1
|
Min L, Li X, Liang L, Ruan Z, Yu S. Targeting HSP90 in Gynecologic Cancer: Molecular Mechanisms and Therapeutic Approaches. Cell Biochem Biophys 2024:10.1007/s12013-024-01502-7. [PMID: 39249180 DOI: 10.1007/s12013-024-01502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
One of the leading causes of mortality for women is gynecologic cancer (GC). Numerous molecules (tumor suppressor genes or oncogenes) are involved in this form of cancer's invasion, metastasis, tumorigenic process, and therapy resistance. Currently, there is a shortage of efficient methods to eliminate these diseases, hence it is crucial to carry out more extensive studies on GCs. Novel pharmaceuticals are required to surmount this predicament. Highly conserved molecular chaperon, heat shock protein (HSP) 90, is essential for the maturation of recently produced polypeptides and offers a refuge for misfolding or denatured proteins to be turned around. In cancer, the client proteins of HSP90 play a role in the entire process of oncogenesis, which is linked to all the characteristic features of cancer. In this study, we explore the various functions of HSPs in GC progression. We also discuss their potential as promising targets for pharmacological therapy.
Collapse
Affiliation(s)
- Lu Min
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Xuewei Li
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Lily Liang
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Zheng Ruan
- Department of Traditional Chinese Medicine, 964th Hospital, Changchun, 130000, China
| | - Shaohui Yu
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China.
| |
Collapse
|
2
|
Lennartz P, Thölke D, Bashiri Dezfouli A, Pilz M, Lobinger D, Messner V, Zanth H, Ainslie K, Kafshgari MH, Rammes G, Ballmann M, Schlegel M, Foulds GA, Pockley AG, Schmidt-Graf F, Multhoff G. Biomarkers in Adult-Type Diffuse Gliomas: Elevated Levels of Circulating Vesicular Heat Shock Protein 70 Serve as a Biomarker in Grade 4 Glioblastoma and Increase NK Cell Frequencies in Grade 3 Glioma. Biomedicines 2023; 11:3235. [PMID: 38137456 PMCID: PMC10741018 DOI: 10.3390/biomedicines11123235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The presence of circulating Hsp70 levels and their influence on the immunophenotype of circulating lymphocyte subsets were examined as diagnostic/prognostic biomarkers for the overall survival (OS) in patients with IDH-mutant WHO grade 3 oligodendroglioma, astrocytoma, and IDH-wildtype grade 4 glioblastoma (GBM). Vesicular and free Hsp70 in the plasma/serum was measured using the Hsp70-exo and R&D Systems DuoSet® Hsp70 ELISAs. The immunophenotype and membrane Hsp70 status was determined by multiparameter flow cytometry on peripheral blood lymphocytes and single-cell suspensions of tumor specimens and cultured cells. Compared to healthy controls, circulating vesicular Hsp70 levels were significantly increased in patients with GBM, concomitant with a significant decrease in the proportion of CD3+/CD4+ helper T cells, whereas the frequency of NK cells was most prominently increased in patients with grade 3 gliomas. Elevated circulating Hsp70 levels and a higher prevalence of activated CD3-/CD56+/CD94+/CD69+ NK cells were associated with an improved OS in grade 3 gliomas, whereas high Hsp70 levels and low CD3+/CD4+ frequencies were associated with an adverse OS in GBM. It is assumed that a reduced membrane Hsp70 density on grade 4 versus grade 3 primary glioma cells and reduced CD3+/CD4+ T cell counts in GBM might drive an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Philipp Lennartz
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany; (P.L.); (D.T.); (A.B.D.); (V.M.); (H.Z.)
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Dennis Thölke
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany; (P.L.); (D.T.); (A.B.D.); (V.M.); (H.Z.)
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany; (P.L.); (D.T.); (A.B.D.); (V.M.); (H.Z.)
- Department of Otolaryngology, Head and Neck Surgery, Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Mathias Pilz
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany; (P.L.); (D.T.); (A.B.D.); (V.M.); (H.Z.)
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Dominik Lobinger
- Department of Thoracic Surgery, München Klinik Bogenhausen, Lehrkrankenhaus der TUM, 81925 Munich, Germany;
| | - Verena Messner
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany; (P.L.); (D.T.); (A.B.D.); (V.M.); (H.Z.)
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Hannah Zanth
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany; (P.L.); (D.T.); (A.B.D.); (V.M.); (H.Z.)
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Karen Ainslie
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany; (P.L.); (D.T.); (A.B.D.); (V.M.); (H.Z.)
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Morteza Hasanzadeh Kafshgari
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany; (P.L.); (D.T.); (A.B.D.); (V.M.); (H.Z.)
- Department of Biomedical Electronics, Central Instititute for Translational Cancer Research, Technische Universität München (TranslaTUM), Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Gerhard Rammes
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany (M.S.)
| | - Markus Ballmann
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany (M.S.)
| | - Martin Schlegel
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany (M.S.)
| | - Gemma Ann Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (G.A.F.); (A.G.P.)
| | - Alan Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (G.A.F.); (A.G.P.)
| | - Friederike Schmidt-Graf
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany;
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany; (P.L.); (D.T.); (A.B.D.); (V.M.); (H.Z.)
- Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| |
Collapse
|
3
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
4
|
Ren X, Li T, Zhang W, Yang X. Targeting Heat-Shock Protein 90 in Cancer: An Update on Combination Therapy. Cells 2022; 11:cells11162556. [PMID: 36010632 PMCID: PMC9406578 DOI: 10.3390/cells11162556] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Heat-shock protein 90 (HSP90) is an important molecule chaperone associated with tumorigenesis and malignancy. HSP90 is involved in the folding and maturation of a wide range of oncogenic clients, including diverse kinases, transcription factors and oncogenic fusion proteins. Therefore, it could be argued that HSP90 facilitates the malignant behaviors of cancer cells, such as uncontrolled proliferation, chemo/radiotherapy resistance and immune evasion. The extensive associations between HSP90 and tumorigenesis indicate substantial therapeutic potential, and many HSP90 inhibitors have been developed. However, due to HSP90 inhibitor toxicity and limited efficiency, none have been approved for clinical use as single agents. Recent results suggest that combining HSP90 inhibitors with other anticancer therapies might be a more advisable strategy. This review illustrates the role of HSP90 in cancer biology and discusses the therapeutic value of Hsp90 inhibitors as complements to current anticancer therapies.
Collapse
Affiliation(s)
- Xiude Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Wei Zhang
- Departments of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Correspondence: (W.Z.); (X.Y.)
| | - Xuejun Yang
- Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing 102218, China
- Correspondence: (W.Z.); (X.Y.)
| |
Collapse
|
5
|
Molecular Chaperones: Molecular Assembly Line Brings Metabolism and Immunity in Shape. Metabolites 2020; 10:metabo10100394. [PMID: 33023034 PMCID: PMC7600384 DOI: 10.3390/metabo10100394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Molecular chaperones are a set of conserved proteins that have evolved to assist the folding of many newly synthesized proteins by preventing their misfolding under conditions such as elevated temperatures, hypoxia, acidosis and nutrient deprivation. Molecular chaperones belong to the heat shock protein (HSP) family. They have been identified as important participants in immune functions including antigen presentation, immunostimulation and immunomodulation, and play crucial roles in metabolic rewiring and epigenetic circuits. Growing evidence has accumulated to indicate that metabolic pathways and their metabolites influence the function of immune cells and can alter transcriptional activity through epigenetic modification of (de)methylation and (de)acetylation. However, whether molecular chaperones can regulate metabolic programs to influence immune activity is still largely unclear. In this review, we discuss the available data on the biological function of molecular chaperones to immune responses during inflammation, with a specific focus on the interplay between molecular chaperones and metabolic pathways that drive immune cell fate and function.
Collapse
|
6
|
Transcriptomic Analysis Provides Novel Insights into Heat Stress Responses in Sheep. Animals (Basel) 2019; 9:ani9060387. [PMID: 31238576 PMCID: PMC6617286 DOI: 10.3390/ani9060387] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The general increase in global temperatures has meant that heat stress has become an increasingly significant problem for sheep. This has both direct and indirect impact on their physiological functions, productivity, and health of sheep. Sheep generally live in high-temperature environments; however, the genes and pathways that play regulatory roles in the heat stress responses of sheep remain unclear. In this study, we applied RNA-Seq technology to analyze liver tissues of sheep from heat-stressed and control groups, and screened genes and pathways related to sheep heat stress. This work provides a theoretical foundation for the breeding and production of heat-resistant sheep. Abstract With the intensified and large-scale development of sheep husbandry and global warming, sheep heat stress has become an increasingly important issue. However, little is known about the molecular mechanisms related to sheep responses to heat stress. In this study, transcriptomic analysis of liver tissues of sheep in the presence and absence of heat stress was conducted, with the goal of identifying genes and pathways related to regulation when under such stress. After a comparison with the sheep reference genome, 440,226,436 clean reads were obtained from eight libraries. A p-value ≤ 0.05 and fold change ≥ 2 were taken as thresholds for categorizing differentially expressed genes, of which 1137 were identified. The accuracy and reliability of the RNA-Seq results were confirmed by qRT-PCR. The identified differentially expressed genes were significantly associated with 419 GO terms and 51 KEGG pathways, which suggested their participation in biological processes such as response to stress, immunoreaction, and fat metabolism. This study’s results provide a comprehensive overview of sheep heat stress-induced transcriptional expression patterns, laying a foundation for further analysis of the molecular mechanisms of sheep heat stress.
Collapse
|
7
|
Torres M, Hong KW, Chong TM, Reina JC, Chan KG, Dessaux Y, Llamas I. Genomic analyses of two Alteromonas stellipolaris strains reveal traits with potential biotechnological applications. Sci Rep 2019; 9:1215. [PMID: 30718637 PMCID: PMC6361997 DOI: 10.1038/s41598-018-37720-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/27/2018] [Indexed: 11/08/2022] Open
Abstract
The Alteromonas stellipolaris strains PQQ-42 and PQQ-44, previously isolated from a fish hatchery, have been selected on the basis of their strong quorum quenching (QQ) activity, as well as their ability to reduce Vibrio-induced mortality on the coral Oculina patagonica. In this study, the genome sequences of both strains were determined and analyzed in order to identify the mechanism responsible for QQ activity. Both PQQ-42 and PQQ-44 were found to degrade a wide range of N-acylhomoserine lactone (AHL) QS signals, possibly due to the presence of an aac gene which encodes an AHL amidohydrolase. In addition, the different colony morphologies exhibited by the strains could be related to the differences observed in genes encoding cell wall biosynthesis and exopolysaccharide (EPS) production. The PQQ-42 strain produces more EPS (0.36 g l-1) than the PQQ-44 strain (0.15 g l-1), whose chemical compositions also differ. Remarkably, PQQ-44 EPS contains large amounts of fucose, a sugar used in high-value biotechnological applications. Furthermore, the genome of strain PQQ-42 contained a large non-ribosomal peptide synthase (NRPS) cluster with a previously unknown genetic structure. The synthesis of enzymes and other bioactive compounds were also identified, indicating that PQQ-42 and PQQ-44 could have biotechnological applications.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, France
| | - Kar-Wai Hong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Teik-Min Chong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Kok-Gan Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, France.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
8
|
Hwang CS, Ellis B, Zhou B, Janda KD. Heat shock proteins: A dual carrier-adjuvant for an anti-drug vaccine against heroin. Bioorg Med Chem 2019; 27:125-132. [PMID: 30497790 PMCID: PMC6442938 DOI: 10.1016/j.bmc.2018.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
Heroin is a highly abused opioid that has reached epidemic status within the United States. Yet, existing therapies to treat addiction are inadequate and frequently result into rates of high recidivism. Vaccination against heroin offers a promising alternative therapeutic option but requires further development to enhance the vaccine's performance. Hsp70 is a conserved protein with known immunomodulatory properties and is considered an excellent immunodominant antigen. Within an antidrug vaccine context, we envisioned Hsp70 as a potential dual carrier-adjuvant, wherein immunogenicity would be increased by co-localization of adjuvant and antigenic drug hapten. Recombinant Mycobacterium tuberculosis Hsp70 was appended with heroin haptens and the resulting immunoconjugate granted anti-heroin antibody production and blunted heroin-induced antinociception. Moreover, Hsp70 as a carrier protein surpassed our benchmark Her-KLH cocktail through antibody-mediated blockade of 6-acetylmorphine, the main mediator of heroin's psychoactivity. The work presents a new avenue for exploration in the use of hapten-Hsp70 conjugates to elicit anti-drug immune responses.
Collapse
Affiliation(s)
- Candy S Hwang
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Beverly Ellis
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bin Zhou
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kim D Janda
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Heat Shock Proteins as Immunomodulants. Molecules 2018; 23:molecules23112846. [PMID: 30388847 PMCID: PMC6278532 DOI: 10.3390/molecules23112846] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/24/2022] Open
Abstract
Heat shock proteins (Hsps) are conserved molecules whose main role is to facilitate folding of other proteins. Most Hsps are generally stress-inducible as they play a particularly important cytoprotective role in cells exposed to stressful conditions. Initially, Hsps were generally thought to occur intracellulary. However, recent work has shown that some Hsps are secreted to the cell exterior particularly in response to stress. For this reason, they are generally regarded as danger signaling biomarkers. In this way, they prompt the immune system to react to prevailing adverse cellular conditions. For example, their enhanced secretion by cancer cells facilitate targeting of these cells by natural killer cells. Notably, Hsps are implicated in both pro-inflammatory and anti-inflammatory responses. Their effects on immune cells depends on a number of aspects such as concentration of the respective Hsp species. In addition, various Hsp species exert unique effects on immune cells. Because of their conservation, Hsps are implicated in auto-immune diseases. Here we discuss the various metabolic pathways in which various Hsps manifest immune modulation. In addition, we discuss possible experimental variations that may account for contradictory reports on the immunomodulatory function of some Hsps.
Collapse
|
10
|
Wang Y, Sedlacek AL, Pawaria S, Xu H, Scott MJ, Binder RJ. Cutting Edge: The Heat Shock Protein gp96 Activates Inflammasome-Signaling Platforms in APCs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2209-2214. [PMID: 30209191 PMCID: PMC6176107 DOI: 10.4049/jimmunol.1800505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/16/2018] [Indexed: 01/20/2023]
Abstract
Several heat shock proteins (HSPs) prime immune responses, which are, in part, a result of activation of APCs. APCs respond to these immunogenic HSPs by upregulating costimulatory molecules and secreting cytokines, including IL-1β. These HSP-mediated responses are central mediators in pathological conditions ranging from cancer, sterile inflammation associated with trauma, and rheumatoid arthritis. We tested in this study the requirement of inflammasomes in the release of IL-1β by one immunogenic HSP, gp96. Our results show that murine APCs activate NLRP3 inflammasomes in response to gp96 by K+ efflux. This is shown to initiate inflammatory conditions in vivo in the absence of additional known inflammasome activators or infection. These results document a novel mechanism by which proteins of endogenous origin, the HSPs, can modulate an inflammatory response following their release from aberrant cells.
Collapse
Affiliation(s)
- Yifei Wang
- School of Medicine, Tsinghua University, Beijing 100084, China
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Abigail L Sedlacek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sudesh Pawaria
- Department of Medicine, University of Massachusetts Medical Center, Worcester, MA 01655
| | - Haiyan Xu
- Department of Urology, Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu, China; and
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261
| | - Robert J Binder
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261;
| |
Collapse
|
11
|
Li ZY, Lu J, Zhang NZ, Elsheikha HM, Hou JL, Guo HT, Zhu XQ. Immunization with plasmid DNA expressing Heat Shock Protein 40 confers prophylactic protection against chronic Toxoplasma gondii infection in Kunming mice. ACTA ACUST UNITED AC 2018; 25:37. [PMID: 30040611 PMCID: PMC6057741 DOI: 10.1051/parasite/2018040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/07/2018] [Indexed: 01/08/2023]
Abstract
Toxoplasma gondii causes one of the most common protozoal diseases of humans and animals worldwide. With the aim of designing an effective vaccine against T. gondii infection, we examined the immunogenicity of a DNA vaccine expressing heat shock protein 40 (HSP40) against challenge with T. gondii (type I RH and type II Pru) strains in Kunming mice. The plasmid pVAX1-HSP40 was constructed and used to immunize mice by intramuscular injection for three sequential immunizations with two-week intervals. This immunization regimen significantly reduced parasite cyst burden in pVAX1-HSP40-immunized mice (1871.9 ± 142.3) compared with control mouse groups immunized with pVAX1 (3479.2 ± 204.4), phosphate buffered saline (3024.4 ± 212.8), or left untreated (3275.0 ± 179.8) as healthy controls (p < 0.01). However, immunization failed to protect mice against challenge with the virulent RH strain. There was a significant increase in T lymphocyte subclasses (CD3e+CD4+ T and CD3e+CD8a+ T lymphocytes) in splenic tissues in immunized mice compared with controls (p < 0.05). However, the level of antibodies, lymphocyte proliferation and concentration of cytokines (IFN-γ, IL-2, IL-4, IL-10 and IL-12p70) were not significantly different between immunized and control mouse groups (p < 0.05). These data indicate that pVAX1-HSP40 induced specific immune responses and achieved a significant reduction in the number of brain cysts in Pru-infected mice, and thus can be tested in future immunization studies along with plasmids containing other immunogenic proteins as a cocktail vaccine to fully abolish chronic toxoplasmosis.
Collapse
Affiliation(s)
- Zhong-Yuan Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China - State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Jing Lu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| | - Hai-Ting Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China - College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, PR China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China
| |
Collapse
|
12
|
Álvarez-Satta M, Castro-Sánchez S, Valverde D. Bardet-Biedl Syndrome as a Chaperonopathy: Dissecting the Major Role of Chaperonin-Like BBS Proteins (BBS6-BBS10-BBS12). Front Mol Biosci 2017; 4:55. [PMID: 28824921 PMCID: PMC5534436 DOI: 10.3389/fmolb.2017.00055] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/13/2017] [Indexed: 01/01/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a rare genetic disorder that belongs to the group of ciliopathies, defined as diseases caused by defects in cilia structure and/or function. The six diagnostic features considered for this syndrome include retinal dystrophy, obesity, polydactyly, cognitive impairment and renal and urogenital anomalies. Furthermore, three of the 21 genes currently known to be involved in BBS encode chaperonin-like proteins (MKKS/BBS6, BBS10, and BBS12), so BBS can be also considered a member of the growing group of chaperonopathies. Remarkably, up to 50% of clinically-diagnosed BBS families can harbor disease-causing variants in these three genes, which highlights the importance of chaperone defects as pathogenic factors even for genetically heterogeneous syndromes such as BBS. In addition, it is interesting to note that BBS families with deleterious variants in MKKS/BBS6, BBS10 or BBS12 genes generally display more severe phenotypes than families with changes in other BBS genes. The chaperonin-like BBS proteins have structural homology to the CCT family of group II chaperonins, although they are believed to conserve neither the ATP-dependent folding activity of canonical CCT chaperonins nor the ability to form CCT-like oligomeric complexes. Thus, they play an important role in the initial steps of assembly of the BBSome, which is a multiprotein complex essential for mediating the ciliary trafficking activity. In this review, we present a comprehensive review of those genetic, functional and evolutionary aspects concerning chaperonin-like BBS proteins, trying to provide a new perspective that expands the classical conception of BBS only from a ciliary point of view.
Collapse
Affiliation(s)
- María Álvarez-Satta
- Grupo de Biomarcadores Moleculares, Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de VigoVigo, Spain.,Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGOVigo, Spain.,Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia 2016-2019), Universidad de VigoVigo, Spain
| | - Sheila Castro-Sánchez
- Grupo de Biomarcadores Moleculares, Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de VigoVigo, Spain.,Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGOVigo, Spain.,Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia 2016-2019), Universidad de VigoVigo, Spain
| | - Diana Valverde
- Grupo de Biomarcadores Moleculares, Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de VigoVigo, Spain.,Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGOVigo, Spain.,Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia 2016-2019), Universidad de VigoVigo, Spain
| |
Collapse
|
13
|
Chung EJ, Jeong YI, Lee MR, Kim YJ, Lee SE, Cho SH, Lee WJ, Park MY, Ju JW. Heat shock proteins 70 and 90 from Clonorchis sinensis induce Th1 response and stimulate antibody production. Parasit Vectors 2017; 10:118. [PMID: 28249599 PMCID: PMC5333430 DOI: 10.1186/s13071-017-2026-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/09/2017] [Indexed: 01/08/2023] Open
Abstract
Background Heat shock proteins (HSPs) are found in all prokaryotes and most compartments of eukaryotic cells. Members of the HSP family mediate immune responses to tissue damage or cellular stress. However, little is known about the immune response induced by the oriental liver fluke, Clonorchis sinensis, even though this organism is carcinogenic to humans. We address this issue in the present study in mouse bone marrow dendritic cells (mBMDCs), using recombinant HSP70 and 90 from C. sinensis (rCsHSP70 and rCsHSP90). Methods rCsHSP70 and rCsHSP90 were produced in an E. coli system. Purified recombinant proteins were treated in BMDCs isolated from C57BL/6 mice. T cells were isolated from Balb/c mice and co-cultured with activated mBMDCs. Expression of surface molecules was measured by flow cytometry and cytokine secretion was quantified using ELISA. C57BL/6 mice were divided into four groups, including peptide alone, peptide/Freund’s adjuvant, peptide/CsHSP70, peptide/CsHSP90, and were immunized intraperitoneally three times. Two weeks after final immunization, antibodies against peptide were measured using ELISA. Results Both proteins induced a dose-dependent upregulation in major histocompatibility complex and co-stimulatory molecule expression and increased secretion of pro-inflammatory cytokines including interleukin (IL)-1β, -6, and -12p70 and tumor necrosis factor-α in mBMDCs. Furthermore, when allogenic T cells were incubated with mBMDCs activated by rCsHSP70 and rCsHSP90, the helper T cell (Th)1 cytokine interferon-γ was up-regulated whereas the level of the Th2 cytokine IL-4 was unchanged. These results indicate that rCsHSPs predominantly induce a Th1 response. Over and above these results, we also demonstrated that the production of peptide-specific antibodies can be activated after immunization via in vitro peptide binding with rCsHSP70 or rCsHSP90. Conclusion This study showed for the first time that the HSP or HSP/peptide complexes of C. sinensis could be considered as a more effective vaccine against C. sinensis infection as results of the activator of host immune response as well as the adjuvant for antigenic peptide conjugate to induce peptide-specific antibody response in mice.
Collapse
Affiliation(s)
- Eun Joo Chung
- Division of Malaria and Parasitic Diseases, Center for Immunology and Pathology, National Research Institute of Health, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Young-Il Jeong
- Division of Malaria and Parasitic Diseases, Center for Immunology and Pathology, National Research Institute of Health, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Myoung-Ro Lee
- Division of Malaria and Parasitic Diseases, Center for Immunology and Pathology, National Research Institute of Health, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Yu Jung Kim
- Division of Malaria and Parasitic Diseases, Center for Immunology and Pathology, National Research Institute of Health, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Sang-Eun Lee
- Division of Malaria and Parasitic Diseases, Center for Immunology and Pathology, National Research Institute of Health, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Shin-Hyeong Cho
- Division of Malaria and Parasitic Diseases, Center for Immunology and Pathology, National Research Institute of Health, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Won-Ja Lee
- Division of Malaria and Parasitic Diseases, Center for Immunology and Pathology, National Research Institute of Health, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Mi-Yeoun Park
- Division of Malaria and Parasitic Diseases, Center for Immunology and Pathology, National Research Institute of Health, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea
| | - Jung-Won Ju
- Division of Malaria and Parasitic Diseases, Center for Immunology and Pathology, National Research Institute of Health, Korea Centers for Disease Control & Prevention, Osong, 28159, Republic of Korea.
| |
Collapse
|
14
|
Multhoff G, Pockley AG, Schmid TE, Schilling D. The role of heat shock protein 70 (Hsp70) in radiation-induced immunomodulation. Cancer Lett 2015; 368:179-84. [PMID: 25681671 DOI: 10.1016/j.canlet.2015.02.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 02/08/2023]
Abstract
Despite enormous progress in radiation technologies (high precision image-guided irradiation, proton irradiation, heavy ion irradiation) and radiotherapeutic concepts (hypofractionated irradiation schemes), the clinical outcome of radiotherapy in locally advanced and metastasized tumors and in hypoxic tumors which are radiation-resistant remains unsatisfactory. Given their key influence on a number of biological and immunological parameters, this article considers the influence of irradiation-induced stress proteins on radiation-induced immunomodulation. Depending on its location, the major stress-inducible Heat shock protein 70 (Hsp70) has been found to fulfill multiple roles. On the one hand, increased intracellular Hsp70 levels have been found to play a key role in the recovery from stress such as radio(chemo)therapy, and on the other hand extracellular Hsp70 proteins are potent stimulators of the innate immune system and mediators of anti-tumor immunity. Furthermore, if loaded with tumor-derived peptides, members of the Heat Shock Protein 70 (HSP70) and 90 (HSP90) families can stimulate the adaptive immune system via antigen cross-presentation. An irradiation-induced enhancement of the selective expression of a membrane form of Hsp70 on the surface of tumor cells which can act as a recognition structure for activated NK cells might have significant clinical relevance, in that the outcome of irradiation therapy for advanced tumors could be improved by combining it with cell-based and other immunotherapies that target this membrane form of Hsp70.
Collapse
Affiliation(s)
- Gabriele Multhoff
- Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany; Helmholtz Center Munich, German Research Center for Environmental Health, CCG - "Innate Immunity in Tumor Biology", Munich, Germany.
| | - Alan G Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Thomas E Schmid
- Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Daniela Schilling
- Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
15
|
Abstract
Oncolytic viruses are ideal platforms for tumor vaccination because they can mediate the direct in situ killing of tumor cells that release a broad array of tumor antigens and alarmins or danger signals thereby cross-priming antitumor cytotoxic T lymphocytes (CTLs), which mediate the indirect killing of uninfected cells. The balance between the direct and indirect killing phases of oncolytic virotherapy is the key to its success and can be manipulated by incorporating various immunomodulatory genes into the oncolytic virus genome. Recently, the interim analysis of a large multicenter Phase III clinical trial for Talimogene laherparepvec, a granulocyte-macrophage colony stimulating factor-armed oncolytic herpes simplex virus, revealed significant improvement in objective response and durable response rates over control arm and a trend toward improved overall survival. Meanwhile, newer oncolytics are being developed expressing additional immunomodulatory transgenes to further enhance cross-priming and the generation of antitumor CTLs and to block the immunosuppressive actions of the tumor microenvironment. Since oncolytic vaccines can be engineered to kill tumor cells directly, modulate the kinetics of the antitumor immune response and reverse the immunosuppressive actions of the tumor, they are predicted to emerge as the preferred immunotherapeutic anticancer weapons of the future.
Collapse
Affiliation(s)
- Noura B Elsedawy
- Department of Molecular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
16
|
Zhou YJ, Binder RJ. The heat shock protein-CD91 pathway mediates tumor immunosurveillance. Oncoimmunology 2014; 3:e28222. [PMID: 25050192 PMCID: PMC4091098 DOI: 10.4161/onci.28222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
Tumor immunosurveillance can be readily observed in mice and humans. Here, we examine how T-cell responses are primed during tumorigenesis, a condition in which immunostimulatory antigens are extraordinarily scarce. We recently demonstrated that the HSP-CD91 pathway is indispensable for antigen cross-presentation, and thus immunosurveillance, in cancer.
Collapse
Affiliation(s)
- Yu Jerry Zhou
- Department of Immunology; University of Pittsburgh; Pittsburgh, PA USA
| | | |
Collapse
|
17
|
CD91-Dependent Modulation of Immune Responses by Heat Shock Proteins: A Role in Autoimmunity. Autoimmune Dis 2012; 2012:863041. [PMID: 23209886 PMCID: PMC3507052 DOI: 10.1155/2012/863041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/15/2012] [Indexed: 02/04/2023] Open
Abstract
Heat shock proteins (HSPs) have been known for decades for their ability to protect cells under stressful conditions. In the 1980s a new role was ascribed for several HSPs given their ability to elicit specific immune responses in the setting of cancer and infectious disease. These immune responses have primarily been harnessed for the immunotherapy of cancer in the clinical setting. However, because of the ability of HSPs to prime diverse immune responses, they have also been used for modulation of immune responses during autoimmunity. The apparent dichotomy of immune responses elicited by HSPs is discussed here on a molecular and cellular level. The potential clinical application of HSP-mediated immune responses for therapy of autoimmune diseases is reviewed.
Collapse
|
18
|
Daemi A, Bolhassani A, Rafati S, Zahedifard F, Hosseinzadeh S, Doustdari F. Different domains of glycoprotein 96 influence HPV16 E7 DNA vaccine potency via electroporation mediated delivery in tumor mice model. Immunol Lett 2012; 148:117-25. [PMID: 23085605 DOI: 10.1016/j.imlet.2012.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/20/2012] [Accepted: 10/06/2012] [Indexed: 11/26/2022]
Abstract
DNA vaccines have emerged as a promising approach for generating antigen-specific immunotherapy. However, due to their low immunogenicity, there is a need to enhance DNA-based vaccine potency. Two main strategies to increase DNA-based vaccine potency are the employment of immuno-adjuvants such as heat shock proteins (HSPs) and a method of improving the delivery of naked plasmid DNA by electroporation. In the current study, we evaluated the effects of linkage of human papillomavirus (HPV) type 16 E7 as a model antigen to N-terminal and C-terminal of glycoprotein 96 (NT-/CT-gp96) on the potency of E7-specific immunity generated by DNA vaccines. We found that subcutaneous DNA injection with E7-CT (gp96) followed by electroporation generates the significant E7-specific IFN-γ immune responses as well as the best protective effects in vaccinated mice as compared to E7 or E7-NT (gp96) DNA vaccines. Therefore, our data indicate that subcutaneous administration of E7 DNA linked to CT (gp96) fragment followed by electroporation can significantly enhance the potency of DNA vaccines. Indeed, the structural domains of immuno-chaperones show the potential of generating effective immune responses against different clinical disorders such as cancer. Altogether, our results show that comparable regions of gp96 (N-/C-terminal fragments of gp96) may have qualitatively different immunological effects in vaccine design.
Collapse
Affiliation(s)
- Amin Daemi
- Molecular Immunology and Vaccine Research Lab., Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Vaccines have shown promise for the prevention and treatment of solid tumors. Colorectal cancer and renal cell carcinoma are common malignancies that may be amenable to vaccine strategies. This review summarizes target antigens in colorectal and renal cell carcinoma, discusses some of the vaccine approaches in development, and details the results of pivotal phase III trials evaluating therapeutic vaccines in patients with advanced colorectal and renal cell carcinoma. Finally, some of the challenges with vaccine development for colorectal and renal cell carcinoma are described.
Collapse
Affiliation(s)
- Katherine Kabaker
- Division of Hematology & Oncology and Rush University Cancer Center, Rush University Medical Center, Chicago, IL, USA
| | | | | |
Collapse
|
20
|
Böttger E, Multhoff G, Kun JFJ, Esen M. Plasmodium falciparum-infected erythrocytes induce granzyme B by NK cells through expression of host-Hsp70. PLoS One 2012; 7:e33774. [PMID: 22438997 PMCID: PMC3305334 DOI: 10.1371/journal.pone.0033774] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 02/16/2012] [Indexed: 01/19/2023] Open
Abstract
In the early immune response to Plasmodium falciparum-infected erythrocytes (iRBC), Natural Killer (NK) cells are activated, which suggests an important role in innate anti-parasitic immunity. However, it is not well understood whether NK cells directly recognize iRBC or whether stimulation of NK cells depends mainly on activating signals from accessory cells through cell-to-cell contact or soluble factors. In the present study, we investigated the influence of membrane-bound host Heat shock protein (Hsp) 70 in triggering cytotoxicity of NK cells from malaria-naïve donors or the cell line NK92 against iRBC. Hsp70 and HLA-E membrane expression on iRBC and potential activatory NK cell receptors (NKG2C, CD94) were assessed by flow cytometry and immunoblot. Upon contact with iRBC, Granzyme B (GzmB) production and release was initiated by unstimulated and Hsp70-peptide (TKD) pre-stimulated NK cells, as determined by Western blot, RT-PCR and ELISPOT analysis. Eryptosis of iRBC was determined by Annexin V-staining. Our results suggest that presence of Hsp70 and absence of HLA-E on the membrane of iRBC prompt the infected host cells to become targets for NK cell-mediated cytotoxicity, as evidenced by impaired parasite development. Contact of iRBC with NK cells induced release of GzmB. We propose that following GzmB uptake, iRBC undergo eryptosis via a perforin-independent, GzmB-mediated mechanism. Since NK activity toward iRBC could be specifically enhanced by TKD peptide and abrogated to baseline levels by blocking Hsp70 exposure, we propose TKD as an innovative immunostimulatory agent to be tested as an adjunct to anti-parasitic treatments in vivo.
Collapse
Affiliation(s)
- Evelyn Böttger
- Institute for Tropical Medicine, Tübingen University, Tübingen, Germany.
| | | | | | | |
Collapse
|
21
|
Pakravan N, Hassan ZM. Comparison of adjuvant activity of N- and C-terminal domain of gp96 in a Her2-positive breast cancer model. Cell Stress Chaperones 2011; 16:449-57. [PMID: 21359667 PMCID: PMC3118821 DOI: 10.1007/s12192-011-0258-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 01/22/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022] Open
Abstract
It has been frequently reported that gp96 acts as a strong biologic adjuvant. Some studies have even investigated adjuvant activity of the gp96 C- or N-terminal domain. The controversy surrounding adjuvant activity of gp96 terminal domains prompted us to compare adjuvant activity of gp96 C- or N-terminal domain toward Her2/neu, as DNA vaccine in a Her2/neu-positive breast cancer model. To do so, mice were immunized with DNA vaccine consisting of transmembrane and extracellular domain (TM + ECD) of rat Her2/neu alone or fused to N- or C-terminal domain of gp96. Treatment with Her2/neu fused to N-terminal domain of gp96 resulted in tumor progression, compared to the groups vaccinated with pCT/Her2 or pHer2. Immunological examination revealed that treatment with Her2/neu fused to N-terminal domain of gp96 led to significantly lower survival rates, higher interferon-γ secretion, and induced infiltration of CD4(+)/CD8(+) cells to the tumor site. However, it could not induce cytotoxic T lymphocyte activity, did not decrease regulatory T cell percentage at the tumor site, and eventually led to tumor progression. Our results reveal that gp96 N-terminal domain does not have adjuvant activity toward Her2/neu. It is also proposed that adjuvant activity and the resultant immune response of gp96 terminal domains may be directed by the antigen applied.
Collapse
Affiliation(s)
- Nafiseh Pakravan
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Ale-Ahmad Avenue, P.O. Box 14115-331, Tehran, Iran
| |
Collapse
|
22
|
Pakravan N, Langroudi L, Hajimoradi M, Hassan ZM. Co-administration of GP96 and Her2/neu DNA vaccine in a Her2 breast cancer model. Cell Stress Chaperones 2010; 15:977-84. [PMID: 20544406 PMCID: PMC3024078 DOI: 10.1007/s12192-010-0208-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022] Open
Abstract
Heat-shock proteins have biochemical and immunological roles in chaperoning/signaling and activation of innate and adaptive immune responses, respectively. Their effect on the immune response is due to a phenomenon known as cross-priming of antigen, in which exogenous antigens are presented via MHC class I by antigen presenting cells. GP96 exerts adjuvant activity with some viral and bacterial antigens when applied in the form of a DNA vaccine. In this study, animals with Her2-expressing tumors were vaccinated by co-administration of GP96+ Her2/neu DNA vaccines. Analyses of the immune response, 2 weeks after the last immunization revealed decreased CD4+ CD25+ Foxp3+ naturally occurring regulatory T cells (Tregs) at the tumor site and increased IFN-γ/IL-4 level. Nevertheless, the graph of tumor size demonstrated a bi-phasic pattern in which partial control of tumor progression initially occurred, but finally its effectiveness was inversely affected by tumor size.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Disease Models, Animal
- Female
- Forkhead Transcription Factors/metabolism
- Interferon-gamma/metabolism
- Interleukin-2 Receptor alpha Subunit/metabolism
- Interleukin-4/metabolism
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Nafiseh Pakravan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Ale-Ahmad Avenue, P.O. Box: 14115-331, Tehran, Iran
| | - Ladan Langroudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Ale-Ahmad Avenue, P.O. Box: 14115-331, Tehran, Iran
| | - Monire Hajimoradi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Ale-Ahmad Avenue, P.O. Box: 14115-331, Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Ale-Ahmad Avenue, P.O. Box: 14115-331, Tehran, Iran
| |
Collapse
|
23
|
Abstract
Prostate cancer is a significant public health problem, and the most commonly diagnosed cancer in the USA. The long natural history of prostate cancer, the presence of a serum biomarker that can be used to detect very early recurrences, and the previous identification of multiple potential tissue-specific target antigens are all features that make this disease suitable for the development of anti-tumor vaccines. To date, many anti-tumor vaccines have entered clinical testing for patients with prostate cancer, and some have demonstrated clinical benefit. DNA vaccines represent one vaccine approach that has been evaluated in multiple preclinical models and clinical trials. The safety, specificity for the target antigen, ease of manufacturing and ease of incorporating other immune-modulating approaches make DNA vaccines particularly relevant for future development. This article focuses on DNA vaccines specifically in the context of prostate cancer treatment, focusing on antigens targeted in preclinical models, recent clinical trials and efforts to improve the potency of these vaccines.
Collapse
Affiliation(s)
- Sheeba Alam
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
| | | |
Collapse
|
24
|
A Mage3/Heat Shock Protein70 DNA vaccine induces both innate and adaptive immune responses for the antitumor activity. Vaccine 2009; 28:561-70. [PMID: 19835823 DOI: 10.1016/j.vaccine.2009.09.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSPs) are highly effective and versatile molecules in promoting antitumor immune responses. We tested whether a HSP-based DNA vaccine can induce effective immune response against Mage3, a cancer testis (CT) antigen frequently expressed in many human tumors, thereby controlling the Mage3-expressing tumor. The vaccine was constructed by linking human inducible HSP70 to the C-terminus of a modified Mage3 gene (sMage3) that was attached at its N-terminus with the signal leader sequence of the human RANTES for releasing the expressed fusion protein from the transduced cells. Intramuscular injection of sMage3Hsp DNA induced CD4(+)/CD8(+) T cell and antibody responses. Vaccination with sMage3Hsp DNA was more effective in inhibiting Mage3-expressing TC-1 tumors. When we dissected the antitumor activity of CD4(+) and CD8(+) T cells by immunizing CD4(+) and CD8(+) knockout mice with sMage3Hsp DNA, we found that both CD8(+) T and CD4(+) T cells played a role in control of inoculated tumor, but did not constitute the whole of immune protection in the prophylactic immunization. Instead, depletion of natural killer (NK) cells led to a major loss of antitumor activity in the immunized mice. These results indicate that the HSP-based Mage3 DNA vaccine can more effectively inhibit tumor growth by inducing both the innate immune responses and Mage3-specific adaptive immune responses via the Hsp-associated adjuvant function.
Collapse
|