1
|
Roberti MP, Charoentong P, Lyu Y, Meyer M, Eichmüller SB, Schmidt P, Momburg F, Cetin M, Hartmann F, Valous NA, Stenzinger A, Michel L, Lichter P, Schneeweiss A, Thewes V, Fremd C, Zörnig I, Jäger D. Isolation of a tumor neoantigen specific CD8+ TCR from a skin biopsy of a vaccination site. Oncoimmunology 2025; 14:2457793. [PMID: 39902862 PMCID: PMC11796541 DOI: 10.1080/2162402x.2025.2457793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
T cells that recognize tumor-specific mutations are crucial for cancer immunosurveillance and in adoptive transfer of TILs or transgenic-TCR T cell products. However, their challenging identification and isolation limits their use in clinical practice. Therefore, novel approaches to isolate tumor-specific T cells are needed. Here, we report the isolation of neoantigen-specific CD8+ T cells from a vaccination site of a metastatic breast cancer patient who received a personalized vaccine. Based on the somatic mutations, potential MHC binding epitopes were predicted, of which 17 were selected to generate a peptide vaccine. Cutaneous biopsies were processed after the fifth vaccination cycle to obtain infiltrating lymphocytes from the vaccination site (VILs). IFNγ ELISpot revealed reactivity to four peptides used in the vaccine. Reactive T cells from VILs were non-overlapping with those detected in the blood and the tumor-microenvironment. ScTCR Seq analysis revealed the presence of a clonotype in VILs that further expanded after a round of in vitro stimulation and validated to be specific against a private mutation, namely NCOR1L1475R, presented in the context of HLA-B * 07:02, with no reactivity to the wild-type peptide. Our study shows, for the first time, that tumor mutation - specific T cells are generated at high frequencies in the vaccination site and can be isolated with standard methods for TCR screening. The easy and safe accessibility of skin biopsies overcomes the major hurdles of current TCR screening approaches and present exciting opportunities for the development of innovative immunotherapeutic strategies.
Collapse
Affiliation(s)
- Maria Paula Roberti
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
| | - Pornpimol Charoentong
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | - Yanhong Lyu
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | - Marten Meyer
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B. Eichmüller
- GMP and T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Schmidt
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
- GMP and T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miray Cetin
- Systems Immunology and Single Cell Biology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Felix Hartmann
- Systems Immunology and Single Cell Biology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Core Center Heidelberg, Heidelberg, Germany
| | - Nektarios A. Valous
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | | | - Laura Michel
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT), A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Schneeweiss
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT), A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Thewes
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT), A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carlo Fremd
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT), A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Inka Zörnig
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
| |
Collapse
|
2
|
Song Y, Yuan Z, Ji J, Ruan Y, Li X, Wang L, Zeng W, Wu K, Hu W, Yi L, Ding H, Zhao M, Fan S, Li Z, Chen J. Development of a Ferritin-Based Nanoparticle Vaccine against Classical Swine Fever. Vaccines (Basel) 2024; 12:948. [PMID: 39204071 PMCID: PMC11360710 DOI: 10.3390/vaccines12080948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The occurrence of classical swine fever (CSF) poses a significant threat to the global swine industry. Developing an effective and safe vaccine is crucial for preventing and controlling CSF. Here, we constructed self-assembled ferritin nanoparticles fused with the classical swine fever virus (CSFV) E2 protein and a derived B cell epitope (Fe-E2B) using a baculovirus expression system (BVES), demonstrating enhanced immunogenicity. Furthermore, we provide a detailed evaluation of the immunological efficacy of the FeE2B in rabbits. The results showed that robust and sustained antibody responses were detected in rabbits immunized with the Fe-E2B nanoparticle vaccine, comparable to those elicited by commercially available vaccines. Additionally, we demonstrated that the vaccine effectively activated crucial immune factors IFN-γ and IL-4 in vivo, increasing their levels by 1.41-fold and 1.39-fold, respectively. Immunization with Fe-E2B enabled rabbits to avoid viremia and stereotypic fever after CSFV challenge. In conclusion, this study highlights the potential of ferritin nanoparticles as antigen-presenting carriers to induce robust immune responses, proposing a candidate vaccine strategy for the prevention and control of CSF.
Collapse
Affiliation(s)
- Yiwan Song
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Zhongmao Yuan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Junzhi Ji
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Yang Ruan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Lianxiang Wang
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing 527400, China;
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Wenshuo Hu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing 527400, China;
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Kamboj A, Dumka S, Saxena MK, Singh Y, Kaur BP, da Silva SJR, Kumar S. A Comprehensive Review of Our Understanding and Challenges of Viral Vaccines against Swine Pathogens. Viruses 2024; 16:833. [PMID: 38932126 PMCID: PMC11209531 DOI: 10.3390/v16060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Pig farming has become a strategically significant and economically important industry across the globe. It is also a potentially vulnerable sector due to challenges posed by transboundary diseases in which viral infections are at the forefront. Among the porcine viral diseases, African swine fever, classical swine fever, foot and mouth disease, porcine reproductive and respiratory syndrome, pseudorabies, swine influenza, and transmissible gastroenteritis are some of the diseases that cause substantial economic losses in the pig industry. It is a well-established fact that vaccination is undoubtedly the most effective strategy to control viral infections in animals. From the period of Jenner and Pasteur to the recent new-generation technology era, the development of vaccines has contributed significantly to reducing the burden of viral infections on animals and humans. Inactivated and modified live viral vaccines provide partial protection against key pathogens. However, there is a need to improve these vaccines to address emerging infections more comprehensively and ensure their safety. The recent reports on new-generation vaccines against swine viruses like DNA, viral-vector-based replicon, chimeric, peptide, plant-made, virus-like particle, and nanoparticle-based vaccines are very encouraging. The current review gathers comprehensive information on the available vaccines and the future perspectives on porcine viral vaccines.
Collapse
Affiliation(s)
- Aman Kamboj
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Shaurya Dumka
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | - Mumtesh Kumar Saxena
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Yashpal Singh
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Bani Preet Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| |
Collapse
|
4
|
Chen C, Zhang N, Li M, Guo A, Zheng Y, Humak F, Qian P, Tao P. Recombinant bacteriophage T4 displaying key epitopes of the foot-and-mouth disease virus as a novel nanoparticle vaccine. Int J Biol Macromol 2024; 258:128837. [PMID: 38128800 DOI: 10.1016/j.ijbiomac.2023.128837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that has caused significant economic losses in the livestock industry. Peptide vaccines engineered with the protective epitopes of FMDV have provided a safer alternative for disease prevention than the traditional inactivated vaccines. However, the immunogenicity of the peptide is usually poor and therefore an adjuvant is required. Here, we showed that recombinant T4 phages displaying the B-cell epitope of the FMDV VP1 protein (VP1130-158), without additional adjuvants, induced similar levels of antigen-specific IgG1 but higher levels of IgG2a compared to the peptide vaccine. Incorporation of a CD4+ T cell epitope, either 3A21-35 of FMDV 3A protein or P2830-844 of tetanus toxoid, further enhanced the immunogenicity of VP1-T4 phage nanoparticles. Interestingly, the extrinsic adjuvant cannot enhance the immunogenicity of the nanoparticles, indicating the intrinsic adjuvant activities of T4 phage. Furthermore, the recombinant T4 phage can be produced on a large scale within a short period of time at a relatively low-cost using Escherichia coli, heralding its potential in the development of a safe and effective FMDV vaccine.
Collapse
Affiliation(s)
- Cen Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Nan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Mengling Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Aili Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Yifei Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Farwa Humak
- Antimicrobial Resistance Research Lab, Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China.
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Khazaei S, Varela-Calviño R, Rad-Malekshahi M, Quattrini F, Jokar S, Rezaei N, Balalaie S, Haririan I, Csaba N, Garcia-Fuentes M. Self-assembled peptide/polymer hybrid nanoplatform for cancer immunostimulating therapies. Drug Deliv Transl Res 2024; 14:455-473. [PMID: 37721693 PMCID: PMC10761384 DOI: 10.1007/s13346-023-01410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/19/2023]
Abstract
Integrating peptide epitopes in self-assembling materials is a successful strategy to obtain nanovaccines with high antigen density and improved efficacy. In this study, self-assembling peptides containing MAGE-A3/PADRE epitopes were designed to generate functional therapeutic nanovaccines. To achieve higher stability, peptide/polymer hybrid nanoparticles were formulated by controlled self-assembly of the engineered peptides. The nanoparticles showed good biocompatibility to both human red blood- and dendritic cells. Incubation of the nanoparticles with immature dendritic cells triggered immune effects that ultimately activated CD8 + cells. The antigen-specific and IgG antibody responses of healthy C57BL/6 mice vaccinated with the nanoparticles were analyzed. The in vivo results indicate a specific response to the nanovaccines, mainly mediated through a cellular pathway. This research indicates that the immunogenicity of peptide epitope vaccines can be effectively enhanced by developing self-assembled peptide-polymer hybrid nanostructures.
Collapse
Affiliation(s)
- Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ruben Varela-Calviño
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Federico Quattrini
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Noemi Csaba
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Stefanik O, Majerova P, Kovac A, Mikus P, Piestansky J. Capillary electrophoresis in the analysis of therapeutic peptides-A review. Electrophoresis 2024; 45:120-164. [PMID: 37705480 DOI: 10.1002/elps.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Therapeutic peptides are a growing class of innovative drugs with high efficiency and a low risk of adverse effects. These biomolecules fall within the molecular mass range between that of small molecules and proteins. However, their inherent instability and potential for degradation underscore the importance of reliable and effective analytical methods for pharmaceutical quality control, therapeutic drug monitoring, and compliance testing. Liquid chromatography-mass spectrometry (LC-MS) has long time been the "gold standard" conventional method for peptide analysis, but capillary electrophoresis (CE) is increasingly being recognized as a complementary and, in some cases, superior, highly efficient, green, and cost-effective alternative technique. CE can separate peptides composed of different amino acids owing to differences in their net charge and size, determining their migration behavior in an electric field. This review provides a comprehensive overview of therapeutic peptides that have been used in the clinical environment for the last 25 years. It describes the properties, classification, current trends in development, and clinical use of therapeutic peptides. From the analytical point of view, it discusses the challenges associated with the analysis of therapeutic peptides in pharmaceutical and biological matrices, as well as the evaluation of CE as a whole and the comparison with LC methods. The article also highlights the use of microchip electrophoresis, nonaqueous CE, and nonconventional hydrodynamically closed CE systems and their applications. Overall, the article emphasizes the importance of developing new CE-based analytical methods to ensure the high quality, safety, and efficacy of therapeutic peptides in clinical practice.
Collapse
Affiliation(s)
- Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
7
|
Zhuang L, Zhao Y, Yang L, Li L, Ye Z, Ali A, An Y, Ni R, Ali SL, Gong W. Harnessing bioinformatics for the development of a promising multi-epitope vaccine against tuberculosis: The ZL9810L vaccine. DECODING INFECTION AND TRANSMISSION 2024; 2:100026. [DOI: https:/doi.org/10.1016/j.dcit.2024.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Chaudhuri D, Majumder S, Datta J, Giri K. In silico designing of an epitope-based peptide vaccine cocktail against Nipah virus: an Indian population-based epidemiological study. Arch Microbiol 2023; 205:380. [PMID: 37955744 DOI: 10.1007/s00203-023-03717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023]
Abstract
Nipah virus, a zoonotic virus from the family Paramyxoviridae has led to significant loss of lives till date with the most recent outbreak in India reported in Kerala. The virus has a considerably high mortality rate along with lack of characteristic symptoms which results in the delay of the virus detection. No specific vaccine is available for the virus although monoclonal antibody treatment has been seen to be effective along with favipiravir. The high mortality and complications caused by the virus underscores the necessity to develop alternative modes of vaccination. One such method has been designed in this study using peptide cocktail consisting of the immunologically important epitopes for use as vaccine. The human leucocytic antigens that are used for the study were analyzed for their presence in various ethnic Indian populations. This study may serve as a new avenue for development of more efficient peptide cocktail vaccines in recent future based on the population genetics and ethnicity.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
9
|
Li Q, Wubshet AK, Wang Y, Heath L, Zhang J. B and T Cell Epitopes of the Incursionary Foot-and-Mouth Disease Virus Serotype SAT2 for Vaccine Development. Viruses 2023; 15:v15030797. [PMID: 36992505 PMCID: PMC10059872 DOI: 10.3390/v15030797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
Failure of cross-protection among interserotypes and intratypes of foot-and-mouth disease virus (FMDV) is a big threat to endemic countries and their prevention and control strategies. However, insights into practices relating to the development of a multi-epitope vaccine appear as a best alternative approach to alleviate the cross-protection-associated problems. In order to facilitate the development of such a vaccine design approach, identification and prediction of the antigenic B and T cell epitopes along with determining the level of immunogenicity are essential bioinformatics steps. These steps are well applied in Eurasian serotypes, but very rare in South African Territories (SAT) Types, particularly in serotype SAT2. For this reason, the available scattered immunogenic information on SAT2 epitopes needs to be organized and clearly understood. Therefore, in this review, we compiled relevant bioinformatic reports about B and T cell epitopes of the incursionary SAT2 FMDV and the promising experimental demonstrations of such designed and developed vaccines against this serotype.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Veterinary Etiological Biology, National/WOAH Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Ashenafi Kiros Wubshet
- Key Laboratory of Veterinary Etiological Biology, National/WOAH Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Department of Veterinary Basics and Diagnostic Sciences, College of Veterinary Science, Mekelle University, Mekelle 2084, Tigray, Ethiopia
| | - Yang Wang
- Key Laboratory of Veterinary Etiological Biology, National/WOAH Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Livio Heath
- Transboundary Animal Diseases: Vaccine Production Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Pretoria 0110, South Africa
| | - Jie Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| |
Collapse
|
10
|
Song Y, Hu H, Xiao K, Huang X, Guo H, Shi Y, Zhao J, Zhu S, Ji T, Xia B, Jiang J, Cao L, Zhang Y, Zhang Y, Xu W. A Synthetic SARS-CoV-2-Derived T-Cell and B-Cell Peptide Cocktail Elicits Full Protection against Lethal Omicron BA.1 Infection in H11-K18-hACE2 Mice. Microbiol Spectr 2023; 11:e0419422. [PMID: 36912685 PMCID: PMC10100915 DOI: 10.1128/spectrum.04194-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developing the capacity for immune evasion and resistance to existing vaccines and drugs. To address this, development of vaccines against coronavirus disease 2019 (COVID-19) has focused on universality, strong T cell immunity, and rapid production. Synthetic peptide vaccines, which are inexpensive and quick to produce, show low toxicity, and can be selected from the conserved SARS-CoV-2 proteome, are promising candidates. In this study, we evaluated the effectiveness of a synthetic peptide cocktail containing three murine CD4+ T-cell epitopes from the SARS-CoV-2 nonspike proteome and one B-cell epitope from the Omicron BA.1 receptor-binding domain (RBD), along with aluminum phosphate (Al) adjuvant and 5' cytosine-phosphate-guanine 3' oligodeoxynucleotide (CpG-ODN) adjuvant in mice. The peptide cocktail induced good Th1-biased T-cell responses and effective neutralizing-antibody titers against the Omicron BA.1 variant. Additionally, H11-K18-hACE2 transgenic mice were fully protected against lethal challenge with the BA.1 strain, with a 100% survival rate and reduced pulmonary viral load and pathological lesions. Subcutaneous administration was found to be the superior route for synthetic peptide vaccine delivery. Our findings demonstrate the effectiveness of the peptide cocktail in mice, suggesting the feasibility of synthetic peptide vaccines for humans. IMPORTANCE Current vaccines based on production of neutralizing antibodies fail to prevent the infection and transmission of SARS-CoV-2 Omicron and its subvariants. Understanding the critical factors and avoiding the disadvantages of vaccine strategies are essential for developing a safe and effective COVID-19 vaccine, which would include a more effective and durable cellular response, minimal effects of viral mutations, rapid production against emerging variants, and good safety. Peptide-based vaccines are an excellent alternative because they are inexpensive, quick to produce, and very safe. In addition, human leukocyte antigen T-cell epitopes could be targeted at robust T-cell immunity and selected in the conserved region of the SARS-CoV-2 variants. Our study showed that a synthetic SARS-CoV-2-derived peptide cocktail induced full protection against lethal infection with Omicron BA.1 in H11-K18-hACE2 mice for the first time. This could have implications for the development of effective COVID-19 peptide vaccines for humans.
Collapse
Affiliation(s)
- Yang Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqiao Hu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinghu Huang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuqing Shi
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiannan Zhao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangli Zhu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tianjiao Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baicheng Xia
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Jiang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Cao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
11
|
Lim CP, Kok BH, Lim HT, Chuah C, Abdul Rahman B, Abdul Majeed AB, Wykes M, Leow CH, Leow CY. Recent trends in next generation immunoinformatics harnessed for universal coronavirus vaccine design. Pathog Glob Health 2023; 117:134-151. [PMID: 35550001 PMCID: PMC9970233 DOI: 10.1080/20477724.2022.2072456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally devastated public health, the economies of many countries and quality of life universally. The recent emergence of immune-escaped variants and scenario of vaccinated individuals being infected has raised the global concerns about the effectiveness of the current available vaccines in transmission control and disease prevention. Given the high rate mutation of SARS-CoV-2, an efficacious vaccine targeting against multiple variants that contains virus-specific epitopes is desperately needed. An immunoinformatics approach is gaining traction in vaccine design and development due to the significant reduction in time and cost of immunogenicity studies and increasing reliability of the generated results. It can underpin the development of novel therapeutic methods and accelerate the design and production of peptide vaccines for infectious diseases. Structural proteins, particularly spike protein (S), along with other proteins have been studied intensively as promising coronavirus vaccine targets. Numbers of promising online immunological databases, tools and web servers have widely been employed for the design and development of next generation COVID-19 vaccines. This review highlights the role of immunoinformatics in identifying immunogenic peptides as potential vaccine targets, involving databases, and prediction and characterization of epitopes which can be harnessed for designing future coronavirus vaccines.
Collapse
Affiliation(s)
- Chin Peng Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia.,Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Candy Chuah
- Faculty of Health Sciences, Universiti Teknologi MARA, Penang, Malaysia
| | | | | | - Michelle Wykes
- Molecular Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
12
|
Malik M, Khan S, Ullah A, Hassan M, Haq MU, Ahmad S, Al-Harbi AI, Sanami S, Abideen SA, Irfan M, Khurram M. Proteome-Wide Screening of Potential Vaccine Targets against Brucella melitensis. Vaccines (Basel) 2023; 11:263. [PMID: 36851141 PMCID: PMC9966016 DOI: 10.3390/vaccines11020263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The ongoing antibiotic-resistance crisis is becoming a global problem affecting public health. Urgent efforts are required to design novel therapeutics against pathogenic bacterial species. Brucella melitensis is an etiological agent of brucellosis, which mostly affects sheep and goats but several cases have also been reported in cattle, water buffalo, yaks and dogs. Infected animals also represent the major source of infection for humans. Development of safer and effective vaccines for brucellosis remains a priority to support disease control and eradication in animals and to prevent infection to humans. In this research study, we designed an in-silico multi-epitopes vaccine for B. melitensis using computational approaches. The pathogen core proteome was screened for good vaccine candidates using subtractive proteomics, reverse vaccinology and immunoinformatic tools. In total, 10 proteins: catalase; siderophore ABC transporter substrate-binding protein; pyridoxamine 5'-phosphate oxidase; superoxide dismutase; peptidylprolyl isomerase; superoxide dismutase family protein; septation protein A; hypothetical protein; binding-protein-dependent transport systems inner membrane component; and 4-hydroxy-2-oxoheptanedioate aldolase were selected for epitopes prediction. To induce cellular and antibody base immune responses, the vaccine must comprise both B and T-cells epitopes. The epitopes were next screened for antigenicity, allergic nature and water solubility and the probable antigenic, non-allergic, water-soluble and non-toxic nine epitopes were shortlisted for multi-epitopes vaccine construction. The designed vaccine construct comprises 274 amino acid long sequences having a molecular weight of 28.14 kDa and instability index of 27.62. The vaccine construct was further assessed for binding efficacy with immune cell receptors. Docking results revealed that the designed vaccine had good binding potency with selected immune cell receptors. Furthermore, vaccine-MHC-I, vaccine-MHC-II and vaccine-TLR-4 complexes were opted based on a least-binding energy score of -5.48 kcal/mol, 0.64 kcal/mol and -2.69 kcal/mol. Those selected were then energy refined and subjected to simulation studies to understand dynamic movements of the docked complexes. The docking results were further validated through MMPBSA and MMGBSA analyses. The MMPBSA calculated -235.18 kcal/mol, -206.79 kcal/mol, and -215.73 kcal/mol net binding free energy, while MMGBSA estimated -259.48 kcal/mol, -206.79 kcal/mol and -215.73 kcal/mol for TLR-4, MHC-I and MHC-II complexes, respectively. These findings were validated by water-swap and entropy calculations. Overall, the designed vaccine construct can evoke proper immune responses and the construct could be helpful for experimental researchers in formulation of a protective vaccine against the targeted pathogen for both animal and human use.
Collapse
Affiliation(s)
- Mahnoor Malik
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24550, Pakistan
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Muhammad Hassan
- Department of Pharmacy, Bacha Khan University, Charsadda 24461, Pakistan
| | - Mahboob ul Haq
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 42353, Saudi Arabia
| | - Samira Sanami
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Syed Ainul Abideen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32611, USA
| | - Muhammad Khurram
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan
| |
Collapse
|
13
|
Mantica M, Drappatz J. Immunotherapy associated central nervous system complications in primary brain tumors. Front Oncol 2023; 13:1124198. [PMID: 36874119 PMCID: PMC9981156 DOI: 10.3389/fonc.2023.1124198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Advances clarifying the genetics and function of the immune system within the central nervous system (CNS) and brain tumor microenvironment have led to increasing momentum and number of clinical trials using immunotherapy for primary brain tumors. While neurological complications of immunotherapy in extra-cranial malignancies is well described, the CNS toxicities of immunotherapy in patients with primary brain tumors with their own unique physiology and challenges are burgeoning. This review highlights the emerging and unique CNS complications associated with immunotherapy including checkpoint inhibitors, oncolytic viruses, adoptive cell transfer/chimeric antigen receptor (CAR) T cell and vaccines for primary brain tumors, as well as reviews modalities that have been currently employed or are undergoing investigation for treatment of such toxicities.
Collapse
Affiliation(s)
- Megan Mantica
- Department of Neurology, University of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Jan Drappatz
- Department of Neurology, University of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
14
|
Fereig RM, Metwally S, El-Alfy ES, Abdelbaky HH, Shanab O, Omar MA, Alsayeqh AF. High relatedness of bioinformatic data and realistic experimental works on the potentials of Fasciola hepatica and F. gigantica cathepsin L1 as a diagnostic and vaccine antigen. Front Public Health 2022; 10:1054502. [PMID: 36568750 PMCID: PMC9768368 DOI: 10.3389/fpubh.2022.1054502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Fascioliasis is a parasitic foodborne disease caused by the liver flukes, Fasciola hepatica and F. gigantica. Such parasites cause serious illness in numerous domestic animals and also in humans. Following infection, the parasite secretes a variety of molecules that immediately interact with the host immunity to establish successful infection. These molecules include cathepsin L peptidase 1 (CatL1); the highly investigated diagnostic and vaccine antigens using various animal models. However, a few studies have analyzed the potentials of FhCatL1 as a diagnostic or vaccine antigen using bioinformatic tools and much less for FgCatL1. The present study provides inclusive and exclusive information on the physico-chemical, antigenic and immunogenic properties of F. hepatica cathepsin L1 (FhCatL1) protein using multiple bioinformatic analysis tools and several online web servers. Also, the validation of our employed available online servers was conducted against a huge collection of previously published studies focusing on the properties of FhCatL1as a diagnostic and vaccine antigen. Methods For this purpose, the secondary, tertiary, and quaternary structure of FhCatL1 protein were also predicted and analyzed using the SWISS-MODEL server. Validation of the modeled structures was performed by Ramachandran plots. The antigenic epitopes of the protein were predicted by IEDB server. Results and discussion Our findings revealed the low similarity of FhCatL1 with mammalian CatL1, lacking signal peptides or transmembrane domain, and the presence of 33 phosphorylation sites. Also, the containment of FhCatL1 for many topological, physico-chemical, immunological properties that favored its function of solubility and interaction with the immune components were reported. In addition, the earlier worldwide reports documented the high efficacy of FhCatL1 as a diagnostic and vaccine antigen in different animals. Altogether, FhCatL1 is considered an excellent candidate for using in commercialized diagnostic assays or vaccine products against fascioliasis in different animal species. Our assessment also included FgCatL1 and reported very similar findings and outputs to those of FhCatL1.
Collapse
Affiliation(s)
- Ragab M. Fereig
- Division of Internal Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Samy Metwally
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - El-Sayed El-Alfy
- Department of Parasitology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hanan H. Abdelbaky
- Doctor of Veterinary Sciences, Veterinary Clinic, Veterinary Directorate, Qena, Egypt
| | - Obeid Shanab
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mosaab A. Omar
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt,Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia,*Correspondence: Abdullah F. Alsayeqh
| |
Collapse
|
15
|
Recent Advances in Cancer Vaccines: Challenges, Achievements, and Futuristic Prospects. Vaccines (Basel) 2022; 10:vaccines10122011. [PMID: 36560420 PMCID: PMC9788126 DOI: 10.3390/vaccines10122011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a chronic disease, and it can be lethal due to limited therapeutic options. The conventional treatment options for cancer have numerous challenges, such as a low blood circulation time as well as poor solubility of anticancer drugs. Therapeutic cancer vaccines emerged to try to improve anticancer drugs' efficiency and to deliver them to the target site. Cancer vaccines are considered a viable therapeutic technique for most solid tumors. Vaccines boost antitumor immunity by delivering tumor antigens, nucleic acids, entire cells, and peptides. Cancer vaccines are designed to induce long-term antitumor memory, causing tumor regression, eradicate minimal residual illness, and prevent non-specific or unpleasant effects. These vaccines can assist in the elimination of cancer cells from various organs or organ systems in the body, with minimal risk of tumor recurrence or metastasis. Vaccines and antigens for anticancer therapy are discussed in this review, including current vaccine adjuvants and mechanisms of action for various types of vaccines, such as DNA- or mRNA-based cancer vaccines. Potential applications of these vaccines focusing on their clinical use for better therapeutic efficacy are also discussed along with the latest research available in this field.
Collapse
|
16
|
Heng WT, Yew JS, Poh CL. Nanovaccines against Viral Infectious Diseases. Pharmaceutics 2022; 14:2554. [PMID: 36559049 PMCID: PMC9784285 DOI: 10.3390/pharmaceutics14122554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Infectious diseases have always been regarded as one of the greatest global threats for the last century. The current ongoing COVID-19 pandemic caused by SARS-CoV-2 is living proof that the world is still threatened by emerging infectious diseases. Morbidity and mortality rates of diseases caused by Coronavirus have inflicted devastating social and economic outcomes. Undoubtedly, vaccination is the most effective method of eradicating infections and infectious diseases that have been eradicated by vaccinations, including Smallpox and Polio. To date, next-generation vaccine candidates with novel platforms are being approved for emergency use, such as the mRNA and viral vectored vaccines against SARS-CoV-2. Nanoparticle based vaccines are the perfect candidates as they demonstrated targeted antigen delivery, improved antigen presentation, and sustained antigen release while providing self-adjuvanting functions to stimulate potent immune responses. In this review, we discussed most of the recent nanovaccines that have found success in immunization and challenge studies in animal models in comparison with their naked vaccine counterparts. Nanovaccines that are currently in clinical trials are also reviewed.
Collapse
Affiliation(s)
| | | | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| |
Collapse
|
17
|
Cheng P, Xue Y, Wang J, Jia Z, Wang L, Gong W. Evaluation of the consistence between the results of immunoinformatics predictions and real-world animal experiments of a new tuberculosis vaccine MP3RT. Front Cell Infect Microbiol 2022; 12:1047306. [PMID: 36405961 PMCID: PMC9666678 DOI: 10.3389/fcimb.2022.1047306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Background Our previous study developed a novel peptide-based vaccine, MP3RT, to fight against tuberculosis (TB) infection in a mouse model. However, the consistency between the immunoinformatics predictions and the results of real-world animal experiments on the MP3RT vaccine remains unclear. Method In this study, we predicted the antigenicity, immunogenicity, physicochemical parameters, secondary structure, and tertiary structure of MP3RT using bioinformatics technologies. The immune response properties of the MP3RT vaccine were then predicted using the C-ImmSim server. Finally, humanized mice were used to verify the characteristics of the humoral and cellular immune responses induced by the MP3RT vaccine. Results MP3RT is a non-toxic and non-allergenic vaccine with an antigenicity index of 0.88 and an immunogenicity index of 0.61, respectively. Our results showed that the MP3RT vaccine contained 53.36% α-helix in the secondary structure, and the favored region accounted for 98.22% in the optimized tertiary structure. The binding affinities of the MP3RT vaccine to the human leukocyte antigen (HLA)-DRB1*01:01 allele, toll-like receptor-2 (TLR-2), and TLR-4 receptors were -1234.1 kcal/mol, -1066.4 kcal/mol, and -1250.4 kcal/mol, respectively. The results of the C-ImmSim server showed that the MP3RT vaccine could stimulate T and B cells to produce immune responses, such as high levels of IgM and IgG antibodies, IFN-γ, TNF-α, and IL-2 cytokines. Results from real-world animal experiments showed that the MP3RT vaccine could stimulate the humanized mice to produce high levels of IgG and IgG2a antibodies and IFN-γ+ T lymphocytes. Furthermore, the levels of IFN-γ, IL-2, and IL-6 cytokines in mice immunized with the MP3RT vaccine were significantly higher than those in the control group. Conclusion MP3RT is a highly antigenic and immunogenic potential vaccine that can effectively induce Th1-type immune responses in silico analysis and animal experiments. This study lays the foundation for evaluating the value of computational tools and immunoinformatic techniques in reverse vaccinology research.
Collapse
Affiliation(s)
- Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Zaixing Jia
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei, China
| | - Liang Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Melssen MM, Fisher CT, Slingluff CL, Melief CJM. Peptide emulsions in incomplete Freund's adjuvant create effective nurseries promoting egress of systemic CD4 + and CD8 + T cells for immunotherapy of cancer. J Immunother Cancer 2022; 10:jitc-2022-004709. [PMID: 36939214 PMCID: PMC9472143 DOI: 10.1136/jitc-2022-004709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/26/2022] Open
Abstract
Water-in-oil emulsion incomplete Freund's adjuvant (IFA) has been used as an adjuvant in preventive and therapeutic vaccines since its development. New generation, highly purified modulations of the adjuvant, Montanide incomplete seppic adjuvant (ISA)-51 and Montanide ISA-720, were developed to reduce toxicity. Montanide adjuvants are generally considered to be safe, with adverse events largely consisting of antigen and adjuvant dose-dependent injection site reactions (ISRs). Peptide vaccines in Montanide ISA-51 or ISA-720 are capable of inducing both high antibody titers and durable effector T cell responses. However, an efficient T cell response depends on the affinity of the peptide to the presenting major histocompatibility complex class I molecule, CD4+ T cell help and/or the level of co-stimulation. In fact, in the therapeutic cancer vaccine setting, presence of a CD4+ T cell epitope seems crucial to elicit a robust and durable systemic T cell response. Additional inclusion of a Toll-like receptor ligand can further increase the magnitude and durability of the response. Use of extended peptides that need a processing step only accomplished effectively by dendritic cells (DCs) can help to avoid antigen presentation by nucleated cells other than DC. Based on recent clinical trial results, therapeutic peptide-based cancer vaccines using emulsions in adjuvant Montanide ISA-51 can elicit robust antitumor immune responses, provided that sufficient tumor-specific CD4+ T cell help is given in addition to CD8+ T cell epitopes. Co-treatment with PD-1 T cell checkpoint inhibitor, chemotherapy or other immunomodulatory drugs may address local and systemic immunosuppressive mechanisms, and further enhance efficacy of therapeutic cancer peptide vaccines in IFA and its modern variants. Blinded randomized placebo-controlled trials are critical to definitively prove clinical efficacy. Mineral oil-based adjuvants for preventive vaccines, to tackle spread and severity of infectious disease, induce immune responses, but require more studies to reduce toxicity.
Collapse
Affiliation(s)
- Marit M Melssen
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
19
|
Alotaibi G, Khan K, Al Mouslem AK, Ahmad Khan S, Naseer Abbas M, Abbas M, Ali Shah S, Jalal K. Pan Genome Based Reverse Vaccinology Approach to Explore Enterococcus Faecium (VRE) Strains for Identification of Novel Multi-Epitopes Vaccine Candidate. Immunobiology 2022; 227:152221. [DOI: 10.1016/j.imbio.2022.152221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/05/2022]
|
20
|
Mohseninia A, Dehghani P, Bargahi A, Rad-Malekshahi M, Rahimikian R, Movahed A, Reza Farzaneh M, Mohammadi M. Harnessing self-assembling peptide nanofibers toprime robust tumor-specific CD8 T cell responses in mice. Int Immunopharmacol 2022; 104:108522. [PMID: 35032825 DOI: 10.1016/j.intimp.2022.108522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022]
Abstract
Induction of tumor-specific CD8 + T cell responses is known as a major challenge for cancer vaccine development; here we presented a strategy to improve peptide nanofibers-mounted antitumor immune responses. To this end, peptide nanofibers bearing class I (Kb)-restricted epitope (Epi-Nano) were formulated with polyethylene imine backbone (Epi-Nano-PEI), and characterized using morphological and physicochemicalcharacterizationtechniques. Nanofibers were studied in terms of their uptake by antigen-presenting cells (APCs), antigen cross-presentation capacity, and cytotoxic activity. Furthermore, nanofibers were assessed by their potency to induce NLRP3 inflammasome-related cytokines and factors. Finally, the ability of nanofibers to induce tumor-specific CD8 T cells and tumor protection were investigated in tumor-bearing mice. The formulation of Epi-Nano with PEI led to the formation of short strand nanofibers with a positive surface charge, a low critical aggregation concentration (CAC), and an increased resistancetoproteolytic degradation. Epi-Nano-PEI was significantly taken up more efficiently by antigen-presenting cells (APCs), and was more potent in cross-presentation when compared to Epi-Nano. Moreover, Epi-Nano-PEI, in comparison to Epi-Nano, efficiently up-regulated the expression of NLRP3, caspase-1, IL-1b, IL18 and IL-6. Cell viability analysis showed that formulation of PEI with Epi-Nano not only abolished its cytotoxic activity, but surprisingly induced macrophage proliferation. Furthermore, it demonstrated that Epi-Nano-PEI triggered robust antigen-specific CD8+ T cell responses, and induced maximum antitumor response (tumor growth inhibition and prolonged survival) in tumor-bearing mice that were significantly higher compared to Epi-Nano. Taken together, the formulation of Epi-Nano with PEI is suggested as a promising strategy to improve nanofibers-mounted antitumor immune response.
Collapse
Affiliation(s)
- Atefeh Mohseninia
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Parva Dehghani
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University Of Medical Sciences, Bushehr, Iran
| | - Afshar Bargahi
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Raha Rahimikian
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Movahed
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Mohsen Mohammadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University Of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
21
|
Alazmi M, Motwalli O. Immuno-Informatics Based Peptides: An Approach for Vaccine Development Against Outer Membrane Proteins of Pseudomonas Genus. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:966-973. [PMID: 33079651 DOI: 10.1109/tcbb.2020.3032651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pseudomonas genus is among the top nosocomial pathogens known to date. Being highly opportunistic, members of pseudomonas genus are most commonly connected with nosocomial infections of urinary tract and ventilator-associated pneumonia. Nevertheless, vaccine development for this pathogenic genus is slow because of no information regarding immunity correlated functional mechanism. In this present work, an immunoinformatics pipeline is used for vaccine development based on epitope-based peptide design, which can result in crucial immune response against outer membrane proteins of pseudomonas genus. A total of 127 outer membrane proteins were analysed, studied and out of them three sequences were obtained to be the producer of non-allergic, highly antigenic T-cell and B-cell epitopes which show good binding affinity towards class II HLA molecules. After performing rigorous screening utilizing docking, simulation, modelling techniques, we had one nonameric peptide (WLLATGIFL)as a good vaccine candidate. The predicted epitopes needs to be further validated for its apt use as vaccine. This work paves a new way with extensive therapeutic application against Pseudomonas genus and their associated diseases.
Collapse
|
22
|
Ismail S, Waheed Y, Ahmad S, Ahsan O, Abbasi SW, Sadia K. An in silico study to unveil potential drugs and vaccine chimera for HBV capsid assembly protein: combined molecular docking and dynamics simulation approach. J Mol Model 2022; 28:51. [PMID: 35112241 DOI: 10.1007/s00894-022-05042-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/25/2022] [Indexed: 02/07/2023]
Abstract
Humans are a major reservoir of the hepatitis B virus (HBV), therefore promising treatment and control vaccination strategies are needed to eradicate the virus. Though promising drugs and vaccines are available against HBV, still efforts are required to enrich the therapy options. Herein, the HBV assembly protein was explored to identify novel targets for future use against HBV. Computer-aided drug designing and immune-informatics techniques were employed for the identification of putative inhibitors and vaccine ensemble against HBV using capsid assembly protein. The identified drug molecule binds with high affinity to the active pocket of the protein, and several epitopes are scanned in the protein sequence. The drug molecule, besides being a good putative inhibitor, has acceptable drug-like properties. A multi-epitope vaccine is also constructed to overcome the limitations of weakly immunogenic epitopes. In contrast to the MHC II level, the set of predicted epitopes has been recognized to interact with significant numbers of HLA alleles of MHC I. Selected epitopes are extremely virulent, antigenic, nontoxic, nonallergic, have suitable affinity to bind with the prevailing DRB*0101 allele, and also spectacle 86% mediocre population coverage. A multi-epitope peptide-based vaccine chimera having 73 amino acids was designed. It emerged as substantially immunogenic, thermally stable, robust in producing cellular as well as humoral immune responses, and had competent physicochemical properties to analyze in vitro and in vivo studies. The capsid assembly protein is a in more stable nature in the presence of the drug molecule compared to the TLR3 receptor in the vaccine presence. These particulars were confirmed by exposing the docked molecules to absolute and relative binding free energy approaches of MMGBSA/PBSA. The purpose to investigate the interactions between the vaccine and a representative TLR3 immune receptor can reveal the intermolecular affinity and possible presentation mechanism of the vaccine by TLR3 to the host immune system. It was revealed that the vaccine is showing a very good affinity of binding for the TLR3 and forming a network of hydrophobic and hydrophilic interactions. Overall, the findings of this study are promising and might be useful for further experimental validations.
Collapse
Affiliation(s)
- Saba Ismail
- Foundation University Medical College, Foundation University Islamabad, DHA-I Islamabad, Islamabad, 44000, Pakistan
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, DHA-I Islamabad, Islamabad, 44000, Pakistan.
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Omar Ahsan
- Foundation University Medical College, Foundation University Islamabad, DHA-I Islamabad, Islamabad, 44000, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, The Mall, Rawalpindi, Pakistan
| | - Khulah Sadia
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
23
|
Tsai CJY, Loh JMS, Proft T. PilVax: A Novel Platform for the Development of Mucosal Vaccines. Methods Mol Biol 2022; 2412:399-410. [PMID: 34918257 DOI: 10.1007/978-1-0716-1892-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptide vaccines offer an attractive strategy to induce highly specific immune responses while reducing potential side effects. However, peptides are often poorly immunogenic and unstable on their own, requiring the need for potentially toxic adjuvants or expensive chemical coupling. The novel peptide delivery platform PilVax utilizes the rigid pilus structure from Group A Streptococcus (GAS) to stabilize and amplify the peptide, and present it on the surface of the non-pathogenic food-grade bacterium Lactococcus lactis. Upon intranasal immunization, PilVax vaccines have proven to induce peptide-specific systemic and mucosal responses. PilVax provides an alternative method to develop mucosal vaccines that are inexpensive to produce and easy to administer.
Collapse
Affiliation(s)
- Catherine Jia-Yun Tsai
- Department of Molecular Medicine and Pathology, School of Medical Sciences and Maurice Wilkins Centre for Biomolecular Discovery, The University of Auckland, Auckland, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine and Pathology, School of Medical Sciences and Maurice Wilkins Centre for Biomolecular Discovery, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine and Pathology, School of Medical Sciences and Maurice Wilkins Centre for Biomolecular Discovery, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
24
|
Armamentarium of Cryoprotectants in Peptide Vaccines: Mechanistic Insight, Challenges, Opportunities and Future Prospects. Int J Pept Res Ther 2021; 27:2965-2982. [PMID: 34690621 PMCID: PMC8524217 DOI: 10.1007/s10989-021-10303-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 10/30/2022]
Abstract
Vaccines are designed to leverage the immune system and produce long-lasting protection against specific diseases. Peptide vaccines are regarded as safe and effective way of circumventing problems such as mild allergic reactions associated with conventional vaccines. The biggest challenges associated with formulation of peptide vaccines are stability issues and conformational changes which lead to destruction of their activity when exposed to lyophilization process that may act as stressors. Lyophilization process is aimed at removal of water which involves freezing, primary drying and secondary drying. To safeguard the peptide molecules from such stresses, cryoprotectants are used to offer them viability and structural stability. This paper is an attempt to understand the physicochemical properties of peptide vaccines, mechanism of cryoprotection under the shed of water replacement, water substitution theory and cation-pi interaction theory of amino acids which aims at shielding the peptide from external environment by formation of hydrogen bonds, covalent bonds or cation-pi interaction between cryoprotectant and peptide followed by selection criteria of cryoprotectants and their utility in peptide vaccines development along with challenges and opportunities.
Collapse
|
25
|
Allemailem KS. A Comprehensive Computer Aided Vaccine Design Approach to Propose a Multi-Epitopes Subunit Vaccine against Genus Klebsiella Using Pan-Genomics, Reverse Vaccinology, and Biophysical Techniques. Vaccines (Basel) 2021; 9:1087. [PMID: 34696195 PMCID: PMC8540426 DOI: 10.3390/vaccines9101087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
Klebsiella is a genus of nosocomial bacterial pathogens and is placed in the most critical list of World Health Organization (WHO) for development of novel therapeutics. The pathogens of the genus are associated with high mortality and morbidity. Owing to their strong resistance profile against different classes of antibiotics and nonavailability of a licensed vaccine, urgent efforts are required to develop a novel vaccine candidate that can tackle all pathogenic species of the Klebsiella genus. The present study aims to design a broad-spectrum vaccine against all species of the Klebsiella genus with objectives to identify the core proteome of pathogen species, prioritize potential core vaccine proteins, analyze immunoinformatics of the vaccine proteins, construct a multi-epitopes vaccine, and provide its biophysical analysis. Herein, we investigated all reference species of the genus to reveal their core proteome. The core proteins were then subjected to multiple reverse vaccinology checks that are mandatory for the prioritization of potential vaccine candidates. Two proteins (TonB-dependent siderophore receptor and siderophore enterobactin receptor FepA) were found to fulfill all vaccine parameters. Both these proteins harbor several potent B-cell-derived T-cell epitopes that are antigenic, nonallergic, nontoxic, virulent, water soluble, IFN-γ producer, and efficient binder of DRB*0101 allele. The selected epitopes were modeled into a multi-epitope peptide comprising linkers and Cholera Toxin B adjuvant. For docking with innate immune and MHC receptors and afterward molecular dynamics simulations and binding free energy analysis, the vaccine structure was modeled for tertiary structure and refined for structural errors. To assess the binding affinity and presentation of the designed vaccine construct, binding mode and interactions analysis were performed using molecular docking and molecular dynamics simulation techniques. These biophysical approaches illustrated the vaccine as a good binder to the immune receptors and revealed robust interactions energies. The vaccine sequence was further translated to nucleotide sequence and cloned into an appropriate vector for expressing it at high rate in Escherichia coli K12 strain. In addition, the vaccine was illustrated to generate a good level of primary, secondary, and tertiary immune responses, proving good immunogenicity of the vaccine. Based on the reported results, the vaccine can be a good candidate to be evaluated for effectiveness in wet laboratory validation studies.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
26
|
Detecting the Dominant T and B Epitopes of Klebsiella pneumoniae Ferric Enterobactin Protein (FepA) and Introducing a Single Epitopic Peptide as Vaccine Candidate. Int J Pept Res Ther 2021; 27:2209-2221. [PMID: 34226823 PMCID: PMC8243051 DOI: 10.1007/s10989-021-10247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 12/01/2022]
Abstract
Klebsiella pneumoniae causes various human infections. Ferric enterobactin protein (FepA) is a conserved protein of K. pneumoniae with high immunogenicity. In the present study, using comprehensive in silico approaches the T and B cell-specific epitopes of K. pneumoniae FepA were identified. The T (both class I and class II) and B (both linear and conformational) epitopes of FepA were predicted using prediction tools. The predicted epitopes were screened for human similarity, immunogenicity, antigenicity, allergenicity, toxicity, conservancy, structural and physicochemical suitability, and in case of T epitopes binding to HLA alleles, using numerous immune-informatics, homology modeling, and molecular docking approaches. These analyses led to introduce the most dominant FepA epitopes that are appropriate for vaccine development. Furthermore, we introduced an antigenic peptide containing both T and B epitopes which comprises suitable structural and physiochemical properties needed for vaccine development and it is conserved in many bacteria. Altogether, here the highly immunogenic T and B epitopes of FepA as well as a final epitopic peptide containing both T and B epitopes were found and introduced for future vaccine development studies. It is suggested that the actual efficiency and efficacy of our final epitopic peptide be investigated by in vitro/in vivo testing.
Collapse
|
27
|
Fatoba AJ, Adeleke VT, Maharaj L, Okpeku M, Adeniyi AA, Adeleke MA. Immunoinformatics Design of Multiepitope Vaccine Against Enterococcus faecium Infection. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10245-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Askari Rizvi SF, Zhang H. Emerging trends of receptor-mediated tumor targeting peptides: A review with perspective from molecular imaging modalities. Eur J Med Chem 2021; 221:113538. [PMID: 34022717 DOI: 10.1016/j.ejmech.2021.113538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023]
Abstract
Natural peptides extracted from natural components such are known to have a relatively short in-vivo half-life and can readily metabolize by endo- and exo-peptidases. Fortunately, synthetic peptides can be easily manipulated to increase in-vivo stability, membrane permeability and target specificity with some well-known natural families. Many natural as well as synthetic peptides target to their endogenous receptors for diagnosis and therapeutic applications. In order to detect these peptides externally, they must be modified with radionuclides compatible with single photon emission computed tomography (SPECT) or positron emission tomography (PET). Although, these techniques mainly rely on physiological changes and have profound diagnostic strength over anatomical modalities such as MRI and CT. However, both SPECT and PET observed to possess lack of anatomical reference frame which is a key weakness of these techniques, and unfortunately, cannot be available freely in most clinical centres especially in under-developing countries. Hence, it is need of the time to design and develop economic, patient friendly and versatile strategies to grapple with existing problems without any hazardous side effects. Optical molecular imaging (OMI) has emerged as a novel technique in field of medical science using fluorescent probes as imaging modality and has ability to couple with organic drugs, small molecules, chemotherapeutics, DNA, RNA, anticancer peptide and protein without adding chelators as necessary for radionuclides. Furthermore, this review focuses on difference in imaging modalities and provides ample knowledge about reliable, economic and patient friendly optical imaging technique rather radionuclide-based imaging techniques.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China.
| |
Collapse
|
29
|
Abstract
Peptide and dendritic cell vaccines activate the immune system against tumor antigens to combat brain tumors. Vaccines stimulate a systemic immune response by inducing both antitumor T cells as well as humoral immunity through antibody production to cross the blood-brain barrier and combat brain tumors. Recent trials investigating vaccines against peptides (ie, epithelial growth factor receptor variant III, survivin, heat shock proteins, or personalized tumor antigens) and dendritic cells pulsed with known peptides, messenger RNA or unknown tumor lysate targets demonstrate the potential for therapeutic cancer vaccines to become an important therapy for brain tumor treatment.
Collapse
Affiliation(s)
- Justin Lee
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, 300 Stein Plaza Driveway Suite 420 Los Angeles, CA 90095, USA
| | - Benjamin R Uy
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, 300 Stein Plaza Driveway Suite 420 Los Angeles, CA 90095, USA
| | - Linda M Liau
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, 300 Stein Plaza Driveway Suite 420 Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Khan S, Shaker B, Ahmad S, Abbasi SW, Arshad M, Haleem A, Ismail S, Zaib A, Sajjad W. Towards a novel peptide vaccine for Middle East respiratory syndrome coronavirus and its possible use against pandemic COVID-19. J Mol Liq 2021; 324:114706. [PMID: 33173250 PMCID: PMC7644433 DOI: 10.1016/j.molliq.2020.114706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 12/02/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging health concern due to its high mortality rate of 35%. At present, no vaccine is available to protect against MERS-CoV infections. Therefore, an in silico search for potential antigenic epitopes in the non-redundant proteome of MERS-CoV was performed herein. First, a subtractive proteome-based approach was employed to look for the surface exposed and host non-homologous proteins. Following, immunoinformatics analysis was performed to predict antigenic B and T cell epitopes that were used in the design of a multi-epitopes peptide. Molecular docking study was carried out to predict vaccine construct affinity of binding to Toll-like receptor 3 (TLR3) and understand its binding conformation to extract ideas about its processing by the host immune system. We identified membrane protein, envelope small membrane protein, non-structural protein ORF3, non-structural protein ORF5, and spike glycoprotein as potential candidates for subunit vaccine designing. The designed multi-epitope peptide then linked to β-defensin adjuvant is showing high antigenicity. Further, the sequence of the designed vaccine construct is optimized for maximum expression in the Escherichia coli expression system. A rich pattern of hydrogen and hydrophobic interactions of the construct was observed with the TLR3 allowing stable binding of the construct at the docked site as predicted by the molecular dynamics simulation and MM-PBSA binding energies. We expect that the panel of subunit vaccine candidates and the designed vaccine construct could be highly effective in immunizing populations from infections caused by MERS-CoV and could possible applied on the current pandemic COVID-19.
Collapse
Affiliation(s)
- Salman Khan
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 73000, PR China
| | - Bilal Shaker
- School of Integrative Engineering, Chung ANG University, Seoul, South Korea
| | - Sajjad Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, the Mall, Rawalpindi 46000, Pakistan
| | - Muhammad Arshad
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Haleem
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saba Ismail
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Anita Zaib
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, the Mall, Rawalpindi 46000, Pakistan
| |
Collapse
|
31
|
Akache B, Agbayani G, Stark FC, Jia Y, Dudani R, Harrison BA, Deschatelets L, Chandan V, Lam E, Hemraz UD, Régnier S, Krishnan L, McCluskie MJ. Sulfated Lactosyl Archaeol Archaeosomes Synergize with Poly(I:C) to Enhance the Immunogenicity and Efficacy of a Synthetic Long Peptide-Based Vaccine in a Melanoma Tumor Model. Pharmaceutics 2021; 13:pharmaceutics13020257. [PMID: 33673382 PMCID: PMC7918940 DOI: 10.3390/pharmaceutics13020257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide. While novel treatments have improved survival outcomes for some patients, new treatment modalities/platforms are needed to combat a wider variety of tumor types. Cancer vaccines harness the power of the immune system to generate targeted tumor-specific immune responses. Liposomes composed of glycolipids derived from archaea (i.e., archaeosomes) have been shown to be potent adjuvants, inducing robust, long-lasting humoral and cell-mediated immune responses to a variety of antigens. Herein, we evaluated the ability of archaeosomes composed of sulfated lactosyl archaeol (SLA), a semi-synthetic archaeal glycolipid, to enhance the immunogenicity of a synthetic long peptide-based vaccine formulation containing the dominant CD8+ T cell epitope, SIINFEKL, from the weakly immunogenic model antigen ovalbumin. One advantage of immunizing with long peptides is the ability to include multiple epitopes, for example, the long peptide antigen was also designed to include the immediately adjacent CD4+ epitope, TEWTSSNVMEER. SLA archaeosomes were tested alone or in combination with the toll-like receptor 3 (TLR3) agonist Poly(I:C). Overall, SLA archaeosomes synergized strongly with Poly(I:C) to induce robust antigen-specific CD8+ T cell responses, which were highly functional in an in vivo cytolytic assay. Furthermore, immunization with this vaccine formulation suppressed tumor growth and extended mouse survival in a mouse melanoma tumor model. Overall, the combination of SLA archaeosomes and Poly(I:C) appears to be a promising adjuvant system when used along with long peptide-based antigens targeting cancer.
Collapse
Affiliation(s)
- Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Felicity C. Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Yimei Jia
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Renu Dudani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Blair A. Harrison
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Vandana Chandan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Edmond Lam
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (E.L.); (U.D.H.); (S.R.)
| | - Usha D. Hemraz
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (E.L.); (U.D.H.); (S.R.)
| | - Sophie Régnier
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (E.L.); (U.D.H.); (S.R.)
| | - Lakshmi Krishnan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Michael J. McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
- Correspondence: ; Tel.: +1-613-993-9774
| |
Collapse
|
32
|
Chatterjee D, Priyadarshini P, Das DK, Mushtaq K, Singh B, Agrewala JN. Deciphering the Structural Enigma of HLA Class-II Binding Peptides for Enhanced Immunoinformatics-based Prediction of Vaccine Epitopes. J Proteome Res 2020; 19:4655-4669. [PMID: 33103906 PMCID: PMC7640962 DOI: 10.1021/acs.jproteome.0c00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 12/24/2022]
Abstract
Vaccines remain the most efficacious means to avoid and eliminate morbid diseases associated with high morbidity and mortality. Clinical trials indicate the gaining impetus of peptide vaccines against diseases for which an effective treatment still remains obscure. CD4 T-cell-based peptide vaccines involve immunization with antigenic determinants from pathogens or neoplastic cells that possess the ability to elicit a robust T helper cell response, which subsequently activates other arms of the immune system. The available in silico predictors of human leukocyte antigen II (HLA-II) binding peptides are sequence-based techniques, which ostensibly have balanced sensitivity and specificity. Structural analysis and understanding of the cognate peptide and HLA-II interactions are essential to empirically derive a successful peptide vaccine. However, the availability of structure-based epitope prediction algorithms is inadequate compared with sequence-based prediction methods. The present study is an attempt to understand the structural aspects of HLA-II binders by analyzing the Protein Data Bank (PDB) complexes of pHLA-II. Furthermore, we mimic the peptide exchange mechanism and demonstrate the structural implication of an acidic environment on HLA-II binders. Finally, we discuss a structure-guided approach to decipher potential HLA-II binders within an antigenic protein. This strategy may accurately predict the peptide epitopes and thus aid in designing successful peptide vaccines.
Collapse
Affiliation(s)
- Deepyan Chatterjee
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
- Bioinformatics Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Pragya Priyadarshini
- Bioinformatics Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Deepjyoti K. Das
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Khurram Mushtaq
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Balvinder Singh
- Bioinformatics Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Javed N. Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
- Indian Institute of Technology Ropar, Rupnagar 140001, India
| |
Collapse
|
33
|
Tregoning JS, Brown ES, Cheeseman HM, Flight KE, Higham SL, Lemm N, Pierce BF, Stirling DC, Wang Z, Pollock KM. Vaccines for COVID-19. Clin Exp Immunol 2020; 202:162-192. [PMID: 32935331 PMCID: PMC7597597 DOI: 10.1111/cei.13517] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Since the emergence of COVID-19, caused by the SARS-CoV-2 virus at the end of 2019, there has been an explosion of vaccine development. By 24 September 2020, a staggering number of vaccines (more than 200) had started preclinical development, of which 43 had entered clinical trials, including some approaches that have not previously been licensed for human vaccines. Vaccines have been widely considered as part of the exit strategy to enable the return to previous patterns of working, schooling and socializing. Importantly, to effectively control the COVID-19 pandemic, production needs to be scaled-up from a small number of preclinical doses to enough filled vials to immunize the world's population, which requires close engagement with manufacturers and regulators. It will require a global effort to control the virus, necessitating equitable access for all countries to effective vaccines. This review explores the immune responses required to protect against SARS-CoV-2 and the potential for vaccine-induced immunopathology. We describe the profile of the different platforms and the advantages and disadvantages of each approach. The review also addresses the critical steps between promising preclinical leads and manufacturing at scale. The issues faced during this pandemic and the platforms being developed to address it will be invaluable for future outbreak control. Nine months after the outbreak began we are at a point where preclinical and early clinical data are being generated for the vaccines; an overview of this important area will help our understanding of the next phases.
Collapse
Affiliation(s)
- J. S. Tregoning
- Department of Infectious DiseaseSt Mary’s CampusImperial College LondonLondonUK
| | - E. S. Brown
- Department of Infectious DiseaseSt Mary’s CampusImperial College LondonLondonUK
| | - H. M. Cheeseman
- Department of Infectious DiseaseSt Mary’s CampusImperial College LondonLondonUK
| | - K. E. Flight
- Department of Infectious DiseaseSt Mary’s CampusImperial College LondonLondonUK
| | - S. L. Higham
- Department of Infectious DiseaseSt Mary’s CampusImperial College LondonLondonUK
| | - N.‐M. Lemm
- Department of Infectious DiseaseSt Mary’s CampusImperial College LondonLondonUK
| | - B. F. Pierce
- Department of Infectious DiseaseSt Mary’s CampusImperial College LondonLondonUK
| | - D. C. Stirling
- Department of Infectious DiseaseSt Mary’s CampusImperial College LondonLondonUK
| | - Z. Wang
- Department of Infectious DiseaseSt Mary’s CampusImperial College LondonLondonUK
| | - K. M. Pollock
- Department of Infectious DiseaseSt Mary’s CampusImperial College LondonLondonUK
| |
Collapse
|
34
|
Liu Y, Wang K, Massoud TF, Paulmurugan R. SARS-CoV-2 Vaccine Development: An Overview and Perspectives. ACS Pharmacol Transl Sci 2020; 3:844-858. [PMID: 33062951 PMCID: PMC7526333 DOI: 10.1021/acsptsci.0c00109] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019, abbreviated as COVID-19, is caused by a new strain of coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It started in late December 2019 in Wuhan, China, and by mid-March 2020, the disease had spread globally. As of July 17, 2020, this pandemic virus has infected 13.9 million people and claimed the life of approximately 593 000 people globally, and the numbers continue to climb. An unprecedented effort is underway to develop therapeutic and prophylactic strategies against this disease. Various drugs and vaccines are undergoing rapid development, and some of these are already in phase III clinical trials. Although Russia was the first to release a vaccine by skipping phase III clinical trials, there is no evidence of large-scale clinical trials, and the safety and efficacy of the vaccine are still a concern. Nevertheless, critical lessons can be learned and data garnered for developing promising vaccines against this rapidly emerging virus or other similar pathogens in the future. In this overview, we cover the available information on the various vaccine development initiatives by different companies, the potential strategies adopted for vaccine design, and the challenges and clinical impact expected from these vaccines. We also briefly discuss the possible role of these vaccines and the specific concerns for their use in patients with pre-existing disease conditions such as cardiovascular, lung, kidney, and liver diseases, cancer patients who are receiving immunosuppressive medications, including anticancer chemotherapies, and many other sensitive populations, such as children and the elderly.
Collapse
Affiliation(s)
- Yi Liu
- Molecular
Imaging Program at Stanford (MIPS), Stanford
University, 3155 Porter Drive, Palo Alto, California 94304, United States
- Department
of Critical Care Medicine, The Second Affiliated
Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Molecular
Imaging Program at Stanford (MIPS), Stanford
University, 3155 Porter Drive, Palo Alto, California 94304, United States
| | - Tarik F. Massoud
- Molecular
Imaging Program at Stanford (MIPS), Stanford
University, 3155 Porter Drive, Palo Alto, California 94304, United States
| | - Ramasamy Paulmurugan
- Molecular
Imaging Program at Stanford (MIPS), Stanford
University, 3155 Porter Drive, Palo Alto, California 94304, United States
| |
Collapse
|
35
|
Dehbarez FM, Nezafat N, Mahmoodi S. In Silico Design of a Novel Multi-Epitope Peptide Vaccine Against Hepatocellular Carcinoma. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200502030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Hepatocellular Carcinoma (HCC) is a prevalent cancer in the world. As
yet, there is no medication for complete treatment of HCC.
Objective:
There is a critical need to search for an innovative therapy for HCC. Recently, multiepitope
vaccines have been introduced as effective immunotherapy approach against HCC.
Methods:
In this research, several immunoinformatics methods were applied to create an original
multi-epitope vaccine against HCC consisting of CD8+ cytolytic T lymphocytes (CTLs) epitopes
selected from α- fetoprotein (AFP), glypican-3 (GPC3), aspartyl-β-hydroxylase (ASPH); CD4+
helper T lymphocytes (HTLs) epitopes from tetanus toxin fragment C (TTFC), and finally, two tandem
repeats of HSP70407-426 were used which stimulated strong innate and adaptive immune responses.
All the mentioned parts were connected together by relevant linkers.
Results:
According to physicochemical, structural, and immunological results, the designed
vaccine is stable, non-allergen, antigen; it also has a high-quality 3D structure, and numerous linear
and conformational B cell epitopes, whereby this vaccine may stimulate efficient humoral immunity.
Conclusion:
Center on the collected results, the designed vaccine potentially can induce cellular and
humoral immune responses in HCC cases; nonetheless, the efficiency of vaccine must be approved
within in vitro and in vivo immunological analyzes.
Collapse
Affiliation(s)
- Fatemeh Motamedi Dehbarez
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
36
|
Mohammadi M, Dehghani P, Mohseninia A, Roozbehani M, Hemphill A, Hesamizadeh K. Incorporation of the Tat cell-penetrating peptide into nanofibers improves the respective antitumor immune response. J Cell Physiol 2020; 236:1401-1417. [PMID: 32686113 DOI: 10.1002/jcp.29946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/07/2020] [Indexed: 11/06/2022]
Abstract
A major challenge for the development of anticancer vaccines is the induction of a safe and effective immune response, particularly mediated by CD8+ T lymphocytes, in an adjuvant-free manner. In this respect, we present a simple strategy to improve the specific CD8+ T cell responses using KFE8 nanofibers bearing a Class I (Kb)-restricted peptide epitope (called E. nanofibers) without the use of adjuvant. We demonstrate that incorporation of Tat, a cell-penetrating peptide (CPP) of the HIV transactivator protein, into E. nanofibers remarkably enhanced tumor-specific CD8+ T cell responses. E. nanofibers containing 12.5% Tat peptide (E.Tat12.5 nanofiber) increased antigen cross-presentation by bone marrow-derived dendritic cells as compared with E. nanofibers, or E. nanofibers containing 25 or 50% the Tat peptide. Uptake of KFE8.Tat12.5 nanofibers by dendritic cells (DCs) was significantly increased compared with KFE8 nanofiber lacking Tat. Peritoneal and lymph node DCs of mice immunized with E.Tat12.5 nanofibers exhibited increased presentation of the H2kb-epitope (reminiscent for cross-presentation) compared with DCs obtained from E. nanofiber vaccinated mice. Tetrameric and intracellular cytokine staining revealed that vaccination with E.Tat12.5 triggered a robust and specific CD8+ T lymphocyte response, which was more pronounced than in mice vaccinated with E. nanofibers alone. Furthermore, E.Tat12.5 nanofibers were more potent than E. nanofiber to induce antitumor immune response and tumor-infiltrating IFN-γ CD8 T lymphocyte. In terms of cancer vaccine development, we propose that harnessing the nanofiber-based vaccine platform with incorporated Tat peptide could present a simple and promising strategy to induce highly effective antitumor immune response.
Collapse
Affiliation(s)
- Mohsen Mohammadi
- Biotechnology Department, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Parva Dehghani
- Biotechnology Department, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Atefeh Mohseninia
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mona Roozbehani
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Andrew Hemphill
- Department of Infectious Diseases and Pthobiology, Institute of Parasitology, Vetsuisse Faculty, University of Berne, Bern, Switzerland
| | - Khashayar Hesamizadeh
- Department of Virology, Middle East Liver Diseases (MELD) Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Kordalivand N, Tondini E, Lau CYJ, Vermonden T, Mastrobattista E, Hennink WE, Ossendorp F, Nostrum CFV. Cationic synthetic long peptides-loaded nanogels: An efficient therapeutic vaccine formulation for induction of T-cell responses. J Control Release 2019; 315:114-125. [PMID: 31672626 DOI: 10.1016/j.jconrel.2019.10.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022]
Abstract
Recent studies have shown a high potency of protein-based vaccines for cell-mediated cancer immunotherapy. However, due to their poor cellular uptake, efficient immune responses with soluble protein antigens are often not observed. As a result of superior cellular uptake, nanogels loaded with antigenic peptides were investigated in this study as carrier systems for cancer immunotherapy. Different synthetic long peptides (SLPs) containing the CTL and CD4+ T-helper (Help) epitopes were synthesized and covalently conjugated via disulfide bonds to the polymeric network of cationic dextran nanogels. Cationic nanogels with a size of 210 nm, positive zeta potential (+24 mV) and high peptide loading content (15%) showed triggered release of the loaded peptides under reducing conditions. An in vitro study demonstrated the capability of cationic nanogels to maturate dendritic cells (DCs). Importantly, covalently SLP-loaded nanogels adjuvanted with poly(I:C) showed superior CD8+ T cell responses compared to soluble peptides and nanogel formulations with physically loaded peptides both in vitro and in vivo. In conclusion, covalently SLPs-loaded cationic nanogels are a promising system to provoke immune responses for therapeutic cancer vaccination.
Collapse
Affiliation(s)
- Neda Kordalivand
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Elena Tondini
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Chun Yin Jerry Lau
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
38
|
Sen-Kilic E, Blackwood CB, Boehm DT, Witt WT, Malkowski AC, Bevere JR, Wong TY, Hall JM, Bradford SD, Varney ME, Damron FH, Barbier M. Intranasal Peptide-Based FpvA-KLH Conjugate Vaccine Protects Mice From Pseudomonas aeruginosa Acute Murine Pneumonia. Front Immunol 2019; 10:2497. [PMID: 31708925 PMCID: PMC6819369 DOI: 10.3389/fimmu.2019.02497] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic respiratory infections associated with morbidity and mortality, especially in patients with cystic fibrosis. Vaccination against P. aeruginosa before colonization may be a solution against these infections and improve the quality of life of at-risk patients. To develop a vaccine against P. aeruginosa, we formulated a novel peptide-based P. aeruginosa subunit vaccine based on the extracellular regions of one of its major siderophore receptors, FpvA. We evaluated the effectiveness and immunogenicity of the FpvA peptides conjugated to keyhole limpet hemocyanin (KLH) with the adjuvant curdlan in a murine vaccination and challenge model. Immunization with the FpvA-KLH vaccine decreased the bacterial burden and lung edema after P. aeruginosa challenge. Vaccination with FpvA-KLH lead to antigen-specific IgG and IgM antibodies in sera, and IgA antibodies in lung supernatant. FpvA-KLH immunized mice had an increase in recruitment of CD11b+ dendritic cells as well as resident memory CD4+ T cells in the lungs compared to non-vaccinated challenged mice. Splenocytes isolated from vaccinated animals showed that the FpvA-KLH vaccine with the adjuvant curdlan induces antigen-specific IL-17 production and leads to a Th17 type of immune response. These results indicate that the intranasal FpvA-KLH conjugate vaccine can elicit both mucosal and systemic immune responses. These observations suggest that the intranasal peptide-based FpvA-KLH conjugate vaccine with curdlan is a potential vaccine candidate against P. aeruginosa pneumonia.
Collapse
Affiliation(s)
- Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Catherine B Blackwood
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Aaron C Malkowski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Justin R Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Jesse M Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Shelby D Bradford
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Melinda E Varney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Fredrick Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
39
|
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Rezaei-Kalat A, Parizadeh SMR, Javanbakht A, Hassanian SM, Ferns GA, Khazaei M, Avan A. Personalized Peptide-based Vaccination for Treatment of Colorectal Cancer: Rational and Progress. Curr Drug Targets 2019; 20:1486-1495. [DOI: 10.2174/1389450120666190619121658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally and is associated with
a high rate of morbidity and mortality. A large proportion of patients with early stage CRC, who undergo
conventional treatments develop local recurrence or distant metastasis and in this group of advanced
disease, the survival rate is low. Furthermore there is often a poor response and/or toxicity associated
with chemotherapy and chemo-resistance may limit continuing conventional treatment alone.
Choosing novel and targeted therapeutic approaches based on clinicopathological and molecular features
of tumors in combination with conventional therapeutic approach could be used to eradicate residual
micrometastasis and therefore improve patient prognosis and also be used preventively. Peptide-
based vaccination therapy is one class of cancer treatment that could be used to induce tumorspecific
immune responses, through the recognition of specific antigen-derived peptides in tumor
cells, and this has emerged as a promising anti-cancer therapeutic strategy. The aim of this review was
to summarize the main findings of recent studies in exciting field of peptide-based vaccination therapy
in CRC patients as a novel therapeutic approach in the treatment of CRC.
Collapse
Affiliation(s)
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Rezaei-Kalat
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Afsane Javanbakht
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Demolombe V, de Brevern AG, Felicori L, NGuyen C, Machado de Avila RA, Valera L, Jardin-Watelet B, Lavigne G, Lebreton A, Molina F, Moreau V. PEPOP 2.0: new approaches to mimic non-continuous epitopes. BMC Bioinformatics 2019; 20:387. [PMID: 31296178 PMCID: PMC6625012 DOI: 10.1186/s12859-019-2867-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/30/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bioinformatics methods are helpful to identify new molecules for diagnostic or therapeutic applications. For example, the use of peptides capable of mimicking binding sites has several benefits in replacing a protein which is difficult to produce, or toxic. Using peptides is less expensive. Peptides are easier to manipulate, and can be used as drugs. Continuous epitopes predicted by bioinformatics tools are commonly used and these sequential epitopes are used as is in further experiments. Numerous discontinuous epitope predictors have been developed but only two bioinformatics tools have been proposed so far to predict peptide sequences: Superficial and PEPOP 2.0. PEPOP 2.0 can generate series of peptide sequences that can replace continuous or discontinuous epitopes in their interaction with their cognate antibody. RESULTS We have developed an improved version of PEPOP (PEPOP 2.0) dedicated to answer to experimentalists' need for a tool able to handle proteins and to turn them into peptides. The PEPOP 2.0 web site has been reorganized by peptide prediction category and is therefore better formulated to experimental designs. Since the first version of PEPOP, 32 new methods of peptide design were developed. In total, PEPOP 2.0 proposes 35 methods in which 34 deal specifically with discontinuous epitopes, the most represented epitope type in nature. CONCLUSION Through the presentation of its user-friendly, well-structured new web site conceived in close proximity to experimentalists, we report original methods that show how PEPOP 2.0 can assist biologists in dealing with discontinuous epitopes.
Collapse
Affiliation(s)
- Vincent Demolombe
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Alexandre G de Brevern
- INSERM UMR-S 1134, DSIMB, F-75739, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, Univ de la Réunion, Univ des Antilles, UMR 1134, F-75739, Paris, France.,INTS, F-75739, Paris, France.,Laboratoire d'Excellence GR-Ex, F75737, Paris, France
| | - Liza Felicori
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Christophe NGuyen
- Sys2Diag UMR 9005 CNRS/ALCEDIAG, Complex System Modeling and Engineering for Diagnosis, Cap delta/Parc Euromédecine, 1682 rue de la Valsière CS 61003, 34184, Montpellier Cedex 4, France
| | - Ricardo Andrez Machado de Avila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, 88806-000, Brazil
| | - Lionel Valera
- Bio-Rad Laboratories, 1682 Rue de la Valsière CS 61003, 34184, Montpellier CEDEX 04, France
| | | | | | - Aurélien Lebreton
- Service d'hématologie biologique, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Franck Molina
- Sys2Diag UMR 9005 CNRS/ALCEDIAG, Complex System Modeling and Engineering for Diagnosis, Cap delta/Parc Euromédecine, 1682 rue de la Valsière CS 61003, 34184, Montpellier Cedex 4, France
| | - Violaine Moreau
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Univ Montpellier, 29, route de Navacelles, 34090, Montpellier, France.
| |
Collapse
|
41
|
Joshi S, Yadav NK, Rawat K, Kumar V, Ali R, Sahasrabuddhe AA, Siddiqi MI, Haq W, Sundar S, Dube A. Immunogenicity and Protective Efficacy of T-Cell Epitopes Derived From Potential Th1 Stimulatory Proteins of Leishmania (Leishmania) donovani. Front Immunol 2019; 10:288. [PMID: 30873164 PMCID: PMC6403406 DOI: 10.3389/fimmu.2019.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/04/2019] [Indexed: 11/24/2022] Open
Abstract
Development of a suitable vaccine against visceral leishmaniasis (VL), a fatal parasitic disease, is considered to be vital for maintaining the success of kala-azar control programs. The fact that Leishmania-infected individuals generate life-long immunity offers a viable proposition in this direction. Our prior studies demonstrated that T-helper1 (Th1) type of cellular response was generated by six potential recombinant proteins viz. elongation factor-2 (elF-2), enolase, aldolase, triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and p45, derived from a soluble antigenic fraction (89.9–97.1 kDa) of Leishmania (Leishmania) donovani promastigote, in treated Leishmania patients and golden hamsters and showed significant prophylactic potential against experimental VL. Moreover, since, it is well-known that our immune system, in general, triggers production of specific protective immunity in response to a small number of amino acids (peptide), this led to the identification of antigenic epitopes of the above-stated proteins utilizing immunoinformatics. Out of thirty-six, three peptides-P-10 (enolase), P-14, and P-15 (TPI) elicited common significant lymphoproliferative as well as Th1-biased cytokine responses both in golden hamsters and human subjects. Further, immunization with these peptides plus BCG offered 75% prophylactic efficacy with boosted cellular immune response in golden hamsters against Leishmania challenge which is indicative of their candidature as potential vaccine candidates.
Collapse
Affiliation(s)
- Sumit Joshi
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Narendra Kumar Yadav
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Keerti Rawat
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Vikash Kumar
- Molecular and Structural Biology Division Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Rafat Ali
- Medicinal Process Chemistry Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Amogh Anant Sahasrabuddhe
- Molecular and Structural Biology Division Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Wahajul Haq
- Medicinal Process Chemistry Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anuradha Dube
- Parasitology Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
42
|
Kumar N, Singh A, Grover S, Kumari A, Kumar Dhar P, Chandra R, Grover A. HHV-5 epitope: A potential vaccine candidate with high antigenicity and large coverage. J Biomol Struct Dyn 2018; 37:2098-2109. [PMID: 30044169 DOI: 10.1080/07391102.2018.1477620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Outbreak of Human Herpes virus-5 (HHV-5) infection in emerging countries has raised worldwide health concern owing to prevalence of congenital impairments and life threatening consequences in immunocompromised individuals. Thus, there lies an impending need to develop vaccine against HHV-5. HHV-5 enters into host cells with the help of necessary components glycoprotein B (gB) and H/L. In this study, the conformational linear B-cell and T-cell epitopes for gB of HHV-5 have been predicted using conformational approaches, for their possible collective use as vaccine candidates. We examined epitope's interactions with major histocompatibility complexes using molecular docking and also investigated their stable binding with specific toll like receptor-2 (TLR2), present on host cells during HHV-5 infection. Predicted MHC-I epitope 'LVAIAVVII' with high antigenicity and large coverage of HLA alleles was found to superimpose on MHC-II epitope (Rank 1) and was also identified to be the core sequence of putative B cell epitope 'ILVAIAVVIITYLI'. Resulting epitope was found to have consistent interaction with TLR2 during long term (100 ns) MD run. We also validated this nonamer epitope for its dissimilarity with human genome and high population coverage, suggesting it to be a potential vaccine candidate with higher coverage for both the MHC alleles of Indian population. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neeraj Kumar
- a Drug Discovery and Development Laboratory, Department of Chemistry , University of Delhi , New Delhi , India
| | - Aditi Singh
- b Department of Biotechnology , TERI School of Advanced Studies , New Delhi , India.,c School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| | - Sonam Grover
- d Kusuma School of Biological Sciences , IIT Delhi , New Delhi , India
| | - Anchala Kumari
- b Department of Biotechnology , TERI School of Advanced Studies , New Delhi , India.,c School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| | - Pawan Kumar Dhar
- c School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| | - Ramesh Chandra
- a Drug Discovery and Development Laboratory, Department of Chemistry , University of Delhi , New Delhi , India
| | - Abhinav Grover
- c School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
43
|
Unni PA, Ali AMMT, Rout M, Thabitha A, Vino S, Lulu SS. Designing of an epitope-based peptide vaccine against walking pneumonia: an immunoinformatics approach. Mol Biol Rep 2018; 46:511-527. [PMID: 30465133 DOI: 10.1007/s11033-018-4505-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/15/2018] [Indexed: 11/25/2022]
Abstract
Mycoplasma pneumoniae is a substantial respiratory pathogen that develops not only pneumonia but also other respiratory diseases, which mimic viral respiratory syndromes. Nevertheless, vaccine development for this pathogen delays behind as immunity correlated with protection is now predominantly unknown. In the present study, an immunoinformatics pipeline is utilized for epitope-based peptide vaccine design, which can trigger a critical immune response against M. pneumoniae. A total of 105 T-cell epitopes from 12 membrane associated proteins and 7 T-cell epitopes from 5 cytadherence proteins of M. pneumoniae were obtained and validated. Thus, 18 peptides with 9-mer core sequence were identified as best T-cell epitopes by considering the number of residues with > 75% in favored region. Further, the crucial screening studies predicted three peptides with good binding affinity towards HLA molecules as best T-cell and B-cell epitopes. Based on this result, visualization, and dynamic simulation for the three epitopes (WIHGLILLF, VILLFLLLF, and LLAWMLVLF) were assessed. The predicted epitopes needs to be further validated for their adept use as vaccine. Collectively, the study opens up a new horizon with extensive therapeutic application against M. pneumoniae and its associated diseases.
Collapse
Affiliation(s)
- P Ambili Unni
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - A M Mohamed Thoufic Ali
- Department of Integrative Biology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Madhusmita Rout
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - A Thabitha
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - S Vino
- Department of Bio-Sciences, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - S Sajitha Lulu
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
44
|
Exploring Highly Antigenic Protein of Campylobacter jejuni for Designing Epitope Based Vaccine: Immunoinformatics Approach. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9764-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Mohanty E, Dehury B, Satapathy AK, Dwibedi B. Design and testing of a highly conserved human rotavirus VP8* immunogenic peptide with potential for vaccine development. J Biotechnol 2018; 281:48-60. [PMID: 29886031 DOI: 10.1016/j.jbiotec.2018.06.306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
Rotavirus infection of young children particularly below five years of age resulting in severe diarhoea, is the cause of a large number of infant deaths all over the world, more so in developing countries like India. Vaccines developed against this infection in the last two decades have shown mixed results with some of them leading to complications. Oral vaccines have not been very effective in India. Significant diversity has been found in circulating virus strains in India. Development of a vaccine against diverse genetic variants of the different strains would go a long way in reducing the incidence of infection in developing countries. Success of such a vaccine would depend to a large extent on the antigenic peptide to be used in antibody production. The non-glycosylated protein VP4 on the surface capsid of the virus is important in rota viral immunogenicity and the major antigenic site(s) responsible for neutralization of the virus via VP4 is in the VP8* subunit of VP4. It is necessary that the peptide should be very specific and a peptide sequence which would stimulate both the T and B immunogenic cells would provide maximum protection against the virus. Advanced computational techniques and existing databases of sequences of the VP4 protein of rotavirus help in identification of such specific sequences. Using an in silico approach we have identified a highly conserved VP8* subunit of the VP4 surface protein of rotavirus which shows both T and B cell processivity and is also non-allergenic. This sub-unit could be used in in vivo models for induction of antibodies.
Collapse
Affiliation(s)
- Eileena Mohanty
- All India institute of medical sciences, Bhubaneshwar, 751019, Odisha, India.
| | - Budheswar Dehury
- Biomedical Informatics Centre, Regional Medical Research Centre, Indian Council of Medical Research, Bhubaneswar, 751023, Odisha, India.
| | - Ashok Kumar Satapathy
- Immunology Laboratory, Regional Medical Research Centre, Indian Council of Medical Research, Bhubaneswar, 751023, Odisha, India.
| | - Bhagirathi Dwibedi
- All India institute of medical sciences, Bhubaneshwar, 751019, Odisha, India.
| |
Collapse
|
46
|
Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunology 2018; 7:e1511506. [PMID: 30524907 PMCID: PMC6279318 DOI: 10.1080/2162402x.2018.1511506] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen
Collapse
Affiliation(s)
- Lucillia Bezu
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Giulia Cerrato
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jonathan Pol
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,INSERM, U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
47
|
Rajčáni J, Szathmary S. Peptide Vaccines: New Trends for Avoiding the Autoimmune Response. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1874279301810010047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background:Several marketed antiviral vaccines (such as that against hepatitis virus A and/or B, influenza virus, human papillomavirus, yellow fever virus, measles, rubella and mumps viruses) may elicit various autoimmune reactions.Results:The cause of autoimmune response due to vaccination may be: 1. the adjuvant which is regularly added to the vaccine (especially in the case of various oil substrates), 2. the specific viral component itself (a protein or glycoprotein potentially possessing cross-reactive epitopes) and/or 3. contamination of the vaccine with traces of non-viral proteins mostly cellular in origin. Believing that peptide vaccines might represent an optimal solution for avoiding the above-mentioned problems, we discuss the principles of rational design of a typical peptide vaccine which should contain oligopeptides coming either from the selected structural virion components (i.e.capsid proteins and/or envelop glycoproteins or both) or from the virus-coded non-structural polypeptides. The latter should be equally immunogenic as the structural virus proteins. Describing the feasibility of identification and design of immunogenic epitopes, our paper also deals with possible problems of peptide vaccine manufacturing. The presented data are in part based on the experience of our own, in part, they are coming from the results published by others.Conclusion:Any peptide vaccine should be able to elicit relevant and specific antibody formation, as well as an efficient cell-mediated immune response. Consequently, the properly designed peptide vaccine is expected to consist of carefully selected viral peptides, which should stimulate the receptors of helper T/CD4 cells as well as of cytotoxic (T/CD8) lymphocytes.
Collapse
|
48
|
Verma S, Sugadev R, Kumar A, Chandna S, Ganju L, Bansal A. Multi-epitope DnaK peptide vaccine against S.Typhi: An in silico approach. Vaccine 2018; 36:4014-4022. [DOI: 10.1016/j.vaccine.2018.05.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 10/14/2022]
|
49
|
Ding X, Li H, Li Y, Huang D, Xiong C. Two B-cell epitope vaccines based on uPA effectively inhibit fertility in male mice. Vaccine 2018; 36:2612-2618. [DOI: 10.1016/j.vaccine.2018.03.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/12/2018] [Accepted: 03/26/2018] [Indexed: 11/29/2022]
|
50
|
Li W, Song X, Yu H, Zhang M, Li F, Cao C, Jiang Q. Dendritic cell-based cancer immunotherapy for pancreatic cancer. Arab J Gastroenterol 2018. [PMID: 29526540 DOI: 10.1016/j.ajg.2017.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is a lethal disease and remains one of the most resistant cancers to traditional therapies. New therapeutic modalities are urgently needed, particularly immunotherapy, which has shown promise in numerous animal model studies. Dendritic cell (DC)-based immunotherapy has been used in clinical trials for various cancers, including PC, because DCs are the most potent antigen-presenting cell (APC), which are capable of priming naive T cells and stimulating memory T cells to generate antigen-specific responses. In this paper, we review the preclinical and clinical efforts towards the application of DCs for PC.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Xiujun Song
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Huijie Yu
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Manze Zhang
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Fengsheng Li
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing 100850, China.
| | - Qisheng Jiang
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China.
| |
Collapse
|