a life-threatening infection that is estimated to account for ∼89,000 deaths per year worldwide. Diabetes mellitus is a major risk factor for melioidosis, and the global diabetes pandemic could increase the number of fatalities caused by melioidosis. Melioidosis is endemic across tropical areas, especially in southeast Asia and northern Australia. Disease manifestations can range from acute septicaemia to chronic infection, as the facultative intracellular lifestyle and virulence factors of B. pseudomallei promote survival and persistence of the pathogen within a broad range of cells, and the bacteria can manipulate the host's immune responses and signalling pathways to escape surveillance. The majority of patients present with sepsis, but specific clinical presentations and their severity vary depending on the route of bacterial entry (skin penetration, inhalation or ingestion), host immune function and bacterial strain and load. Diagnosis is based on clinical and epidemiological features as well as bacterial culture. Treatment requires long-term intravenous and oral antibiotic courses. Delays in treatment due to difficulties in clinical recognition and laboratory diagnosis often lead to poor outcomes and mortality can exceed 40% in some regions. Research into B. pseudomallei is increasing, owing to the biothreat potential of this pathogen and increasing awareness of the disease and its burden; however, better diagnostic tests are needed to improve early confirmation of diagnosis, which would enable better therapeutic efficacy and survival.
Collapse
Affiliation(s)
- W Joost Wiersinga
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Meibergdreef 9, Rm. G2-132, 1105 AZ Amsterdam, The Netherlands
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Harjeet S Virk
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University and Royal Darwin Hospital, Darwin, Australia
| | - Sharon J Peacock
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David A B Dance
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Direk Limmathurotsakul
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Department of Tropical Hygiene and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
14
|
Abstract
Purpose of review Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent findings Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin–cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Summary Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei.
Collapse
|
15
|
A Burkholderia pseudomallei Outer Membrane Vesicle Vaccine Provides Cross Protection against Inhalational Glanders in Mice and Non-Human Primates. Vaccines (Basel) 2017; 5:vaccines5040049. [PMID: 29232837 PMCID: PMC5748615 DOI: 10.3390/vaccines5040049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/28/2023] Open
Abstract
Burkholderia mallei is a Gram-negative, non-motile, facultative intracellular bacillus and the causative agent of glanders, a highly contagious zoonotic disease. B. mallei is naturally resistant to multiple antibiotics and there is concern for its potential use as a bioweapon, making the development of a vaccine against B. mallei of critical importance. We have previously demonstrated that immunization with multivalent outer membrane vesicles (OMV) derived from B. pseudomallei provide significant protection against pneumonic melioidosis. Given that many virulence determinants are highly conserved between the two species, we sought to determine if the B. pseudomallei OMV vaccine could cross-protect against B. mallei. We immunized C57Bl/6 mice and rhesus macaques with B. pseudomallei OMVs and subsequently challenged animals with aerosolized B. mallei. Immunization with B. pseudomallei OMVs significantly protected mice against B. mallei and the protection observed was comparable to that achieved with a live attenuated vaccine. OMV immunization induced the production of B.mallei-specific serum IgG and a mixed Th1/Th17 CD4 and CD8 T cell response in mice. Additionally, immunization of rhesus macaques with B. pseudomallei OMVs provided protection against glanders and induced B.mallei-specific serum IgG in non-human primates. These results demonstrate the ability of the multivalent OMV vaccine platform to elicit cross-protection against closely-related intracellular pathogens and to induce robust humoral and cellular immune responses against shared protective antigens.
Collapse
|
16
|
Aschenbroich SA. DNA vaccination resurfaces in the struggle against melioidosis. Virulence 2017; 8:1483-1485. [PMID: 28481716 DOI: 10.1080/21505594.2017.1327499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
17
|
Antibodies against In Vivo-Expressed Antigens Are Sufficient To Protect against Lethal Aerosol Infection with Burkholderia mallei and Burkholderia pseudomallei. Infect Immun 2017; 85:IAI.00102-17. [PMID: 28507073 DOI: 10.1128/iai.00102-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Burkholderia mallei, a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo, elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei, including antigen discovery.
Collapse
|
18
|
Lankelma JM, Wagemakers A, Birnie E, Haak BW, Trentelman JJA, Weehuizen TAF, Ersöz J, Roelofs JJTH, Hovius JW, Wiersinga WJ, Bins AD. Rapid DNA vaccination against Burkholderia pseudomallei flagellin by tattoo or intranasal application. Virulence 2017; 8:1683-1694. [PMID: 28323523 PMCID: PMC5810493 DOI: 10.1080/21505594.2017.1307485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Melioidosis is a severe infectious disease with a high mortality that is endemic in South-East Asia and Northern Australia. The causative pathogen, Burkholderia pseudomallei, is listed as potential bioterror weapon due to its high virulence and potential for easy dissemination. Currently, there is no licensed vaccine for prevention of melioidosis. Here, we explore the use of rapid plasmid DNA vaccination against B. pseudomallei flagellin for protection against respiratory challenge. We tested three flagellin DNA vaccines with different subcellular targeting designs. C57BL/6 mice were vaccinated via skin tattoo on day 0, 3 and 6 before intranasal challenge with B. pseudomallei on day 21. Next, the most effective construct was used as single vaccination on day 0 by tattoo or intranasal formulation. Mice were sacrificed 72 hours post-challenge to assess bacterial loads, cytokine responses, inflammation and microscopic lesions. A construct encoding a cellular secretion signal resulted in the most effective protection against melioidosis via tattooing, with a 10-fold reduction in bacterial loads in lungs and distant organs compared to the empty vector. Strikingly, a single intranasal administration of the same vaccine resulted in >1000-fold lower bacterial loads and increased survival. Pro-inflammatory cytokine responses were significantly diminished and strong reductions in markers for distant organ damage were observed. A rapid vaccination scheme using flagellin DNA tattoo provides significant protection against intranasal challenge with B. pseudomallei, markedly improved by a single administration via airway mucosa. Hence intranasal vaccination with flagellin-encoding DNA may be applicable when acute mass vaccination is indicated and warrants further testing.
Collapse
Affiliation(s)
- Jacqueline M Lankelma
- a Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - Alex Wagemakers
- a Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - Emma Birnie
- a Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - Bastiaan W Haak
- a Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - Jos J A Trentelman
- a Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - Tassili A F Weehuizen
- a Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - Jasmin Ersöz
- a Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - Joris J T H Roelofs
- b Department of Pathology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - Joppe W Hovius
- a Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands.,c Department of Internal Medicine , Division of Infectious Diseases, Academic Medical Center , Amsterdam , the Netherlands
| | - W Joost Wiersinga
- a Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands.,c Department of Internal Medicine , Division of Infectious Diseases, Academic Medical Center , Amsterdam , the Netherlands
| | - Adriaan D Bins
- c Department of Internal Medicine , Division of Infectious Diseases, Academic Medical Center , Amsterdam , the Netherlands
| |
Collapse
|
19
|
Elschner MC, Neubauer H, Sprague LD. The Resurrection of Glanders in a new Epidemiological Scenario: A Beneficiary of “Global Change”. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0058-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Lewis ERG, Torres AG. The art of persistence-the secrets to Burkholderia chronic infections. Pathog Dis 2016; 74:ftw070. [PMID: 27440810 DOI: 10.1093/femspd/ftw070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
The Gram-negative proteobacteria genus Burkholderia encompasses multiple bacterial species that are pathogenic to humans and other vertebrates. Two pathogenic species of interest within this genus are Burkholderia pseudomallei (Bpm) and the B. cepacia complex (Bcc); the former is the causative agent of melioidosis in humans and other mammals, and the latter is associated with pneumonia in immunocompromised patients. One understudied and shared characteristic of these two pathogenic groups is their ability to persist and establish chronic infection within the host. In this review, we will explore the depth of knowledge about chronic infections caused by persistent Bpm and Bcc. We examine the host risk factors and immune responses associated with more severe chronic infections. We also discuss host adaptation and phenotypes associated with persistent Burkholderia species. Lastly, we survey how other intracellular bacteria associated with chronic infections are combatted and explore possible future applications to target Burkholderia Our goal is to highlight understudied areas that should be addressed for a more thorough understanding of chronic Burkholderia infections and how to combat them.
Collapse
Affiliation(s)
- Eric R G Lewis
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA Department of Pathology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 7555-1070, USA
| |
Collapse
|