1
|
Gao X, Zhu X, Liu X, Zhou C, Shang Y, Wu T, Jia H, Zhang Z, Li Y, Xin T. A Ferritin-Based Eg95 Nanoparticle Vaccine Adjuvanted with pCpG Eliciting Robust Immune Responses Against Cystic Echinococcosis in Mice Model. Int J Nanomedicine 2025; 20:309-325. [PMID: 39802377 PMCID: PMC11725278 DOI: 10.2147/ijn.s499938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Cystic echinococcosis (CE), a chronic disabling parasitic zoonosis, poses a great threat to public health and livestock production and causes huge economic losses globally. The commercial Quil-A-adjuvanted Eg95 vaccine was empirically effective for CE control; however, it is expensive and has side effects and insufficient immunity. Purpose This study aimed to employ a novel adjuvant consisting of a delivery system and an immune potentiator and assess its adjuvanticity to Eg95 antigen, thereby developing a safe and cost-effective novel vaccine against the disease. Methods A ferritin-based Eg95 nanoparticle antigen was prepared and then mixed with a plasmid containing the TLR9 agonist CpG to formulate a novel nanovaccine. The safety and efficacy of the vaccine were evaluated in vitro and in vivo. Results The nanovaccine induced potent and enduring Eg95-specific humoral and cellular immune responses, as well as protective immunity-associated Th1 polarization supported by the higher ratios of IgG2a/IgG1 and IFN-γ/IL-4. Meanwhile, this nanovaccines exhibited favorable safety and economic profiles. Conclusion Our data demonstrated that the ferritin-CpG hybrid is a promising combination adjuvant to upgrade the traditional Quil-A and this combination adjuvant-based nanovaccine presents good potential as an alternative to the commercial one for practical CE control.
Collapse
MESH Headings
- Animals
- Echinococcosis/prevention & control
- Echinococcosis/immunology
- Ferritins/chemistry
- Ferritins/immunology
- Mice
- Nanoparticles/chemistry
- Nanoparticles/administration & dosage
- Disease Models, Animal
- Female
- Antigens, Helminth/immunology
- Antigens, Helminth/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/chemistry
- Mice, Inbred BALB C
- Echinococcus granulosus/immunology
- Immunity, Cellular
- Adjuvants, Vaccine/chemistry
- Adjuvants, Vaccine/administration & dosage
- Immunity, Humoral/drug effects
- Vaccines/immunology
- Vaccines/administration & dosage
- Immunoglobulin G/blood
- Quillaja Saponins
- Helminth Proteins/immunology
- Helminth Proteins/administration & dosage
- Nanovaccines
Collapse
Affiliation(s)
- Xintao Gao
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xizhou Zhu
- Bioproducts Engineering Center, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xingjian Liu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Chenghao Zhou
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuting Shang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Tong Wu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Zhifang Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yinü Li
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ting Xin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Borhani M, Fathi S, Harandi MF, Casulli A, Ding J, Liu M, Zhang W, Wen H. Echinococcus granulosus sensu lato control measures: a specific focus on vaccines for both definitive and intermediate hosts. Parasit Vectors 2024; 17:533. [PMID: 39716337 DOI: 10.1186/s13071-024-06581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024] Open
Abstract
Echinococcosis, a neglected zoonotic disease caused by Echinococcus tapeworms, presents significant public health challenges worldwide. Cystic and alveolar echinococcosis has substantial health and economic impacts, necessitating effective prevention and control strategies. The present review provides a framework to expand our knowledge regarding key components of echinococcosis prevention and control, including phases, options, targets and available tools as well as current gaps and challenges in the field. Furthermore, we discuss the progress made in developing vaccines for the intermediate and definitive hosts and review the limitations and obstacles in vaccine development for definitive hosts. Abundant information is available on various aspects of the Echinococcus vaccine in sheep. Livestock vaccination effectively reduces Echinococcus transmission to sheep, offering a feasible control measure in intermediate hosts. However, vaccine development for the definitive host, i.e. dogs, exhibits significant challenges. Information gaps regarding the immune-mediated protective responses in dogs, repeatability of results, factors influencing the immune response, reinfection resistance, potential age-related decreases in worm burden and factors associated with the antifecundity effect are key challenges that should be addressed in canine vaccine development, and research collaboration, innovative technologies, and a deeper understanding of transmission dynamics are crucial. Multisectoral coordination under the One Health framework, with long-term political commitment and national and international cooperation, is critical for effective control in endemic areas.
Collapse
Affiliation(s)
- Mehdi Borhani
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Saeid Fathi
- Department of Parasite Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- European Union Reference Laboratory for Parasites (EURLP), Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Jing Ding
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
3
|
Fan Y, He Y, Li Y, Yin Z, Shi J, Tian T, Shang K, Shi H, Zhang F, Wen H. Design of a novel EmTSP-3 and EmTIP based multi-epitope vaccine against Echinococcus multilocularis infection. Front Immunol 2024; 15:1425603. [PMID: 39351224 PMCID: PMC11439721 DOI: 10.3389/fimmu.2024.1425603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
Background Current treatments and prevention strategies for echinococcosis are inadequate. Recent advancements in molecular vaccine development show promise against Echinococcus granulosus; however, Echinococcus multilocularis remains a challenge. A Multi-epitope Vaccine could potentially induce specific B and T lymphocyte responses, thereby offering protection against Echinococcus multilocularis infection. Methods This study aimed to develop a MEV against alveolar echinococcosis. Key epitopes from the Echinococcus multilocularis proteins EmTSP3 and EmTIP were identified using immunoinformatics analyses. These analyses were conducted to assess the MEV feasibility, structural characteristics, molecular docking, molecular dynamics simulations, and immune simulations. The immunogenicity and antigenicity of the vaccine were evaluated through in vitro and in vivo experiments, employing ELISA, Western blotting, FCM, challenge infection experiments, and ELISPOT. Results The effective antigenicity and immunogenicity of MEV were demonstrated through immunoinformatics, as well as in vitro and in vivo experiments. In vitro experiments revealed that MEV increased the secretion of IFN-γ and IL-4 in PBMC and successfully bound to specific antibodies in patient serum. Furthermore, mice immunized with MEV developed a robust immune response, characterized by elevated levels of CD4+ and CD8+ T-cells, increased secretion of IFN-γ and IL-4 by specific Th1 and Th2 cells, and heightened serum antibody levels. Importantly, MEV reduced the weight of cysts by conferring resistance against echinococcosis. These findings suggest that MEV is a promising candidate for the prevention of Echinococcus multilocularis infection. Conclusion A total of 7 CTL, 7 HTL, 5 linear B-cell, and 2 conformational B-cell epitopes were identified. The vaccine has demonstrated effective antigenicity and immunogenicity against AE through molecular docking, immune simulation, molecular dynamics studies, and both in vitro and in vivo experiments. It provides effective protection against Echinococcus multilocularis infection, thereby laying a foundation for further development.
Collapse
Affiliation(s)
- Yichen Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yueyue He
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yujiao Li
- Department of Blood Transfusion, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhengwei Yin
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Juan Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tingting Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kaiyu Shang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huidong Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
4
|
Rosa BA, Zarlenga DS, Fournet VM, Beshah E, Hill DE, Zarlenga A, Yee A, Liang X, Shandling AD, Oberai A, Urban JF, Mitreva M. Identification of broadly-conserved parasitic nematode proteins that activate immunity. FRONTIERS IN PARASITOLOGY 2023; 2:1223942. [PMID: 39816844 PMCID: PMC11731683 DOI: 10.3389/fpara.2023.1223942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/20/2023] [Indexed: 01/18/2025]
Abstract
Introduction Soil transmitted nematodes are impediments to human health and agricultural production. Poor anthelmintic efficiencies, the emergence of resistant strains, and the persistence of infective stages highlight the need for more effective control strategies. Parasitic nematodes elicit a Th2-type immune response that most often is not protective. Vaccination has thus far been unsuccessful due to unrealized antigenic characters and unknown mechanisms that nematodes use to circumvent host immunity. Methods Here, we used a genomics/proteomics approach (including immunoblot experiments from pigs infected with T. suis) to prioritize putative immunogenic excretory/secretory (E/S) proteins conserved across and specific to several gastrointestinal (GI) parasitic nematode species. A cocktail of five recombinant proteins optimized for conserved GI nematode targets was used immunize pigs and test for active antibody responses in both the serum and intestinal ileal fluid of immunized pigs. An antibody-protein array of putative immunogenic proteins was developed from a combined bioinformatic, experimental, and literature-based prioritization of homologous parasite proteins. Results Screening the array with sera and ileal fluid samples from immunized pigs suggested cross-reactivity among homologous proteins and a general activation of immunity. PCA clustering showed that the overall immune responses were altered by immunization, but no substantial changes were observed following direct worm challenge with either Ascaris suum or Trichuris suis. Discussion Proteins that activated immunity are potential antigens for immunization and the multi-omics phylum-spanning prioritization database that was created is a valuable resource for identifying target proteins in a wide array of different parasitic nematodes. This research strongly supports future studies using a computational, comparative genomics/proteomics approach to produce an effective parasite vaccine.
Collapse
Affiliation(s)
- Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Dante S. Zarlenga
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Valsin M. Fournet
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Ethiopia Beshah
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Dolores E. Hill
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Alexander Zarlenga
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Angela Yee
- Antigen Discovery Inc. (ADI) ImmPORT Therapeutics Inc., Irvine, CA, United States
| | - Xiaowu Liang
- Antigen Discovery Inc. (ADI) ImmPORT Therapeutics Inc., Irvine, CA, United States
| | - Adam D. Shandling
- Antigen Discovery Inc. (ADI) ImmPORT Therapeutics Inc., Irvine, CA, United States
| | - Amit Oberai
- Antigen Discovery Inc. (ADI) ImmPORT Therapeutics Inc., Irvine, CA, United States
| | - Joseph F. Urban
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
5
|
Lv Y, Chang L, Yang J, Wen J, Zhao Y, Zhu M, Wu C, Zhao W. Immunogenicity of peptide-based vaccine composed of epitopes from Echinococcus granulosus rEg.P29. FASEB J 2023; 37:e22819. [PMID: 36848174 DOI: 10.1096/fj.202201636r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 03/01/2023]
Abstract
Echinococcus granulosus is one of the main causes of economic loss in the livestock industry because of its food-borne transmission. Cutting off the transmission route is a valid prevention method, and vaccines are the most effective means of controlling and eliminating infectious diseases. However, no human-related vaccine has been yet marketed. As a genetic engineering vaccine, recombinant protein P29 of E. granulosus (rEg.P29) could provide protection against deadly challenges. In this study, we generated peptide vaccines (rEg.P29T , rEg.P29B , and rEg.P29T+B ) based on rEg.P29 and an immunized model was established by subcutaneous immunization. Further evaluation showed that peptide vaccine immunization in mice induced T helper type 1 (Th1)-mediated cellular immune responses, leading to high levels of rEg.P29 or rEg.P29B -specific antibodies. In addition, rEg.P29T+B immunization can induce a higher antibody and cytokine production level than single-epitope vaccines, and immune memory is also longer. Collectively, these results suggest that rEg.P29T+B has the potential to be developed as an efficient subunit vaccine for use in areas where E. granulosus is endemic.
Collapse
Affiliation(s)
- Yongxue Lv
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Liangliang Chang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jihui Yang
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jia Wen
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yinqi Zhao
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Mingxing Zhu
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
6
|
Samia HR, aicha D, Meriem M, Rabah Y, Imene S, Bousaad H, Chafia T, Ahsene B, Jean G, Saâdia M. Treatment of protoscoleces with gamma radiation: potential immunoprotective effect against experimental murine echinococcosis. Parasite Immunol 2022; 44:e12944. [DOI: 10.1111/pim.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Hadj Rabia Samia
- Department of Nuclear Applications Nuclear Research Center, B.P.43 Sebala‐Draria Algeria
- Laboratory of Biology and Animal Physiology, ENS Kouba Algiers Algeria
| | - Debib aicha
- Laboratory of Management and Valorization of Agricultural and Aquatic Ecosystems (LMVAAE) Morsli Abdallah Tipaza University Center Algeria
| | - Mezaguer Meriem
- Department of ionizing radiation dosimetry Nuclear Research Center, 2bd Frantz Fanon Algiers Algeria
| | - Yefsah Rabah
- Department of Irradiation Technology Nuclear Research Center, 2bd Frantz Fanon Algiers Algeria
| | - Soufli Imene
- Laboratory of Cellular and Molecular Biology Faculty of Biological Science University of Sciences and technology Houari Boumediene, USTHB, PB 32 El‐Alia Algiers Algeria
| | - Hamrioui Bousaad
- Laboratory of Parasitology, Mustapha Bacha Hospital Algiers Algeria
| | - Touil‐Boukoffa Chafia
- Laboratory of Cellular and Molecular Biology Faculty of Biological Science University of Sciences and technology Houari Boumediene, USTHB, PB 32 El‐Alia Algiers Algeria
| | - Baz Ahsene
- Laboratory of Biology and Animal Physiology, ENS Kouba Algiers Algeria
| | - Giaimis Jean
- UMR Qualisud‐Faculty of Pharmacy University of Montpellier I Montpellier France
| | - Mameri Saâdia
- Laboratory of Anatomopathology Mustapha Bacha Hospital Algiers Algeria
| |
Collapse
|
7
|
Xu T, Liu L, Shi C, Liu W, Wang M, Tian L, Zheng Y, Wang H, Zheng W, He H, Xia X, Zheng X. A recombinant rabies virus expressing Echinococcus granulosus EG95 induces protective immunity in mice. Transbound Emerg Dis 2022; 69:e254-e266. [PMID: 34403194 DOI: 10.1111/tbed.14292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
Cystic echinococcosis (CE), caused by Echinococcus granulosus (E, is a zoonosis with a worldwide distribution, resulting in heavy impact to public health and social economics. In this study, we generated a recombinant rabies virus (RABV) expressing EG95 protein of E. granulosus (LBNSE-EG95) as a bivalent candidate vaccine for use in sheep and cattle against CE and rabies, which is another severe health threat in CE-endemic areas. It was found that EG95 was successfully expressed without altering the pathogenicity of parent LBNSE vector. Further study showed that LBNSE-EG95 immunization in mice elicited activation of dendric cells (DCs) and B cells and induced Th1-/Th2-mediated cellular immune responses, leading to robust production of RABV neutralizing antibodies and high level of EG95-sepecific antibodies with more than 90% protection against CE. In addition, single dose of LBNSE-EG95 conferred full protection against lethal RABV challenge in mice. Collectively, these results suggest that the recombinant LBNSE-EG95 has the potential to be developed as an efficient bivalent vaccine for sheep and cattle use in endemic areas of CE and rabies.
Collapse
Affiliation(s)
- Tong Xu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lele Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenjuan Shi
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenkai Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Wang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Tian
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ye Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongmei Wang
- Department of Biological Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenwen Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongbin He
- Department of Biological Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xianzhu Xia
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Chromosome-scale Echinococcus granulosus (genotype G1) genome reveals the Eg95 gene family and conservation of the EG95-vaccine molecule. Commun Biol 2022; 5:199. [PMID: 35241789 PMCID: PMC8894454 DOI: 10.1038/s42003-022-03125-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
Cystic echinococcosis is a socioeconomically important parasitic disease caused by the larval stage of the canid tapeworm Echinococcus granulosus, afflicting millions of humans and animals worldwide. The development of a vaccine (called EG95) has been the most notable translational advance in the fight against this disease in animals. However, almost nothing is known about the genomic organisation/location of the family of genes encoding EG95 and related molecules, the extent of their conservation or their functions. The lack of a complete reference genome for E. granulosus genotype G1 has been a major obstacle to addressing these areas. Here, we assembled a chromosomal-scale genome for this genotype by scaffolding to a high quality genome for the congener E. multilocularis, localised Eg95 gene family members in this genome, and evaluated the conservation of the EG95 vaccine molecule. These results have marked implications for future explorations of aspects such as developmentally-regulated gene transcription/expression (using replicate samples) for all E. granulosus stages; structural and functional roles of non-coding genome regions; molecular ‘cross-talk’ between oncosphere and the immune system; and defining the precise function(s) of EG95. Applied aspects should include developing improved tools for the diagnosis and chemotherapy of cystic echinococcosis of humans. A high-quality genome for the parasitic tapeworm, Echinococcus granulosus, provides further insight into the EG95 vaccine target for cystic echinococcosis.
Collapse
|
9
|
Xian J, Wang N, Zhao P, Zhang Y, Meng J, Ma X, Guo X, Wang Z, Bo X. Molecular characterization and immune protection of the 3-hydroxyacyl-CoA dehydrogenase gene in Echinococcus granulosus. Parasit Vectors 2021; 14:489. [PMID: 34556147 PMCID: PMC8460197 DOI: 10.1186/s13071-021-05001-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a serious parasitic zoonosis caused by the larvae of the tapeworm Echinococcus granulosus. The development of an effective vaccine is one of the most promising strategies for controlling CE. METHODS The E. granulosus 3-hydroxyacyl-CoA dehydrogenase (EgHCDH) gene was cloned and expressed in Escherichia coli. The distribution of EgHCDH in protoscoleces (PSCs) and adult worms was analyzed using immunofluorescence. The transcript levels of EgHCDH in PSCs and adult worms were analyzed using quantitative real-time reverse transcription PCR (RT-qPCR). The immune protective effects of the rEgHCDH were evaluated. RESULTS The 924-bp open reading frame sequence of EgHCDH, which encodes a protein of approximately 34 kDa, was obtained. RT-qPCR analysis revealed that EgHCDH was expressed in both the PSCs and adult worms of E. granulosus. Immunofluorescence analysis showed that EgHCDH was mainly localized in the tegument of PSCs and adult worms. Western blot analysis showed that the recombinant protein was recognized by E. granulosus-infected dog sera. Animal challenge experiments demonstrated that dogs immunized with recombinant (r)EgHCDH had significantly higher serum IgG, interferon gamma and interleukin-4 concentrations than the phosphate-buffered saline (PBS) control group. The rEgHCDH vaccine was able to significantly reduce the number of E. granulosus and inhibit the segmental development of E. granulosus compared to the PBS control group. CONCLUSIONS The results suggest that rEgHCDH can induce partial immune protection against infection with E. granulosus and could be an effective candidate for the development of new vaccines.
Collapse
Affiliation(s)
- Jinwen Xian
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000 China
| | - Ning Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000 China
| | - Pengpeng Zhao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000 China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
| | - Jimeng Meng
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
| | - Xun Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000 China
| | - Xiaola Guo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, 730046 China
| | - Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
| |
Collapse
|
10
|
Anvari D, Rezaei F, Ashouri A, Rezaei S, Majidiani H, Pagheh AS, Rezaei F, Shariatzadeh SA, Fotovati A, Siyadatpanah A, Gholami S, Ahmadpour E. Current situation and future prospects of Echinococcus granulosus vaccine candidates: A systematic review. Transbound Emerg Dis 2020; 68:1080-1096. [PMID: 32762075 DOI: 10.1111/tbed.13772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022]
Abstract
Cystic echinococcosis is a worldwide zoonotic disease, represents a threat for livestock and humans, manifests as a quiescent, subclinical and chronic hydatid cyst infection. The disease imposes high expenditures and economic losses in medical and veterinary. Prophylactic vaccination would be one of the effective preventive health care against echinococcosis. During the last decades, many studies have characterized the protective antigens of Echinococcus granulosus and their role in immunization of various animal host species. Herein, we aimed to systematically evaluate and represent the best antigens as possible vaccine candidates for cystic echinococcosis. Data were systematically searched from five databases including ProQuest, PubMed, Scopus, ScienceDirect and Web of Science, up to 1 February 2020. Two reviewers independently screened and assessed data extraction and quality assessment. A total of 47 articles were eligible for inclusion criteria in the current study. The most common antigens used for vaccination against E. granulosus were EG95 and antigen B. Freund's adjuvant and Quil A have been predominantly utilized. In addition, regarding the antigen delivery, animal models, measurement of immune responses and reduction in hydatid cyst have been discussed in the text. The data demonstrated that DNA vaccines with antigen B and recombinant protein vaccines based on EG95 antigen have the best results and elicited protective immune responses.
Collapse
Affiliation(s)
- Davood Anvari
- Student Research Committee, Mazandaran University of Medical Science, Sari, Iran.,Department of Parasitology, School of Medicine, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Fatemeh Rezaei
- Faculty of Modern Sciences and Technologies, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Alireza Ashouri
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - Hamidreza Majidiani
- Zonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Abdol Sattar Pagheh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Rezaei
- Department of Parasitology, School of Medicine, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Ali Shariatzadeh
- Student Research Committee, Mazandaran University of Medical Science, Sari, Iran.,Department of Parasitology, School of Medicine, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Fotovati
- Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran
| | | | - Shirzad Gholami
- Department of Parasitology, School of Medicine, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Parasitology and Mycology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Reinventing the Wheel of Echinococcus granulosus sensu lato Transmission to Humans. Trends Parasitol 2020; 36:427-434. [PMID: 32298630 DOI: 10.1016/j.pt.2020.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 12/31/2022]
Abstract
Control of cystic echinococcosis (CE) relies on interrupting Echinococcus granulosus sensu lato transmission through interventions in dogs and livestock. However, primary prevention measures aimed at avoiding ingestion of Echinococcus eggs may help reduce the burden of human CE. CE is generally considered, to variable extents, to be foodborne, but there is little evidence on the actual contamination of matrices and sociocultural factors involved in parasite transmission. An overall appraisal of published literature suggests that environmental contamination, possibly through hand-to-mouth transmission, may be of primary importance. While in most endemic areas sufficient epidemiological information is available to start CE control programs, identifying the main sources of infection to humans would allow optimization of site-specific interventions while avoiding irrelevant health education messages.
Collapse
|
12
|
Abstract
Purpose Cystic echinococcosis (CE) caused by Echinococcus granulosus sensu lato is a widespread zoonotic disease of global concern. In Nigeria, the exact picture/status of CE is unclear, as most of the states are largely uninvestigated. Yet, as with every parasitic zoonosis, the first step towards planning a comprehensive management and control programme involves assessment of available national/regional prevalence data, host range, and risk factors at play in the transmission dynamics.
Methods Published articles on echinococcosis were searched on PubMed and Africa Journal Online (AJOL) databases. Inclusion criteria were based on studies reporting prevalence of echinococcosis in animals and humans (including case reports) from 1970 to 2018. Results In this study, we evaluated and summarized cystic echinococcosis reports in Nigeria and found that post 1970–80s, studies on cystic echinococcosis have remained sparse regardless of the high prevalence recorded in the early years of CE investigation. In addition, information on the genetic population structure and the role of wildlife in CE transmission is still lacking. Conclusions This study appraises the prevalence and distribution of CE in Nigeria and identified areas where surveillance and control efforts should be focused and intensified.
Collapse
|
13
|
Amarir FE, Saadi A, Marcotty T, Rhalem A, Oukessou M, Sahibi H, Obtel M, Bouslikhane M, Sadak A, Kirschvink N. Cystic Echinococcosis in Three Locations in the Middle Atlas, Morocco: Estimation of the Infection Rate in the Dog Reservoir. Vector Borne Zoonotic Dis 2020; 20:436-443. [PMID: 32077790 DOI: 10.1089/vbz.2019.2538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A longitudinal study was carried out in Middle atlas, Morocco (locality of Had Oued Ifrane) in a population of 255 dogs from three localities, including two categories of dogs (owned and stray dogs). The dogs were investigated three times over a period ranging from 4 to 8 months between December and August. At each investigation, dogs were treated with arecoline, inducing defecation and allowing feces collection. Dogs were further treated with praziquantel to clear them from Echinococcus granulosus. Microscopic examination of feces was performed to assess the infection status of dogs at each investigation, and positive samples underwent copro-PCR to determine the circulating strain of E. granulosus. A high prevalence of infestation ranging from 23.5% to 38.8% and from 51.3% to 68.5% was, respectively, found in owned and in stray dogs. The PCR results revealed the presence of G1 strain in all positive samples. A logistic regression model was used to determine the incidence of infestation and showed that stray dogs underwent a significantly higher risk of infection (odds ratio = 14; 95% confidence interval: 6-30; p < 0.001) compared with owned dogs. Only anthelmintic treatment intervals of 2 months efficiently prevented egg shedding in owned and stray dogs. The seasonal effect was also significant, with the highest risk of reinfestation in winter and the lowest risk in summer. This study confirms that stray dogs undergo an increased risk of infestation by E. granulosus and indicate that infective pressure is influenced by season.
Collapse
Affiliation(s)
- Fatima Ezzahra Amarir
- Laboratory of Parasitology, Department of Pathology and Veterinary Public Health, Hassan II Agronomy and Veterinary Institute (IAV), Rabat, Morocco.,Integrated Veterinary Research Unit, Department of Veterinary Medicine, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Belgium
| | - Aouatif Saadi
- Laboratory of Parasitology, Department of Pathology and Veterinary Public Health, Hassan II Agronomy and Veterinary Institute (IAV), Rabat, Morocco.,Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, Liège, Belgium
| | - Tanguy Marcotty
- Integrated Veterinary Research Unit, Department of Veterinary Medicine, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Belgium
| | - Abdelkbir Rhalem
- Laboratory of Parasitology, Department of Pathology and Veterinary Public Health, Hassan II Agronomy and Veterinary Institute (IAV), Rabat, Morocco
| | - Mohamed Oukessou
- Unit of Physiology and Therapeutics, Department of Veterinary Biological and Pharmaceutical Sciences, Hassan II Agronomic and Veterinary Institute, Rabat, Morocco
| | - Hamid Sahibi
- Laboratory of Parasitology, Department of Pathology and Veterinary Public Health, Hassan II Agronomy and Veterinary Institute (IAV), Rabat, Morocco
| | - Majdouline Obtel
- Laboratory of Community Health, Preventive Medicine and Hygiene; Laboratory of Epidemiology and Clinical Research, Department of Public Health, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Mohammed Bouslikhane
- Laboratory of Parasitology, Department of Pathology and Veterinary Public Health, Hassan II Agronomy and Veterinary Institute (IAV), Rabat, Morocco
| | - Abderrahim Sadak
- Laboratory of Zoology and General Biology, Parasitological and Ecological Unit, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Nathalie Kirschvink
- Integrated Veterinary Research Unit, Department of Veterinary Medicine, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Belgium
| |
Collapse
|
14
|
Pourseif MM, Moghaddam G, Saeedi N, Barzegari A, Dehghani J, Omidi Y. Current status and future prospective of vaccine development against Echinococcus granulosus. Biologicals 2018; 51:1-11. [PMID: 29100669 DOI: 10.1016/j.biologicals.2017.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/15/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022] Open
Abstract
Cystic echinococcosis (CE) is one of the most important zoonotic parasite diseases in human, livestock, and wildlife worldwide. Development of effective vaccines against CE appears to be the most promising strategy to control this infectious disease. Use of potential livestock and canine vaccines against the larval and adult stage of E. granulosus life cycle may be the key to the production of powerful vaccines. Some progress has been accomplished in the development of vaccines against hydatidosis using empirical approaches, while such immunotherapies often fail to induce adequate immune responses. Therefore, it is of great interest to identify antigens (Ags) with high immunogenicity and develop effective vaccines and adjuvant constructs against CE. To this end, various tools can be applied, including immune-based genomics and proteomics, immunoinformatics, systems vaccinology and mathematical/computational modeling. In this review, we aimed to provide comprehensive insights upon the current status of vaccination trials against E. granulosus, and also articulate some perspectives on the production of novel anti-CE vaccines. Use of novel prospective technologies is also discussed to highlight the importance of development and advancement of the next generation vaccines against E. granulosus.
Collapse
Affiliation(s)
- Mohammad Mostafa Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Gholamali Moghaddam
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaber Dehghani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Díaz Á. Immunology of cystic echinococcosis (hydatid disease). Br Med Bull 2017; 124:121-133. [PMID: 29253150 DOI: 10.1093/bmb/ldx033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND The neglected disease cystic echinococcosis is caused by larval Echinococcus granulosus flatworms, which form bladder-like hydatid cysts in liver, lungs, and other organs. SOURCES OF DATA Published literature. AREAS OF AGREEMENT Establishing larvae are susceptible to antibody-dependent killing, as attested by successful animal vaccination, whereas once established they are partially protected by the so-called laminated layer. Host responses are Th2 dominated, with a Th1 component. Diagnostic antigens from cyst fluid are known, but responses appear absent in one-fifth of patients. AREAS OF CONTROVERSY Is evasion mainly based on induction of Th2 or regulatory responses by the parasite? GROWING POINTS The parasite induces regulatory responses. The laminated layer has immune-regulatory properties. AREAS TIMELY FOR DEVELOPING RESEARCH Develop tools for functional genomics; characterize immunologically interesting proteins suggested by genomic information; analyse infection in broader context of granulomatous responses; identify molecules secreted/excreted by intact larvae/cysts towards their outside, including diffusible immune-regulators.
Collapse
Affiliation(s)
- Álvaro Díaz
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
16
|
Valizadeh M, Haghpanah B, Badirzadeh A, Roointan E, Fallahi S, Raeghi S. Immunization of sheep against Echinococcus granulosus with protoscolex tegumental surface antigens. Vet World 2017; 10:854-858. [PMID: 28919673 PMCID: PMC5591468 DOI: 10.14202/vetworld.2017.854-858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/22/2017] [Indexed: 12/14/2022] Open
Abstract
AIM Cystic echinococcosis (CE) has potential economic effects to both animal products and human health. A vaccine to protect livestock against CE can be effective in reducing economic costs and increasing the livestock products. Protoscolex tegumental surface antigens (PSTSA) used to induce the production of specific antibodies against Echinococcus granulosus in sheep. The tegumental antigens were extracted from viable protoscolices by solubilization in sterile phosphate-buffered saline containing decanoyl-N-methylglucamine. MATERIALS AND METHODS Ten lambs which were infected with CE (positive control), 10 negative control, and 10 test groups of sheep were included in the study. 300 µg emulsion of purified-PSTSA was injected intramuscularly in a two-step immunization on the first and 30 days. Sera were collected immediately before immunization and 6 times with 10-day intervals until 60 days post immunization. Thereafter, the sera were tested for antibodies by indirect hemagglutination test in microtiter plate. RESULTS After two immunizations, all the infected animals in test group showed substantial increases in antibody titer. Statistical analysis showed a significant difference between the titer obtained in the test and negative control groups in both phases of immunization (p<0.05). CONCLUSION The results showed that the PSTSA is a promising immunogenic compound for immunization of sheep against CE.
Collapse
Affiliation(s)
- Manouchehr Valizadeh
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Haghpanah
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Badirzadeh
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Roointan
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirzad Fallahi
- Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saber Raeghi
- Department of Laboratory Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
17
|
Echinococcosis. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Díaz A, Casaravilla C, Barrios AA, Ferreira AM. Parasite molecules and host responses in cystic echinococcosis. Parasite Immunol 2016; 38:193-205. [PMID: 26425838 DOI: 10.1111/pim.12282] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023]
Abstract
Cystic echinococcosis is the infection by the larvae of cestode parasites belonging to the Echinococcus granulosus sensu lato species complex. Local host responses are strikingly subdued in relation to the size and persistence of these larvae, which develop within mammalian organs as 'hydatid cysts' measuring up to tens of cm in diameter. In a context in which helminth-derived immune-suppressive, as well as Th2-inducing, molecules garner much interest, knowledge on the interactions between E. granulosus molecules and the immune system lags behind. Here, we discuss what is known and what are the open questions on E. granulosus molecules and structures interacting with the innate and adaptive immune systems, potentially or in demonstrated form. We attempt a global biological approach on molecules that have been given consideration primarily as protective (Eg95) or diagnostic antigens (antigen B, antigen 5). We integrate glycobiological information, which traverses the discussions on antigen 5, the mucin-based protective laminated layer and immunologically active preparations from protoscoleces. We also highlight some less well-known molecules that appear as promising candidates to possess immune-regulatory activities. Finally, we point out gaps in the molecular-level knowledge of this infectious agent that hinder our understanding of its immunology.
Collapse
Affiliation(s)
- A Díaz
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - C Casaravilla
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - A A Barrios
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - A M Ferreira
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
19
|
Immunization of rhesus macaques with Echinococcus multilocularis recombinant 14-3-3 antigen leads to specific antibody response. Parasitol Res 2016; 116:435-439. [PMID: 27787625 PMCID: PMC5167771 DOI: 10.1007/s00436-016-5303-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/17/2016] [Indexed: 12/05/2022]
Abstract
E. multilocularis (Em) is the etiologic agent of alveolar echinococcosis (AE), a severe and potentially fatal disease, primarily affecting the liver of and occurring in aberrant intermediate hosts, e.g., humans and non-human primates. Due to increasing numbers of spontaneous cases of AE in the Old World monkey colonies of the German Primate Center, the question arose as to whether vaccination of non-human primates may represent a useful prophylactic approach. In this pilot study, the recombinant antigen Em14-3-3, which has provided a 97 % protection against E. multilocularis challenge infection in rodent models, was used for the first time to immunize rhesus macaques. In order to increase immunogenicity, the antigen was formulated with different adjuvants including Quil A®, aluminum hydroxide (alum), and muramyl dipeptide (MDP). Also, different vaccination regimens were tested. All vaccinated animals developed antigen-specific antibodies. While Quil A® induced a local adverse reaction, alum proved to be the most potent adjuvant in terms of induced antibody levels, longevity as well as tolerability. In conclusion, our pilot study demonstrated that recombinant Em14-3-3 is safe and immunogenic in rhesus monkeys. As a next step, efficacy of the vaccination remains to be explored.
Collapse
|
20
|
Abstract
Cystic and alveolar echinococcosis are severe chronic helminthic diseases caused by the cystic growth or the intrahepatic tumour-like growth of the metacestode of Echinococcus granulosus or Echinococcus multilocularis, respectively. Both parasites have evolved sophisticated strategies to escape host immune responses, mainly by manipulating and directing this immune response towards anergy and/or tolerance. Recent research studies have revealed a number of respective immunoregulatory mechanisms related to macrophages and dendritic cell as well as T cell activities (regulatory T cells, Tregs). A better understanding of this complex parasite-host relationship, and the elucidation of specific crucial events that lead to disease, represents targets towards the development of novel treatment strategies and options.
Collapse
|
21
|
Alvarez Rojas CA, Fredes F, Torres M, Acosta-Jamett G, Alvarez JF, Pavletic C, Paredes R, Cortés S. First meeting "Cystic echinococcosis in Chile, update in alternatives for control and diagnostics in animals and humans". Parasit Vectors 2016; 9:502. [PMID: 27624561 PMCID: PMC5022197 DOI: 10.1186/s13071-016-1792-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/05/2016] [Indexed: 11/17/2022] Open
Abstract
This report summarizes the outcomes of a meeting on cystic echinococcosis (CE) in animals and humans in Chile held in Santiago, Chile, between the 21st and 22nd of January 2016. The meeting participants included representatives of the Departamento de Zoonosis, Ministerio de Salud (Zoonotic Diseases Department, Ministry of Health), representatives of the Secretarias Regionales del Ministerio de Salud (Regional Department of Health, Ministry of Health), Instituto Nacional de Desarrollo Agropecuario (National Institute for the Development of Agriculture and Livestock, INDAP), Instituto de Salud Pública (National Institute for Public Health, ISP) and the Servicio Agrícola y Ganadero (Animal Health Department, SAG), academics from various universities, veterinarians and physicians. Current and future CE control activities were discussed. It was noted that the EG95 vaccine was being implemented for the first time in pilot control programmes, with the vaccine scheduled during 2016 in two different regions in the South of Chile. In relation to use of the vaccine, the need was highlighted for acquiring good quality data, based on CE findings at slaughterhouse, previous to initiation of vaccination so as to enable correct assessment of the efficacy of the vaccine in the following years. The current world’s-best-practice concerning the use of ultrasound as a diagnostic tool for the screening population in highly endemic remote and poor areas was also discussed.
Collapse
Affiliation(s)
- Cristian A Alvarez Rojas
- Centre for Animal Biotechnology, The University of Melbourne, Parkville, 3052, Victoria, Australia.
| | - Fernando Fredes
- Departamento de Medicina Preventiva Animal Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Marisa Torres
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gerardo Acosta-Jamett
- Instituto de Medicina Preventiva Veterinaria y Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | | | | | - Rodolfo Paredes
- Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile.
| | - Sandra Cortés
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
22
|
Canine echinococcosis: the predominance of immature eggs in adult tapeworms of Echinococcus granulosus in stray dogs from Tunisia. J Helminthol 2016; 91:380-383. [PMID: 27265622 DOI: 10.1017/s0022149x16000341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Canine echinococcosis is caused by the adult tapeworm of Echinococcus granulosus. As intermediate hosts, humans and livestock become infected following ingestion of eggs that are passed in the faeces of dogs. Mature eggs develop into hydatid cysts in different organs, leading to hydatid disease, which is a serious public health problem. In the present study, we investigated the proportion of mature eggs of E. granulosus in 140 dogs from three regions of Tunisia. The results showed the predominance of immature E. granulosus eggs in infected dogs and the occurrence of a small proportion of oncospheres. The ability of immature eggs to infect humans and livestock is discussed.
Collapse
|
23
|
Wang H, Li Z, Gao F, Zhao J, Zhu M, He X, Niu N, Zhao W. Immunoprotection of recombinant Eg.P29 against Echinococcus granulosus in sheep. Vet Res Commun 2016; 40:73-9. [PMID: 27094043 PMCID: PMC4870292 DOI: 10.1007/s11259-016-9656-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 04/04/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study aims to investigate the immunoprotection of recombinant Eg.P29 (rEg.P29) vaccine and analyze the underlying mechanism in sheep. METHODS Three groups of male sheep were immunized subcutaneously with rEg.P29 and PBS, Freund's complete adjuvant as controls, respectively. After prime-boost vaccination, the sheep were challenged with encapsulated Echinococcus granulosus eggs. The percentage of protection in sheep was determined 36 weeks after the infection. Humoral immune response was analyzed for specific IgG, IgG1, IgG2, IgM and IgE levels. Moreover, cytokines including interferon (IFN)-γ, interleukin (IL)-2, IL-4,and IL-10 were also evaluated. RESULTS Immunization with rEg.P29 induced protective immune responses up to 94.5 %, compared with immunoadjuvant group. The levels of specific IgG, IgG1, IgG2, and IgE as well as IFN-γ, IL-2, and IL-4 significantly increased after two immunizations (P < 0.05); however, the levels of IgM and IL-10 did not show difference. CONCLUSION rEg.P29 showed Immunoprotection and induced Th1 and Th2 immune responses; hence, rEg.P29 is a potential vaccine for E. granulosus infection.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pathogenic Biology and Medical Immunology, Ningxia Medical University, Hui Autonomous Region, Yinchuan, Ningxia, 750004, China.,Key Laboratory of Hydatid Disease, Ningxia Medical University & Ningxia Institute of Medicine, Hui Autonomous Region, Yinchuan, Ningxia, 750004, China
| | - Zihua Li
- Key Laboratory of Hydatid Disease, Ningxia Medical University & Ningxia Institute of Medicine, Hui Autonomous Region, Yinchuan, Ningxia, 750004, China
| | - Fu Gao
- Key Laboratory of Hydatid Disease, Ningxia Medical University & Ningxia Institute of Medicine, Hui Autonomous Region, Yinchuan, Ningxia, 750004, China.,Institute of Clinical Laboratory, Ningxia Medical University, Hui Autonomous Region, Yinchuan, Ningxia, 750004, China
| | - Jiaqing Zhao
- Department of Pathogenic Biology and Medical Immunology, Ningxia Medical University, Hui Autonomous Region, Yinchuan, Ningxia, 750004, China.,Key Laboratory of Hydatid Disease, Ningxia Medical University & Ningxia Institute of Medicine, Hui Autonomous Region, Yinchuan, Ningxia, 750004, China
| | - Mingxing Zhu
- Key Laboratory of Hydatid Disease, Ningxia Medical University & Ningxia Institute of Medicine, Hui Autonomous Region, Yinchuan, Ningxia, 750004, China.,Centre of Scientific Technology of Ningxia Medical University, Hui Autonomous Region, Yinchuan, Ningxia, 750004, China
| | - Xin He
- Department of Pathogenic Biology and Medical Immunology, Ningxia Medical University, Hui Autonomous Region, Yinchuan, Ningxia, 750004, China
| | - Nan Niu
- Key Laboratory of Hydatid Disease, Ningxia Medical University & Ningxia Institute of Medicine, Hui Autonomous Region, Yinchuan, Ningxia, 750004, China.,Institute of Clinical Laboratory, Ningxia Medical University, Hui Autonomous Region, Yinchuan, Ningxia, 750004, China
| | - Wei Zhao
- Key Laboratory of Hydatid Disease, Ningxia Medical University & Ningxia Institute of Medicine, Hui Autonomous Region, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
24
|
Abstract
Cystic echinococcosis (CE) is a zoonotic parasitic disease caused by the larval stages of the cestode Echinococcus granulosus. Worldwide, pulmonary hydatid cyst is a significant problem medically, socially, and economically. Surgery is the definitive therapy of pulmonary hydatidosis. Benzimidazoles may be considered in patients with a surgical contraindication. This review will focus on pathogenesis, lifecycle, clinical features, and management of pulmonary hydatid disease.
Collapse
Affiliation(s)
- Malay Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Rajnish Pathania
- Department of Cardiac and Thoracic Surgery, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Anupam Jhobta
- Department of Radiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Babu Ram Thakur
- Department of Cardiac and Thoracic Surgery, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Rajesh Chopra
- Department of Cardiac and Thoracic Surgery, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| |
Collapse
|
25
|
Threat of alveolar echinococcosis to public health – a challenge for Europe. Trends Parasitol 2015; 31:407-12. [DOI: 10.1016/j.pt.2015.06.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 02/02/2023]
|
26
|
The genome of the hydatid tapeworm Echinococcus granulosus. Nat Genet 2013; 45:1168-75. [PMID: 24013640 DOI: 10.1038/ng.2757] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/14/2013] [Indexed: 12/12/2022]
Abstract
Cystic echinococcosis (hydatid disease), caused by the tapeworm E. granulosus, is responsible for considerable human morbidity and mortality. This cosmopolitan disease is difficult to diagnose, treat and control. We present a draft genomic sequence for the worm comprising 151.6 Mb encoding 11,325 genes. Comparisons with the genome sequences from other taxa show that E. granulosus has acquired a spectrum of genes, including the EgAgB family, whose products are secreted by the parasite to interact and redirect host immune responses. We also find that genes in bile salt pathways may control the bidirectional development of E. granulosus, and sequence differences in the calcium channel subunit EgCavβ1 may be associated with praziquantel sensitivity. Our study offers insights into host interaction, nutrient acquisition, strobilization, reproduction, immune evasion and maturation in the parasite and provides a platform to facilitate the development of new, effective treatments and interventions for echinococcosis control.
Collapse
|
27
|
|
28
|
Abstract
The taxonomy of Echinococcus has long been controversial. Based mainly on differences in morphology and host-parasite specificity characteristics, 16 species and 13 subspecies were originally described. Subsequently, most of these taxa were regarded as synonyms for Echinococcus granulosus and only 4 valid species were recognised: E. granulosus; E. multilocularis; E. oligarthrus and E. vogeli. But, over the past 50 years, laboratory and field observations have revealed considerable phenotypic variability between isolates of Echinococcus, particularly those of E. granulosus, which include differences in: morphology in both larval and adult stages, development in vitro and in vivo, host infectivity and specificity, chemical composition, metabolism, proteins and enzymes, pathogenicity and antigenicity. The application of molecular tools has revealed differences in nucleic acid sequences that reflect this phenotypic variation and the genetic and phenotypic characteristics complement the previous observations made by the descriptive parasitologists many years ago. The fact that some of these variants or strains are poorly or not infective to humans has resulted in a reappraisal of the public health significance of Echinococcus in areas where such variants occur. A revised taxonomy for species in the Echinococcus genus has been proposed that is generally accepted, and is based on the new molecular data and the biological and epidemiological characteristics of host-adapted species and strains.
Collapse
|
29
|
HEATH DD, KOOLAARD J. Serological monitoring of protection of sheep against Echinococcus granulosus induced by the EG95 vaccine. Parasite Immunol 2011; 34:40-4. [DOI: 10.1111/j.1365-3024.2011.01341.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Siracusano A, Delunardo F, Teggi A, Ortona E. Host-parasite relationship in cystic echinococcosis: an evolving story. Clin Dev Immunol 2011; 2012:639362. [PMID: 22110535 PMCID: PMC3206507 DOI: 10.1155/2012/639362] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/27/2011] [Indexed: 01/29/2023]
Abstract
The larval stage of Echinococcus granulosus causes cystic echinococcosis, a neglected infectious disease that constitutes a major public health problem in developing countries. Despite being under constant barrage by the immune system, E. granulosus modulates antiparasite immune responses and persists in the human hosts with detectable humoral and cellular responses against the parasite. In vitro and in vivo immunological approaches, together with molecular biology and immunoproteomic technologies, provided us exciting insights into the mechanisms involved in the initiation of E. granulosus infection and the consequent induction and regulation of the immune response. Although the last decade has clarified many aspects of host-parasite relationship in human cystic echinococcosis, establishing the full mechanisms that cause the disease requires more studies. Here, we review some of the recent developments and discuss new avenues in this evolving story of E. granulosus infection in man.
Collapse
Affiliation(s)
- Alessandra Siracusano
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy.
| | | | | | | |
Collapse
|
31
|
Loukas A, Gaze S, Mulvenna JP, Gasser RB, Brindley PJ, Doolan DL, Bethony JM, Jones MK, Gobert GN, Driguez P, McManus DP, Hotez PJ. Vaccinomics for the major blood feeding helminths of humans. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:567-77. [PMID: 21679087 DOI: 10.1089/omi.2010.0150] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Approximately one billion people are infected with hookworms and/or blood flukes (schistosomes) in developing countries. These two parasites are responsible for more disability adjusted life years lost than most other neglected tropical diseases (NTDs), and together, are second only to malaria. Although anthelmintic drugs are effective and widely available, they do not protect against reinfection, resistant parasites are likely to emerge, and mass drug administration programs are unsustainable. Therefore, there is a pressing need for the development of vaccines against these parasites. In recent years, there have been major advances in our understanding of hookworms and schistosomes at the molecular level through the use of "omics" technologies. The secretomes of these parasites have been characterized using transcriptomics, genomics, proteomics, and newly developed gene manipulation and silencing techniques, and the proteins of interest are now the target of novel antigen discovery approaches, notably immunomics. This research has resulted in the discovery, development, and early stage clinical trials of subunit vaccines against hookworms and schistosomes.
Collapse
Affiliation(s)
- Alex Loukas
- Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bergquist R, Lustigman S. Control of important helminthic infections vaccine development as part of the solution. ADVANCES IN PARASITOLOGY 2010; 73:297-326. [PMID: 20627146 DOI: 10.1016/s0065-308x(10)73010-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Among the tools available for the control of helminth infections, chemotherapy has come to totally dominate the field. In the veterinary field, development of drug resistance has appeared but this is not (yet) a problem in the control of human diseases. Although there is no vaccine commercially available for any human parasitic infection yet, recent progress in vaccine development is making this a future possibility for several diseases. The goal of chemotherapy is to alleviate infection and morbidity in the definitive host, or reduce transmission, while the effect of available vaccine candidates would mainly be to influence transmission through targeting the intermediate or reservoir host, when the infection is zoonotic. Apart from this general scheme, there are also vaccine candidates targeting the parasites in the definitive host, in particular the early developmental stages, which should reduce the risk of drug failure. Since the biological targets in most cases are different, vaccination would be synergistic with drug therapy. This review covers diseases caused by helminthes in both humans and animals and includes examples of diseases caused by cestodes, nematodes and trematodes. The focus is on infections for which vaccine development has been undertaken for a long time, resulting in products that could realistically become integrated into control strategies in the near future.
Collapse
|
33
|
Human cystic echinococcosis: old problems and new perspectives. Interdiscip Perspect Infect Dis 2009; 2009:474368. [PMID: 19888428 PMCID: PMC2771156 DOI: 10.1155/2009/474368] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/18/2009] [Accepted: 08/24/2009] [Indexed: 12/18/2022] Open
Abstract
Cystic echinococcosis (CE) is a widespread chronic endemic helminthic disease caused by infection with metacestodes of the tapeworm Echinococcus granulosus. CE affects humans and has a worldwide prevalence of approximately six million. In this review, we discuss current findings in diagnosis and clinical management of CE and new concepts relating to E. granulosus molecules that directly modulate the host immune responses favouring a strong anti-inflammatory response and perpetuating parasite survival in the host. New insights into the molecular biology of E. granulosus will improve considerably our knowledge of the disease and will provide new potential therapeutic applications to treat or prevent inflammatory immune-mediated disease.
Collapse
|
34
|
Siles-Lucas M, Merli M, Gottstein B. 14-3-3 proteins in Echinococcus: their role and potential as protective antigens. Exp Parasitol 2008; 119:516-523. [PMID: 18316081 DOI: 10.1016/j.exppara.2008.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/22/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
14-3-3 Proteins are a family of highly conserved proteins among all eukaryotic organisms studied so far. As basically intracellular proteins, they play a key role in basic cellular events related to cellular proliferation, including signal transduction, cell-cycle control, cell differentiation and cell survival. The 14-3-3 proteins have been described and characterized in several parasites, and mostly studied in Echinococcus granulosus and Echinococcus multilocularis. Here, we review the discoveries regarding this protein family in the genus Echinococcus, describing new data about specific aspects related with their implication in the parasite biology and immunology in the frame of the host-parasite relationship.
Collapse
Affiliation(s)
- Mar Siles-Lucas
- Unidad de Patología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | | | | |
Collapse
|
35
|
Garcia HH, Moro PL, Schantz PM. Zoonotic helminth infections of humans: echinococcosis, cysticercosis and fascioliasis. Curr Opin Infect Dis 2007; 20:489-94. [PMID: 17762782 DOI: 10.1097/qco.0b013e3282a95e39] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Tissue parasites of humans are still prevalent in most regions of the world, and are also seen more frequently in developed countries due to increasing travel patterns. In particular, Echinococcus infections still account for hepatic and pulmonary pathology, cysticercosis is a major cause of seizures and epilepsy, and fascioliasis also causes significant liver pathology. This review summarizes current knowledge on clinical and epidemiologic aspects of zoonotic disease caused by tissue helminths. RECENT FINDINGS Tissue helminth infections remain as a public health concern. Recent research has provided new insights into clinical disease in humans and improved methods for diagnosis, treatment and control, arising mostly from the application of new techniques for immune and molecular diagnosis, availability of data from controlled trials, and development of new vaccines. Specific antiparasitic therapies are now better characterized, and new control tools are available. SUMMARY Recent research has provided new diagnostic technologies applicable to diagnosis, treatment and control, but effective interventions to reduce transmission are rarely applied. Despite some progress in their control, these zoonoses continue to be a major public health problem in many regions both in developing countries and in some more developed ones.
Collapse
Affiliation(s)
- Hector H Garcia
- Department of Microbiology, School of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | | |
Collapse
|
36
|
Crampton A, Vanniasinkam T. Parasite vaccines: The new generation. INFECTION GENETICS AND EVOLUTION 2007; 7:664-73. [PMID: 17702669 DOI: 10.1016/j.meegid.2007.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 12/24/2022]
Abstract
Parasites cause some of the most devastating and prevalent diseases in humans and animals. Moreover, parasitic infections increase mortality rates of other serious non-parasitic infections caused by pathogens such as HIV-1. The impact of parasitic diseases in both industrialised and developing countries is further exacerbated by the resistance of some parasites to anti-parasitic drugs and the absence of efficacious parasite vaccines. Despite years of research, much remains to be done to develop effective vaccines against parasites. This review focuses on the more recent vaccine strategies such as DNA and viral vector-based vaccines that are currently being used to develop vaccines against parasites. Obstacles yet to be overcome and possible advantages and disadvantages of these vaccine modalities are also discussed.
Collapse
Affiliation(s)
- A Crampton
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 678, Wagga Wagga, NSW 2650, Australia
| | | |
Collapse
|
37
|
Abstract
The diseases caused by parasitic nematodes in domestic and companion animals are major factors that decrease production and quality of the agricultural products. Methods available for the control of the parasitic nematode infections are mainly based on chemical treatment, non-chemical management practices, immune modulation and biological control. However, even with integrated pest management that frequently combines these approaches, the effective and long-lasting control strategies are hampered by the persistent exposure of host animals to environmental stages of parasites, the incomplete protective response of the host and acquisition of anthelmintic resistance by an increasing number of parasitic nematodes. Therefore, the challenges to improve control of parasitic nematode infections are multi-fold and no single category of information will meet them all. However, new information, such as nematode genomics, functional genomics and proteomics, can strengthen basic and applied biological research aimed to develop improvements. In this review we will, summarize existing control strategies of nematode infections and discuss ongoing developments in nematode genomics. Genomics approaches offer a growing and fundamental base of information, which when coupled with downstream functional genomics and proteomics can accelerate progress towards developing more efficient and sustainable control programs.
Collapse
Affiliation(s)
- Makedonka Mitreva
- Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Echinococcosis is a cosmopolitan zoonosis caused by adult or larval stages of cestodes belonging to the genus Echinococcus (family Taeniidae). The two major species of medical and public health importance are Echinococcus granulosus and Echinococcus multilocularis, which cause cystic echinococcosis and alveolar echinococcosis, respectively. Both cystic echinococcosis and alveolar echinococcosis are serious diseases, the latter especially so, with a high fatality rate and poor prognosis if managed inappropriately. This review highlights recent advances in immunity to infection and vaccination against both parasites in their intermediate and definitive hosts and procedures for diagnosis of cystic echinococcosis and alveolar echinococcosis, including the value of immunodiagnostic and DNA approaches. There is discussion also of progress in genomics and related technologies that is providing valuable insights on the functional biology of the Echinococcus organisms. These studies will underpin future research that will reveal a better understanding of the Echinococcus-host interplay, and suggest new avenues for the identification of additional targets for diagnosis, vaccination and chemotherapy.
Collapse
Affiliation(s)
- Wenbao Zhang
- Molecular Parasitology Laboratory, Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | | |
Collapse
|