1
|
Noh SM, Ujczo J, Alperin DC, Jarvis SM, Solyman MSM, Koku R, Akinsulie OC, Hoffmann EE. Identification of Anaplasma marginale adhesins for entry into Dermacentor andersoni tick cells using phage display. Infect Immun 2024; 92:e0054023. [PMID: 38727242 PMCID: PMC11237752 DOI: 10.1128/iai.00540-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024] Open
Abstract
Anaplasma marginale is an obligate, intracellular, tick-borne bacterial pathogen that causes bovine anaplasmosis, an often severe, production-limiting disease of cattle found worldwide. Methods to control this disease are lacking, in large part due to major knowledge gaps in our understanding of the molecular underpinnings of basic host-pathogen interactions. For example, the surface proteins that serve as adhesins and, thus, likely play a role in pathogen entry into tick cells are largely unknown. To address this knowledge gap, we developed a phage display library and screened 66 A. marginale proteins for their ability to adhere to Dermacentor andersoni tick cells. From this screen, 17 candidate adhesins were identified, including OmpA and multiple members of the Msp1 family, including Msp1b, Mlp3, and Mlp4. We then measured the transcript of ompA and all members of the msp1 gene family through time, and determined that msp1b, mlp2, and mlp4 have increased transcript during tick cell infection, suggesting a possible role in host cell binding or entry. Finally, Msp1a, Msp1b, Mlp3, and OmpA were expressed as recombinant protein. When added to cultured tick cells prior to A. marginale infection, all proteins except the C-terminus of Msp1a reduced A. marginale entry by 2.2- to 4.7-fold. Except OmpA, these adhesins lack orthologs in related pathogens of humans and animals, including Anaplasma phagocytophilum and the Ehrlichia spp., thus limiting their utility in a universal tick transmission-blocking vaccine. However, this work greatly advances efforts toward developing methods to control bovine anaplasmosis and, thus, may help improve global food security.
Collapse
Affiliation(s)
- Susan M. Noh
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Jessica Ujczo
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA
| | - Debra C. Alperin
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Shelby M. Jarvis
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Muna S. M. Solyman
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Roberta Koku
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Olalekan C. Akinsulie
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Elizabeth E. Hoffmann
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Mahmoud HYAH, Ali AO, Tanaka T. Molecular detection and characterization of Anaplasma marginale infecting cattle, buffalo, and camel populations in southern Egypt. Front Vet Sci 2023; 10:1169323. [PMID: 37252392 PMCID: PMC10213943 DOI: 10.3389/fvets.2023.1169323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Anaplasmosis is a severe tickborne disease of ruminants caused by Anaplasma marginale. A. marginale is distributed worldwide and attacks erythrocytes, resulting in an increased body temperature, anemia, jaundice, abortion, and, in some cases, death. Animals infected with this pathogen become lifelong carriers. In this study, we aimed to detect and characterize A. marginale isolated from cattle, buffalo, and camel populations using novel molecular techniques in southern Egypt. In total, 250 samples (from 100 cattle, 75 water buffaloes, and 75 camels) were analyzed by PCR for the presence of Anaplasmataceae, specifically A. marginale. The animals varied in breed, age, and gender, with most showing no signs of severe disease. By species, A. marginale was found in 61 out of 100 (61%) cattle, 9 out of 75 (12%) buffaloes, and only 5 out of 75 (6.66%) camels. All A. marginale-positive samples were examined for the heat-shock protein groEL gene and, additionally, for major surface protein 4 (msp4) and major surface protein 5 (msp5) genes to enhance specificity. Phylogenetic analysis of A. marginale targeted three genes (groEL, msp4, and msp5). This study provides the first report on using three genes for A. marginale detection in Camelus dromedarius in southern Egypt and generated new phylogenetic data for A. marginale infections in camels. A. marginale infection is endemic in different animal species in southern Egypt. Screening herds for A. marginale is recommended even when the signs of anaplasmosis are absent.
Collapse
Affiliation(s)
- Hassan Y. A. H. Mahmoud
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Alsagher O. Ali
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
3
|
Ulucesme MC, Ozubek S, Aktas M. Molecular Prevalence and Genetic Diversity Based on Msp1a Gene of Anaplasma ovis in Goats from Türkiye. Life (Basel) 2023; 13:life13051101. [PMID: 37240746 DOI: 10.3390/life13051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Anaplasma ovis is a tick-borne obligated intraerythrocytic bacterium that infects domestic sheep, goats, and wild ruminants. Recently, several studies have been carried out using 16S rRNA and msp4 genes to identify the genetic diversity of A. ovis. Instead of these genes, which are known to be highly stable among heterologous strains, Msp1a, which is accepted as a stable molecular marker to classify A. marginale strains, was used in A. ovis genetic diversity studies. The genetic diversity of A. ovis strains according to the Msp1a gene has not been extensively reported. Therefore, the purpose of this study was to examine the genetic diversity of A. ovis in goats specifically using analysis of the Msp1a gene. Blood samples were taken from the vena jugularis to the EDTA tubes from 293 randomly selected goats (apparently healthy) in the Antalya and Mersin provinces of Mediterranean region of Türkiye. The Msp1a gene of A. ovis was amplified in all DNA samples through the use of PCR, using a specific set of primers named AoMsp1aF and AoMsp1aR. Among the amplified products, well-defined bands with different band sizes were subjected to sequence analysis. The obtained sequence data were converted into amino acid sequences using an online bioinformatics program and the tandem regions were examined. The Msp1a gene of A. ovis was amplified in 46.1% (135 out of 293) of the goats. Through tandem analysis, five distinct tandems (Ao8, Ao18, Tr15-16-17) were identified, and it was found that three of these tandems (Tr15-16-17) were previously unknown and were therefore defined as new tandems. The study also involved examination of ticks from goats. It was observed that the goats in the area were infested with several tick species, including Rhipicephalus bursa (888/1091, 81.4%), R. turanicus (96/1091, 8.8%), Dermacentor raskemensis (92/1091, 8.4%), Hyalomma marginatum (9/1091, 0.8%), and R. sanguineus s.l. (6/1091, 0.5%). This study provides important data for understanding the genetic diversity and evolution of A. ovis based on tandem repeats in the Msp1a protein.
Collapse
Affiliation(s)
- Mehmet Can Ulucesme
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| | - Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| |
Collapse
|
4
|
Ntesang K, Singla LD, Kaur P, Arora JS, Kashyap N. Molecular epidemiology, phylogenetic analysis and risk assessment of Anaplasma marginale from naturally infected bovines of Punjab (India). Acta Trop 2022; 232:106499. [PMID: 35523271 DOI: 10.1016/j.actatropica.2022.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/01/2022]
Abstract
Anaplasmosis, an infectious vector borne rickettsial disease caused by different species of Anaplasma transmitted through mechanical and biological (tick) processes has a great concern to livestock industry due to its associated economic losses. The current cross sectional comprehensive epidemiological study was conducted from August 2020 to November 2021 on 391 (277 cattle and 114 buffaloes) bovines from different districts of five agro climatic zones of Punjab state. Classical microscopic examination of Romanowsky stained blood smears showed an occurrence of 13.00%, while DNA amplification targeting major surface protein (msp5) of Anaplasma marginale revealed the 382 bp amplicon in 32.48% samples. Zone based molecular prevalence of A. marginale was highest in the Undulating zone (41.93%) and least in the Sub-Mountain zone (18.84%). The prevalence in Central plain zone, Western plain zone, and Western zone were 40.15, 30.95 and 29.91%, respectively. An overall molecular prevalence of A. marginale was 34.52, 32.75 and 20.0% in young, adults and calves, respectively, the difference being non-significant. Anaplsma marginale was more prevalent in unorganized farms (38.22%; 60/157) than organized farms (28.63%; 66/234). Risk factors analysis revealed young, female cattle at unorganized farms were more prone to anaplasmosis. Out of 127 positive samples, four samples were customed to sequencing revealed 98-99% homology with published sequences for other available global isolates. Multi-single nucleotide polymorphisms (SNP) were observed in the sequence of two samples when aligned with the reference sequence from the NCBI database (CP023731).
Collapse
|
5
|
Said MB, Attia KA, Alsubki RA, Mohamed AA, Kimiko I, Selim A. Molecular epidemiological survey, genetic characterization and phylogenetic analysis of Anaplasma ovis infecting sheep in Northern Egypt. Acta Trop 2022; 229:106370. [PMID: 35157843 DOI: 10.1016/j.actatropica.2022.106370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Anaplasma ovis is the most common etiologic agent of ovine anaplasmosis, mainly transmitted by ticks. The present study aimed to determine the molecular prevalence of A. ovis in sheep from Egypt and assessed the associated risk factors. The study was conducted, between January and December 2020, in four governorates situated in Northern Egypt. Blood samples from 355 asymptomatic sheep were collected and examined by the use of PCR specific to A. ovis. Diversity analysis and phylogenetic study based on partial msp4 gene sequence were performed on revealed A. ovis DNA. Overall, the molecular prevalence rate of A. ovis was 15.5% and the highest rate was observed in Kafr ElSheikh governorate (16.8%). Statistical analysis revealed that A. ovis infection was significantly related to sheep gender and to tick infestation. The risk factors that were found to be associated with A. ovis infection in exposed sheep were: female sex (OR=2.6, 95%CI: 1.13-6.12), and infestation with ticks (OR=2.1, 95%CI: 1.11-3.79). The analysis of A. ovis msp4 sequences revealed two different genotypes classified in the Old World sub-cluster with other Egyptian isolates. Investigation on prevalence, risk factors and genetic variability of A. ovis in sheep reported in this study is important for the implementation of control programs. Further studies are needed to determine the vectors and reservoirs of A. ovis in Egyptian small ruminants and to identify the real economic impact of A. ovis infection on the country.
Collapse
Affiliation(s)
- Mourad Ben Said
- Higher Institute of Biotechnology, BiotechPôlet, BP-66, 2020, Sidi Thabet, Ariana Tunis, University of Manouba, Tunisia; Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, Ariana Tunis, University of Manouba, Tunisia.
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Arif A Mohamed
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Itoh Kimiko
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| |
Collapse
|
6
|
O'Neal AJ, Singh N, Mendes MT, Pedra JHF. The genus Anaplasma: drawing back the curtain on tick-pathogen interactions. Pathog Dis 2021; 79:6207937. [PMID: 33792663 DOI: 10.1093/femspd/ftab022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Tick-borne illnesses pose a serious concern to human and veterinary health and their prevalence is on the rise. The interactions between ticks and the pathogens they carry are largely undefined. However, the genus Anaplasma, a group of tick-borne bacteria, has been instrumental in uncovering novel paradigms in tick biology. The emergence of sophisticated technologies and the convergence of entomology with microbiology, immunology, metabolism and systems biology has brought tick-Anaplasma interactions to the forefront of vector biology with broader implications for the infectious disease community. Here, we discuss the use of Anaplasma as an instrument for the elucidation of novel principles in arthropod-microbe interactions. We offer an outlook of the primary areas of study, outstanding questions and future research directions.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
A molecular prevalence survey on Anaplasma infection among domestic ruminants in Khartoum State, Sudan. Trop Anim Health Prod 2020; 52:1845-1852. [PMID: 31938957 DOI: 10.1007/s11250-019-02176-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/02/2019] [Indexed: 01/18/2023]
Abstract
This study was conducted in Khartoum State, Sudan to determine the prevalence and the risk factors associated with Anaplasma and Ehrlichia species infections in domestic ruminants. Blood samples were collected from a total of 594 animals from 32 different farms distributed in the three provinces of Khartoum State. Among the 196 cattle, 200 sheep, and 198 goats examined using PCR, 13.27%, 32.50%, and 35.86% were infected with Anaplasma spp., respectively, with an overall prevalence of 27.27%. Cattle were infected with A. marginale (10.71%), A. centrale (2.04%), and A. ovis (0.51%), while sheep and goats were infected with A. ovis being significantly higher compared with cattle. No Ehrlichia spp. was detected in domestic ruminant in Khartoum State. Prevalence rates of Anaplasma infections were highly associated with breed, location, season, and sex. The prevalence rates of Anaplasma infection were significantly higher in exotic goat breeds compared with indigenous, and the infection in sheep and cattle was significantly higher in summer and in autumn in goats. The Anaplasma spp. infection rate in goats was significantly higher in females. The infection rate was also significantly higher in Khartoum North in both sheep and goats. It could be concluded that Anaplasma infection is prevalent in small and large ruminants in Khartoum State. Therefore, further studies on the epidemiology of anaplasmosis, possible tick, lice, and flea vectors and reservoirs in Sudan are important.
Collapse
|
8
|
Futse JE, Buami G, Kayang BB, Koku R, Palmer GH, Graça T, Noh SM. Sequence and immunologic conservation of Anaplasma marginale OmpA within strains from Ghana as compared to the predominant OmpA variant. PLoS One 2019; 14:e0217661. [PMID: 31291256 PMCID: PMC6619652 DOI: 10.1371/journal.pone.0217661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022] Open
Abstract
A primary challenge in developing effective vaccines against obligate, intracellular, bacterial tick-borne pathogens that establish persistent infection is the identification of antigens that cross protect against multiple strains. In the case of Anaplasma marginale, the most prevalent tick-borne pathogen of cattle found worldwide, OmpA is an adhesin and thus a promising vaccine candidate. We sequenced ompA from cattle throughout Ghana naturally infected with A. marginale in order to determine the degree of variation in this gene in an area of suspected high genetic diversity. We compared the Ghanaian sequences with those available from N. America, Mexico, Australia and Puerto Rico. When considering only amino acid changes, three unique Ghanaian OmpA variants were identified. In comparison, strains from all other geographic regions, except one, shared a single OmpA variant, Variant 1, which differed from the Ghanaian variants. Next, using recombinant OmpA based on Variant 1, we determined that amino acid differences in OmpA in Ghanaian cattle as compared to OmpA Variant 1 did not alter the binding capacity of antibody directed against OmpA Variant 1, supporting the value of OmpA as a highly conserved vaccine candidate.
Collapse
Affiliation(s)
- James E. Futse
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Grace Buami
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Boniface B. Kayang
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Roberta Koku
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
| | - Guy H. Palmer
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Telmo Graça
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Susan M. Noh
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States of America
| |
Collapse
|
9
|
Liu Z, Peasley AM, Yang J, Li Y, Guan G, Luo J, Yin H, Brayton KA. The Anaplasma ovis genome reveals a high proportion of pseudogenes. BMC Genomics 2019; 20:69. [PMID: 30665414 PMCID: PMC6341658 DOI: 10.1186/s12864-018-5374-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/16/2018] [Indexed: 01/07/2023] Open
Abstract
Background The genus Anaplasma is made up of organisms characterized by small genomes that are undergoing reductive evolution. Anaplasma ovis, one of the seven recognized species in this genus, is an understudied pathogen of sheep and other ruminants. This tick-borne agent is thought to induce only mild clinical disease; however, small deficits may add to larger economic impacts due to the wide geographic distribution of this pathogen. Results In this report we present the first complete genome sequence for A. ovis and compare the genome features with other closely related species. The 1,214,674 bp A. ovis genome encodes 933 protein coding sequences, the split operon arrangement for ribosomal RNA genes, and more pseudogenes than previously recognized for other Anaplasma species. The metabolic potential is similar to other Anaplasma species. Anaplasma ovis has a small repertoire of surface proteins and transporters. Several novel genes are identified. Conclusions Analyses of these important features and significant gene families/genes with potential to be vaccine candidates are presented in a comparative context. The availability of this genome will significantly facilitate research for this pathogen.
Collapse
Affiliation(s)
- Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Austin M Peasley
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases, Yangzhou, China
| | - Kelly A Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA.
| |
Collapse
|
10
|
Paramanandham K, Mohankumar A, Puttahonnappa Suresh K, Susan Jacob S, Roy P. Prevalence of Anaplasma species in India and the World in dairy animals: A systematic review and meta-analysis. Res Vet Sci 2019; 123:159-170. [PMID: 30677616 DOI: 10.1016/j.rvsc.2019.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 11/16/2022]
Abstract
In the present study, the prevalence of Anaplasma species in diary animals from India and World was estimated using meta-analysis. Based on systematic review of studies on Anaplasma species from India [35] and World [66] from 1988 to 2017 and 1978-2017, respectively, using online databases and offline literatures, meta-analysis using meta package in R-Software was done. Prevalence of Anaplasma species in India and World were 11% [95% level, Confidence Interval[CI] 7-16%, Prediction Interval[PI] 1-69%] and 39% [95% level, CI 30-49%, PI 2-95%], and these were obtained using 31,117 and 46,365 samples, respectively. Period-wise analysis revealed high Anaplasma species prevalence before 2011 for India and the World than from 2011 through 2017. Zone-wise prevalence indicated high prevalence in Central zone [61%] and low in West and South zones [6%] in India, and continent-wise, it was high in South America [82%]. The studies used methods including blood smear examination, serology and nucleic acid-based techniques and revealed high prevalence in serology for India [34%] and World [46%], low prevalence by blood smear for India [7%] and World [21%], but higher sensitivity using nucleic acid-based techniques. Species-wise indicated higher prevalence in cattle [12%] than buffaloes [2%] in India. Prevalence was lower in India compared to the World and higher in South America. Overall, anaplasmosis causes low productivity in dairy animals and economic loss to dairy farmers. Hence, there is a need to control Anaplasma infections in high risk areas by adopting effective therapeutic and preventive measures so as to improve the economic benefits in dairy farming.
Collapse
Affiliation(s)
- Krishnamoorthy Paramanandham
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru 560064, Karnataka, India.
| | - Ashwini Mohankumar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru 560064, Karnataka, India
| | - Kuralayanapalya Puttahonnappa Suresh
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru 560064, Karnataka, India
| | - Siju Susan Jacob
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru 560064, Karnataka, India
| | - Parimal Roy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No.6450, Ramagondanahalli, Yelahanka, Bengaluru 560064, Karnataka, India
| |
Collapse
|
11
|
Abstract
Human ehrlichiosis and anaplasmosis are acute febrile tick-borne infectious diseases caused by various members from the genera Ehrlichia and Anaplasma. Ehrlichia chaffeensis is the major etiologic agent of human monocytotropic ehrlichiosis (HME), while Anaplasma phagocytophilum is the major cause of human granulocytic anaplasmosis (HGA). The clinical manifestations of HME and HGA ranges from subclinical to potentially life-threatening diseases associated with multi-organ failure. Macrophages and neutrophils are the major target cells for Ehrlichia and Anaplasma, respectively. The threat to public health is increasing with newly emerging ehrlichial and anaplasma agents, yet vaccines for human ehrlichioses and anaplasmosis are not available, and therapeutic options are limited. This article reviews recent advances in the understanding of HME and HGA.
Collapse
|
12
|
Anaplasma marginale: Diversity, Virulence, and Vaccine Landscape through a Genomics Approach. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9032085. [PMID: 27610385 PMCID: PMC5005611 DOI: 10.1155/2016/9032085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/26/2016] [Indexed: 12/23/2022]
Abstract
In order to understand the genetic diversity of A. marginale, several efforts have been made around the world. This rickettsia affects a significant number of ruminants, causing bovine anaplasmosis, so the interest in its virulence and how it is transmitted have drawn interest not only from a molecular point of view but also, recently, some genomics research have been performed to elucidate genes and proteins with potential as antigens. Unfortunately, so far, we still do not have a recombinant anaplasmosis vaccine. In this review, we present a landscape of the multiple approaches carried out from the genomic perspective to generate valuable information that could be used in a holistic way to finally develop an anaplasmosis vaccine. These approaches include the analysis of the genetic diversity of A. marginale and how this affects control measures for the disease. Anaplasmosis vaccine development is also reviewed from the conventional vaccinomics to genome-base vaccinology approach based on proteomics, metabolomics, and transcriptomics analyses reported. The use of these new omics approaches will undoubtedly reveal new targets of interest in the near future, comprising information of potential antigens and the immunogenic effect of A. marginale proteins.
Collapse
|
13
|
Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis. PLoS One 2015; 10:e0137237. [PMID: 26340562 PMCID: PMC4560377 DOI: 10.1371/journal.pone.0137237] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022] Open
Abstract
Anaplasma phagocytophilum is an emerging zoonotic pathogen transmitted by Ixodes scapularis that causes human granulocytic anaplasmosis. Here, a high throughput quantitative proteomics approach was used to characterize A. phagocytophilum proteome during rickettsial multiplication and identify proteins involved in infection of the tick vector, I. scapularis. The first step in this research was focused on tick cells infected with A. phagocytophilum and sampled at two time points containing 10–15% and 65–71% infected cells, respectively to identify key bacterial proteins over-represented in high percentage infected cells. The second step was focused on adult female tick guts and salivary glands infected with A. phagocytophilum to compare in vitro results with those occurring during bacterial infection in vivo. The results showed differences in the proteome of A. phagocytophilum in infected ticks with higher impact on protein synthesis and processing than on bacterial replication in tick salivary glands. These results correlated well with the developmental cycle of A. phagocytophilum, in which cells convert from an intracellular reticulated, replicative form to the nondividing infectious dense-core form. The analysis of A. phagocytophilum differentially represented proteins identified stress response (GroEL, HSP70) and surface (MSP4) proteins that were over-represented in high percentage infected tick cells and salivary glands when compared to low percentage infected cells and guts, respectively. The results demonstrated that MSP4, GroEL and HSP70 interact and bind to tick cells, thus playing a role in rickettsia-tick interactions. The most important finding of these studies is the increase in the level of certain bacterial stress response and surface proteins in A. phagocytophilum-infected tick cells and salivary glands with functional implication in tick-pathogen interactions. These results gave a new dimension to the role of these stress response and surface proteins during A. phagocytophilum infection in ticks. Characterization of Anaplasma proteome contributes information on host-pathogen interactions and provides targets for development of novel control strategies for pathogen infection and transmission.
Collapse
|
14
|
de la Fuente J, Contreras M. Tick vaccines: current status and future directions. Expert Rev Vaccines 2015; 14:1367-76. [DOI: 10.1586/14760584.2015.1076339] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Belkahia H, Ben Said M, El Hamdi S, Yahiaoui M, Gharbi M, Daaloul-Jedidi M, Mhadhbi M, Jedidi M, Darghouth MA, Klabi I, Zribi L, Messadi L. First molecular identification and genetic characterization of Anaplasma ovis in sheep from Tunisia. Small Rumin Res 2014. [DOI: 10.1016/j.smallrumres.2014.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Hammac GK, Pierlé SA, Cheng X, Scoles GA, Brayton KA. Global transcriptional analysis reveals surface remodeling of Anaplasma marginale in the tick vector. Parasit Vectors 2014; 7:193. [PMID: 24751137 PMCID: PMC4022386 DOI: 10.1186/1756-3305-7-193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/08/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pathogens dependent upon vectors for transmission to new hosts undergo environment specific changes in gene transcription dependent on whether they are replicating in the vector or the mammalian host. Differential gene transcription, especially of potential vaccine candidates, is of interest in Anaplasma marginale, the tick-borne causative agent of bovine anaplasmosis. METHODS RNA-seq technology allowed a comprehensive analysis of the transcriptional status of A. marginale genes in two conditions: bovine host blood and tick derived cell culture, a model for the tick vector. Quantitative PCR was used to assess transcription of a set of genes in A. marginale infected tick midguts and salivary glands at two time points during the transmission cycle. RESULTS Genes belonging to fourteen pathways or component groups were found to be differentially transcribed in A. marginale in the bovine host versus the tick vector. One of the most significantly altered groups was composed of surface proteins. Of the 56 genes included in the surface protein group, eight were up regulated and 26 were down regulated. The down regulated surface protein encoding genes include several that are well studied due to their immunogenicity and function. Quantitative PCR of a set of genes demonstrated that transcription in tick cell culture most closely approximates transcription in salivary glands of recently infected ticks. CONCLUSIONS The ISE6 tick cell culture line is an acceptable model for early infection in tick salivary glands, and reveals disproportionate down regulation of surface protein genes in the tick. Transcriptional profiling in other cell lines may help us simulate additional microenvironments. Understanding vector-specific alteration of gene transcription, especially of surface protein encoding genes, may aid in the development of vaccines or transmission blocking therapies.
Collapse
Affiliation(s)
| | | | | | | | - Kelly A Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G, Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA.
| |
Collapse
|
17
|
Crosby FL, Wamsley HL, Pate MG, Lundgren AM, Noh SM, Munderloh UG, Barbet AF. Knockout of an outer membrane protein operon of Anaplasma marginale by transposon mutagenesis. BMC Genomics 2014; 15:278. [PMID: 24725301 PMCID: PMC4198910 DOI: 10.1186/1471-2164-15-278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/31/2014] [Indexed: 01/09/2023] Open
Abstract
Background The large amounts of data generated by genomics, transcriptomics and proteomics have increased our understanding of the biology of Anaplasma marginale. However, these data have also led to new assumptions that require testing, ideally through classical genetic mutation. One example is the definition of genes associated with virulence. Here we describe the molecular characterization of a red fluorescent and spectinomycin and streptomycin resistant A. marginale mutant generated by Himar1 transposon mutagenesis. Results High throughput genome sequencing to determine the Himar1-A. marginale genome junctions established that the transposon sequences were integrated within the coding region of the omp10 gene. This gene is arranged within an operon with AM1225 at the 5’ end and with omp9, omp8, omp7 and omp6 arranged in tandem at the 3’ end. RNA analysis to determine the effects of the transposon insertion on the expression of omp10 and downstream genes revealed that the Himar1 insertion not only reduced the expression of omp10 but also that of downstream genes. Transcript expression from omp9, and omp8 dropped by more than 90% in comparison with their counterparts in wild-type A. marginale. Immunoblot analysis showed a reduction in the production of Omp9 protein in these mutants compared to wild-type A. marginale. Conclusions These results demonstrate that transposon mutagenesis in A. marginale is possible and that this technology can be used for the creation of insertional gene knockouts that can be evaluated in natural host-vector systems.
Collapse
Affiliation(s)
- Francy L Crosby
- College of Veterinary Medicine, University of Florida, Department of Infectious Diseases and Pathology, 2015 SW 16th avenue, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Passos LMF. In vitro cultivation of Anaplasma marginale and A. phagocytophilum in tick cell lines: a review. ACTA ACUST UNITED AC 2013; 21:81-6. [PMID: 22832744 DOI: 10.1590/s1984-29612012000200002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/16/2012] [Indexed: 11/22/2022]
Abstract
Continuous cell lines have been established from several ixodid and argasid tick species, representing an excellent tool suitable for the isolation of pathogens and their subsequent propagation, which in turn allows the production of antigenic material for diagnostic tests, antibody and vaccine production, and also for studies on host-vector-pathogen relationships. This paper reviews the use of tick cells for culture initiation and maintenance of two obligate intracellular bacterial pathogens, Anaplasma marginale and Anaplasma phagocytophilum. These in vitro cultivation systems have been used in a wide range of studies, covering morphological ultrastructural analysis, genetics, proteomics and biological differences between strains, including genome transcriptional and protein expression approaches, enabling comparisons between host and vector cells. Thus, such systems open a new window for a better understanding of interactions between pathogens and tick cells. Last but not least, such systems contribute to the reduction in usage of animals for experimental research, as antigenic material can be produced in reasonably large quantities without the use of in vivo species-specific systems.
Collapse
Affiliation(s)
- Lygia Maria Friche Passos
- Departamento de Medicina Veterinária Preventiva, Instituto Nacional em Ciência e Tecnologia--Informação Genético-Sanitária da Pecuária Brasileira, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
20
|
Torina A, Agnone A, Blanda V, Alongi A, D'Agostino R, Caracappa S, Marino AMF, Di Marco V, de la Fuente J. Development and validation of two PCR tests for the detection of and differentiation between Anaplasma ovis and Anaplasma marginale. Ticks Tick Borne Dis 2012. [PMID: 23182548 DOI: 10.1016/j.ttbdis.2012.10.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anaplasma ovis and Anaplasma marginale are tick-transmitted bacteria that cause anaplasmosis in domestic and wild animals. Recent results show that some domestic and wild animals and ticks are susceptible to both A. ovis and A. marginale, thus supporting the need to differentiate between these species in hosts and ticks diagnosed with Anaplasma infection. However, although anaplasmosis is one of the most common diseases of grazing animals worldwide, rapid and effective tests are not available for the detection of and discrimination between these 2 Anaplasma species. The objective of this research was to develop an easy and reliable method to identify and discriminate between the closely related pathogens A. ovis and A. marginale. A. ovis and A. marginale major surface protein 4 (msp4) gene sequences were retrieved from different geographic strains and aligned to design 2 sets of primers in a region with significant differences between the 2 species, but completely conserved among strains. PCR reactions using these primers were 100% species-specific and detected all strains from each pathogen previously identified with other methods. The 2 sets of primers designed for the specific PCR amplification of A. ovis and A. marginale allow easy-to-detect and discriminate between the 2 pathogens, thus avoiding the time-consuming sequencing or multi-gene amplification procedures. This PCR provides a tool for the detection of A. ovis and A. marginale in ticks and in wildlife and domestic hosts.
Collapse
Affiliation(s)
- Alessandra Torina
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi, n. 3, 90123 Palermo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Marcelino I, de Almeida AM, Ventosa M, Pruneau L, Meyer DF, Martinez D, Lefrançois T, Vachiéry N, Coelho AV. Tick-borne diseases in cattle: applications of proteomics to develop new generation vaccines. J Proteomics 2012; 75:4232-50. [PMID: 22480908 DOI: 10.1016/j.jprot.2012.03.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 01/11/2023]
Abstract
Tick-borne diseases (TBDs) affect 80% of the world's cattle population, hampering livestock production throughout the world. Livestock industry is important to rural populations not only as food supply, but also as a source of income. Tick control is usually achieved by using acaricides which are expensive, deleterious to the environment and can induce chemical resistance of vectors; the development of more effective and sustainable control methods is therefore required. Theileriosis, babesiosis, anaplasmosis and heartwater are the most important TBDs in cattle. Immunization strategies are currently available but with variable efficacy. To develop a new generation of vaccines which are more efficient, cheaper and safer, it is first necessary to better understand the mechanisms by which these parasites are transmitted, multiply and cause disease; this becomes especially difficult due to their complex life cycles, in vitro culture conditions and the lack of genetic tools to manipulate them. Proteomics and other complementary post-genomic tools such as transcriptomics and metabolomics in a systems biology context are becoming key tools to increase knowledge on the biology of infectious diseases. Herein, we present an overview of the so called "Omics" studies currently available on these tick-borne pathogens, giving emphasis to proteomics and how it may help to discover new vaccine candidates to control TBDs.
Collapse
|
22
|
G Junior DS, Araújo FR, Almeida Junior NF, Adi SS, Cheung LM, Fragoso SP, Ramos CAN, Oliveira RHMD, Santos CS, Bacanelli G, Soares CO, Rosinha GMS, Fonseca AH. Analysis of membrane protein genes in a Brazilian isolate of Anaplasma marginale. Mem Inst Oswaldo Cruz 2011; 105:843-9. [PMID: 21120351 DOI: 10.1590/s0074-02762010000700001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/18/2010] [Indexed: 11/21/2022] Open
Abstract
The sequencing of the complete genome of Anaplasma marginale has enabled the identification of several genes that encode membrane proteins, thereby increasing the chances of identifying candidate immunogens. Little is known regarding the genetic variability of genes that encode membrane proteins in A. marginale isolates. The aim of the present study was to determine the degree of conservation of the predicted amino acid sequences of OMP1, OMP4, OMP5, OMP7, OMP8, OMP10, OMP14, OMP15, SODb, OPAG1, OPAG3, VirB3, VirB9-1, PepA, EF-Tu and AM854 proteins in a Brazilian isolate of A. marginale compared to other isolates. Hence, primers were used to amplify these genes: omp1, omp4, omp5, omp7, omp8, omp10, omp14, omp15, sodb, opag1, opag3, virb3, VirB9-1, pepA, ef-tu and am854. After polimerase chain reaction amplification, the products were cloned and sequenced using the Sanger method and the predicted amino acid sequence were multi-aligned using the CLUSTALW and MEGA 4 programs, comparing the predicted sequences between the Brazilian, Saint Maries, Florida and A. marginale centrale isolates. With the exception of outer membrane protein (OMP) 7, all proteins exhibited 92-100% homology to the other A. marginale isolates. However, only OMP1, OMP5, EF-Tu, VirB3, SODb and VirB9-1 were selected as potential immunogens capable of promoting cross-protection between isolates due to the high degree of homology (over 72%) also found with A. (centrale) marginale.
Collapse
Affiliation(s)
- Daniel S G Junior
- Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Awad H, Antunes S, Galindo RC, do Rosário VE, de la Fuente J, Domingos A, El Hussein AM. Prevalence and genetic diversity of Babesia and Anaplasma species in cattle in Sudan. Vet Parasitol 2011; 181:146-52. [PMID: 21612870 DOI: 10.1016/j.vetpar.2011.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/29/2011] [Accepted: 04/05/2011] [Indexed: 11/16/2022]
Abstract
Disease prevalence studies are one of the most valuable tools to demonstrate the risk or impact of certain infections in local and global economies. The data obtained in these studies contribute to develop strategies for disease control. The present study aims to provide information about the prevalence of babesiosis and anaplasmosis in the northern regions of Sudan. Blood samples from four different states of Sudan were collected from apparently healthy cattle (n=692), DNA was extracted and the prevalence of Babesia and Anaplasma species was analyzed by PCR. The results confirmed the presence of Babesia bigemina, Babesia bovis and Anaplasma marginale in cattle in northern Sudan with overall prevalence rates of 4.0%, 1.9% and 6.1%, respectively. Statistical analysis revealed that the prevalence of B. bigemina, B. bovis and A. marginale varies significantly between Sudanese states as well as in different age groups, while gender seems not to have a significant effect on the prevalence of these pathogens among Sudanese cattle. The highest prevalence for B. bigemina was found in the Aljazirah State while the highest number of A. marginale positive samples was reported in River Nile.
Collapse
Affiliation(s)
- Hoyam Awad
- Central Veterinary Research Laboratories, Al Amarat, P.O. Box 8067, Khartoum, Sudan
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Anaplasma marginale type IV secretion system proteins VirB2, VirB7, VirB11, and VirD4 are immunogenic components of a protective bacterial membrane vaccine. Infect Immun 2010; 78:1314-25. [PMID: 20065028 DOI: 10.1128/iai.01207-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Anaplasma and related Ehrlichia spp. are important tick-borne, Gram-negative bacterial pathogens of livestock and humans that cause acute infection and disease and can persist. Immunization of cattle with an Anaplasma marginale fraction enriched in outer membranes (OM) can provide complete protection against disease and persistent infection. Serological responses of OM vaccinees to the OM proteome previously identified over 20 antigenic proteins, including three type IV secretion system (T4SS) proteins, VirB9-1, VirB9-2, and VirB10. Subsequent studies showed that these three proteins also stimulated CD4(+) T-cell responses in OM vaccinees. The T4SS, composed of a complex of proteins spanning the inner and outer membranes of certain bacteria, is an important virulence factor but is relatively unexplored as a vaccine target. The goal of this study was to determine if additional T4SS proteins are immunogenic for animals immunized with the protective OM fraction of A. marginale. T4SS proteins expressed by in vitro transcription and translation were screened for stimulating proliferation of T cells from OM vaccinees, and immunogenic proteins were expressed as recombinant proteins in Escherichia coli and their immunogenicity was verified. VirB2, a putative VirB7, VirB11, and VirD4 were immunogenic for OM vaccinees expressing several common major histocompatibility complex (MHC) class II haplotypes. VirB2 is encoded by multiple genes that share a conserved central region, and epitope mapping revealed T-cell epitopes in this region. The discovery of novel immunogenic T4SS proteins recognized by outbred individuals with common MHC haplotypes further justifies evaluating the T4SS as a potential vaccine candidate for pathogenic bacteria.
Collapse
|
26
|
de la Fuente J, Kocan KM, Blouin EF, Zivkovic Z, Naranjo V, Almazán C, Esteves E, Jongejan F, Daffre S, Mangold AJ. Functional genomics and evolution of tick-Anaplasma interactions and vaccine development. Vet Parasitol 2009; 167:175-86. [PMID: 19819630 DOI: 10.1016/j.vetpar.2009.09.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The genus Anaplasma (Rickettsiales: Anaplasmataceae) includes several tick-transmitted pathogens that impact veterinary and human health. Tick-borne pathogens cycle between tick vectors and vertebrate hosts and their interaction is mediated by molecular mechanisms at the tick-pathogen interface. These mechanisms have evolved characteristics that involve traits from both the tick vector and the pathogen to insure their mutual survival. Herein, we review the information obtained from functional genomics and genetic studies to characterize the tick-Anaplasma interface and evolution of A. marginale and A. phagocytophilum. Anaplasma and tick genes and proteins involved in tick-pathogen interactions were characterized. The results of these studies demonstrated that common and Anaplasma species-specific molecular mechanism occur by which pathogen and tick cell gene expression mediates or limits Anaplasma developmental cycle and trafficking through ticks. These results have advanced our understanding of the biology of tick-Anaplasma interactions and have opened new avenues for the development of improved methods for the control of tick infestations and the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- José de la Fuente
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Psaroulaki A, Chochlakis D, Sandalakis V, Vranakis I, Ioannou I, Tselentis Y. Phylogentic analysis of Anaplasma ovis strains isolated from sheep and goats using groEL and mps4 genes. Vet Microbiol 2009; 138:394-400. [DOI: 10.1016/j.vetmic.2009.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/03/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
|
28
|
Araújo FR, Costa CM, Ramos CAN, Farias TA, Souza IIFD, Melo ESP, Elisei C, Rosinha GMS, Soares CO, Fragoso SP, Fonseca AH. IgG and IgG2 antibodies from cattle naturally infected with Anaplasma marginale recognize the recombinant vaccine candidate antigens VirB9, VirB10, and elongation factor-Tu. Mem Inst Oswaldo Cruz 2008; 103:186-90. [PMID: 18425271 DOI: 10.1590/s0074-02762008000200010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 02/22/2008] [Indexed: 11/22/2022] Open
Abstract
Anaplasma marginale is an important vector-borne rickettsia of ruminants in tropical and subtropical regions of the world. Immunization with purified outer membranes of this organism induces protection against acute anaplasmosis. Previous studies, with proteomic and genomic approach identified 21 proteins within the outer membrane immunogen in addition to previously characterized major surface protein1a-5 (MSP1a-5). Among the newly described proteins were VirB9, VirB10, and elongation factor-Tu (EF-Tu). VirB9, VirB10 are considered part of the type IV secretion system (TFSS), which mediates secretion or cell-to-cell transfer of macromolecules, proteins, or DNA-protein complexes in Gram-negative bacteria. EF-Tu can be located in the bacterial surface, mediating bacterial attachment to host cells, or in the bacterial cytoplasm for protein synthesis. However, the roles of VirB9, VirB10, and TFSS in A. marginale have not been defined. VirB9, VirB10, and EF-Tu have not been explored as vaccine antigens. In this study, we demonstrate that sera of cattle infected with A. marginale, with homologous or heterologous isolates recognize recombinant VirB9, VirB10, and EF-Tu. IgG2 from naturally infected cattle also reacts with these proteins. Recognition of epitopes by total IgG and by IgG2 from infected cattle with A. marginale support the inclusion of these proteins in recombinant vaccines against this rickettsia.
Collapse
|
29
|
Lopez JE, Beare PA, Heinzen RA, Norimine J, Lahmers KK, Palmer GH, Brown WC. High-throughput identification of T-lymphocyte antigens from Anaplasma marginale expressed using in vitro transcription and translation. J Immunol Methods 2008; 332:129-41. [DOI: 10.1016/j.jim.2007.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/10/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
|
30
|
Ramos CA, Araújo FR, Osório AL, Madruga CR, Rosinha GMS, Soares CO, Elisei C. Transcrição de genes de proteínas de membrana de isolados brasileiros de Anaplasma marginale. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2007; 16:152-5. [DOI: 10.1590/s1984-29612007000300007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 07/09/2007] [Indexed: 11/22/2022]
Abstract
Este trabalho demonstra o padrão de transcrição de genes de proteínas de membrana em três isolados brasileiros de A. marginale (Rio Grande do Norte, Pernambuco-Zona da Mata e Pernambuco-Sertão). O RNA foi purificado a partir de sangue de bovinos infectados experimentalmente com os três isolados de A. marginale. Após transcrição reversa, os genes omp1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 e 14; opag1-3; virB3, 9, 10; am097, 197, 254, 854 e 956 foram amplificados por PCR, com oligonucleotídeos iniciadores específicos. Detectaram-se transcritos para todos os genes analisados, exceto omp2, 3 e opag3 em todos os isolados e do gene omp7 em um dos isolados estudados. A ausência de transcrito para os genes opag3 e omp7 diverge do observado em isolados americanos da riquétsia. Possíveis razões para essas diferenças são discutidas.
Collapse
|
31
|
Bell-Sakyi L, Zweygarth E, Blouin EF, Gould EA, Jongejan F. Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol 2007; 23:450-7. [PMID: 17662657 DOI: 10.1016/j.pt.2007.07.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/25/2007] [Accepted: 07/10/2007] [Indexed: 11/17/2022]
Abstract
Over 40 cell lines are currently available from 13 ixodid and one argasid tick species. The successful isolation and propagation of several economically important tick-borne pathogens in tick cell lines has created a useful model to study interactions between tick cells and these viral and bacterial disease agents. Tick cell lines have already proved to be a useful tool in helping to define the complex nature of the host-vector-pathogen relationship. With the availability of genomics tools, tick cell lines will become increasingly important as a complement to tick and tick-borne disease research in vivo once genetic transformation and gene silencing using RNA interference become routine.
Collapse
Affiliation(s)
- Lesley Bell-Sakyi
- Centre for Tropical Veterinary Medicine, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK.
| | | | | | | | | |
Collapse
|
32
|
de la Fuente J, Atkinson MW, Naranjo V, Fernández de Mera IG, Mangold AJ, Keating KA, Kocan KM. Sequence analysis of the msp4 gene of Anaplasma ovis strains. Vet Microbiol 2007; 119:375-81. [PMID: 17052866 DOI: 10.1016/j.vetmic.2006.09.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/17/2006] [Accepted: 09/18/2006] [Indexed: 10/24/2022]
Abstract
Anaplasma ovis (Rickettsiales: Anaplasmataceae) is a tick-borne pathogen of sheep, goats and wild ruminants. The genetic diversity of A. ovis strains has not been well characterized due to the lack of sequence information. In this study, we evaluated bighorn sheep (Ovis canadensis) and mule deer (Odocoileus hemionus) from Montana for infection with A. ovis by serology and sequence analysis of the msp4 gene. Antibodies to Anaplasma spp. were detected in 37% and 39% of bighorn sheep and mule deer analyzed, respectively. Four new msp4 genotypes were identified. The A. ovismsp4 sequences identified herein were analyzed together with sequences reported previously for the characterization of the genetic diversity of A. ovis strains in comparison with other Anaplasma spp. The results of these studies demonstrated that although A. ovismsp4 genotypes may vary among geographic regions and between sheep and deer hosts, the variation observed was less than the variation observed between A. marginale and A. phagocytophilum strains. The results reported herein further confirm that A. ovis infection occurs in natural wild ruminant populations in Western United States and that bighorn sheep and mule deer may serve as wildlife reservoirs of A. ovis.
Collapse
Affiliation(s)
- José de la Fuente
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | |
Collapse
|