1
|
Di X, Wang P, Li F, Han W, Ni L, Liu CW. Recombinant Human Hepatocyte Growth Factor Plasmids for Treating Patients with Chronic Limb Threatening Ischaemia: A Systematic Review and Meta-analysis. Eur J Vasc Endovasc Surg 2024; 68:619-628. [PMID: 39019317 DOI: 10.1016/j.ejvs.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE Recombinant human hepatocyte growth factor (HGF) plasmids are novel alternatives to salvage limbs in patients with chronic limb threatening ischaemia (CLTI). A systematic review and meta-analysis of data was conducted to assess the therapeutic efficacy of HGF plasmids in patients with CLTI. DATA SOURCES Randomised controlled studies evaluating HGF plasmid efficacy in patients with CLTI were identified using MEDLINE, Embase, Cochrane Database of Systematic Reviews, and ClinicalTrials.gov databases. REVIEW METHODS Meta-analyses of the reported relative risk (RR) or mean difference (MD) were conducted. Subgroup analyses were performed to determine the efficacy of HGF plasmids in cohorts excluding Buerger's disease. Certainty of evidence for each outcome was assessed. RESULTS Seven studies (n = 655 participants) were included. Based on low certainty evidence, patients treated with HGF had a significantly higher complete ulcer healing rate (RR 1.99, 95% confidence interval [CI] 1.30 - 3.04; p = .002) than patients treated with placebo. HGF treatment was associated with reduced visual analogue scale (VAS) scores of pain severity (MD -1.56, 95% CI -2.12 - -1.00; p < .001) vs. placebo in patients with CLTI assessed at three month follow up (low certainty evidence); no significant differences were observed in major amputation (RR 0.91, 95% CI 0.48 - 1.73; p = .77) (low certainty evidence) or all cause mortality rate (RR 0.93, 95% CI 0.38 - 2.27; p = .87) (low certainty evidence) between patients treated with HGF and placebo. Low certainty evidence suggested no significant differences in change in ankle brachial index at six months (MD 0.00, 95% CI -0.09 - 0.09; p = 1.0) between patients treated with HGF and placebo. The complete ulcer healing rate and improved three month VAS scores of pain severity benefits persisted in subgroup analyses (low certainty evidence). CONCLUSION Low certainty evidence suggested that HGF treatment is associated with an increased complete ulcer healing rate and reduced ischaemic pain in patients with CLTI.
Collapse
Affiliation(s)
- Xiao Di
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengshi Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Han
- Department of Statistics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chang-Wei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Soufizadeh P, Mansouri V, Ahmadbeigi N. A review of animal models utilized in preclinical studies of approved gene therapy products: trends and insights. Lab Anim Res 2024; 40:17. [PMID: 38649954 PMCID: PMC11034049 DOI: 10.1186/s42826-024-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 04/25/2024] Open
Abstract
Scientific progress heavily relies on rigorous research, adherence to scientific standards, and transparent reporting. Animal models play a crucial role in advancing biomedical research, especially in the field of gene therapy. Animal models are vital tools in preclinical research, allowing scientists to predict outcomes and understand complex biological processes. The selection of appropriate animal models is critical, considering factors such as physiological and pathophysiological similarities, availability, and ethical considerations. Animal models continue to be indispensable tools in preclinical gene therapy research. Advancements in genetic engineering and model selection have improved the fidelity and relevance of these models. As gene therapy research progresses, careful consideration of animal models and transparent reporting will contribute to the development of effective therapies for various genetic disorders and diseases. This comprehensive review explores the use of animal models in preclinical gene therapy studies for approved products up to September 2023. The study encompasses 47 approved gene therapy products, with a focus on preclinical trials. This comprehensive analysis serves as a valuable reference for researchers in the gene therapy field, aiding in the selection of suitable animal models for their preclinical investigations.
Collapse
Affiliation(s)
- Parham Soufizadeh
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Biomedical Research Institute, University of Tehran, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chung K, Booth MJ. Sequence-independent, site-specific incorporation of chemical modifications to generate light-activated plasmids. Chem Sci 2023; 14:12693-12706. [PMID: 38020373 PMCID: PMC10646958 DOI: 10.1039/d3sc02761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Plasmids are ubiquitous in biology, where they are used to study gene-function relationships and intricate molecular networks, and hold potential as therapeutic devices. Developing methods to control their function will advance their application in research and may also expedite their translation to clinical settings. Light is an attractive stimulus to conditionally regulate plasmid expression as it is non-invasive, and its properties such as wavelength, intensity, and duration can be adjusted to minimise cellular toxicity and increase penetration. Herein, we have developed a method to site-specifically introduce photocages into plasmids, by resynthesising one strand in a manner similar to Kunkel mutagenesis. Unlike alternative approaches to chemically modify plasmids, this method is sequence-independent at the site of modification and uses commercially available phosphoramidites. To generate our light-activated (LA) plasmids, photocleavable biotinylated nucleobases were introduced at specific sites across the T7 and CMV promoters on plasmids and bound to streptavidin to sterically block access. These LA-plasmids were then successfully used to control expression in both cell-free systems (T7 promoter) and mammalian cells (CMV promoter). These light-activated plasmids might be used to remotely control cellular activity and reduce off-target toxicity for future medical use. Our simple approach to plasmid modification might also be used to introduce novel chemical moieties for advanced function.
Collapse
Affiliation(s)
- Khoa Chung
- Department of Chemistry, University of Oxford Mansfield Road OX1 3TA Oxford UK
| | - Michael J Booth
- Department of Chemistry, University of Oxford Mansfield Road OX1 3TA Oxford UK
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
4
|
Di X, Liu C, Ni L, Ye W, Rong Z, Zhang R, Niu S, Li F, Zheng Y, Han C, Liu Y. Rationale and design for the study of recombinant human hepatocyte growth factor plasmid in the treatment of patients with chronic limb-threatening ischemia (HOPE CLTI): Randomized, placebo-controlled, double-blind, phase III clinical trials. Am Heart J 2022; 254:88-101. [PMID: 36002048 DOI: 10.1016/j.ahj.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/31/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Although patients with CLTI have benefited from the rapid development of endovascular techniques, many patients are considered unsuitable for revascularization procedures. A previous phase II clinical trial has suggested that recombinant human hepatocyte growth factor plasmid (NL003) can salvage limbs during the treatment of patients with CLTI. However, the safety and efficacy of this drug need to be evaluated in a larger cohort. STUDY DESIGN HOPE CLTI is a multicenter, randomized, double-blind, placebo-controlled phase III clinical study to evaluate the efficacy and safety of intramuscular injection of NL003 in CLTI patients. This study consisted of 22 trials: HOPE CLTI-1, which includes patients with rest pain (Rutherford stage 4), and HOPE CLTI-2, which includes patients with limb ulcers (Rutherford stage 5). In both trials, patients are randomized with a 2:1 ratio of intramuscular injection of NL003 to placebo. The primary endpoint of HOPE CLTI-1 is the complete pain relief rate. The primary endpoint of HOPE CLTI-2 is the complete ulcer healing rate. The safety endpoint was assessed based on adverse events after injection of NL003. Enrollment began in July 2019. The HOPE CLTI-1 trial aims to complete the randomization of at least 300 patients, while the HOPE CLTI-2 trial aims to enroll at least 240 patients. Both trials are organized such that patients will be followed for 6 months after the first intramuscular injection. CONCLUSIONS HITOP CLTI, which is comprised of 2 multicenter, double-blind, placebo-controlled phase III clinical trials, aims to evaluate the efficacy and safety of the intramuscular administration of NL003 in patients with CLTI.
Collapse
Affiliation(s)
- Xiao Di
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China.
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Wei Ye
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Zhihua Rong
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Rui Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Shuai Niu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Fengshi Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Chengquan Han
- R&D Center of Beijing Northland Biotech. Co., Ltd., Beijing, China
| | - Yue Liu
- R&D Center of Beijing Northland Biotech. Co., Ltd., Beijing, China
| |
Collapse
|
5
|
Hayashi H, Sun J, Yanagida Y, Otera T, Kubota-Koketsu R, Shioda T, Ono C, Matsuura Y, Arase H, Yoshida S, Nakamaru R, Ju N, Ide R, Tenma A, Kawabata S, Ehara T, Sakaguchi M, Tomioka H, Shimamura M, Okamoto S, Amaishi Y, Chono H, Mineno J, Komatsuno T, Saito Y, Rakugi H, Morishita R, Nakagami H. Preclinical study of a DNA vaccine targeting SARS-CoV-2. Curr Res Transl Med 2022; 70:103348. [PMID: 35489099 PMCID: PMC9020527 DOI: 10.1016/j.retram.2022.103348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/09/2022] [Accepted: 04/16/2022] [Indexed: 01/31/2023]
Abstract
To fight against the worldwide COVID-19 pandemic, the development of an effective and safe vaccine against SARS-CoV-2 is required. As potential pandemic vaccines, DNA/RNA vaccines, viral vector vaccines and protein-based vaccines have been rapidly developed to prevent pandemic spread worldwide. In this study, we designed plasmid DNA vaccine targeting the SARS-CoV-2 Spike glycoprotein (S protein) as pandemic vaccine, and the humoral, cellular, and functional immune responses were characterized to support proceeding to initial human clinical trials. After intramuscular injection of DNA vaccine encoding S protein with alum adjuvant (three times at 2-week intervals), the humoral immunoreaction, as assessed by anti-S protein or anti-receptor-binding domain (RBD) antibody titers, and the cellular immunoreaction, as assessed by antigen-induced IFNγ expression, were up-regulated. In IgG subclass analysis, IgG2b was induced as the main subclass. Based on these analyses, DNA vaccine with alum adjuvant preferentially induced Th1-type T cell polarization. We confirmed the neutralizing action of DNA vaccine-induced antibodies by a binding assay of RBD recombinant protein with angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, and neutralization assays using pseudo-virus, and live SARS-CoV-2. Further B cell epitope mapping analysis using a peptide array showed that most vaccine-induced antibodies recognized the S2 and RBD subunits. Finally, DNA vaccine protected hamsters from SARS-CoV-2 infection. In conclusion, DNA vaccine targeting the spike glycoprotein of SARS-CoV-2 might be an effective and safe approach to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan
| | - Jiao Sun
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan
| | - Yuka Yanagida
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan
| | - Takako Otera
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan; Anges Inc, Japan
| | - Ritsuko Kubota-Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Japan; Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Japan; Laboratory of Immunochemistry, WPI Immunology Frontier Research Centre, Osaka University, Japan
| | - Shota Yoshida
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan; Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Japan
| | - Ryo Nakamaru
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan; Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Japan
| | - Nan Ju
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan; Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | - Munehisa Shimamura
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | - Hiromi Rakugi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Japan; Lead contact, Japan.
| |
Collapse
|
6
|
Arabi F, Mansouri V, Ahmadbeigi N. Gene therapy clinical trials, where do we go? An overview. Biomed Pharmacother 2022; 153:113324. [PMID: 35779421 DOI: 10.1016/j.biopha.2022.113324] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/18/2022] Open
Abstract
There have been many ups and downs since the introduction of gene therapy as a therapeutic modality for diseases. However, the journey of gene therapy has reached a fundamental milestone, as evidenced by the increasing number of gene therapy products on the market. Looking at the currently approved and under-approval products, as well as the numerous clinical trials in this field, gene therapy has a promising future. Trend of changes in gene therapy strategies, vectors, and targets could be insightful for pharmaceutical companies, policymakers, and researchers. In this paper, following a brief history of gene therapy, we reviewed current gene therapy products as well as gene therapies that may be approved in the near future. We also looked at ten-year changes in gene therapy clinical trials strategies, such as the use of vectors, target cells, transferred genes, and ex-vivo/in-vivo methods, as well as the major fields that gene therapy has entered. Although gene therapy was initially used to treat genetic diseases, cancer now has the greatest number of gene therapy clinical trials. Changes in gene therapy strategies, particularly in pioneering countries in this field, may point to the direction of future clinical products.
Collapse
Affiliation(s)
- Fatemeh Arabi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran.
| |
Collapse
|
7
|
Reily-Bell M, Bahn A, Katare R. Reactive Oxygen Species-Mediated Diabetic Heart Disease: Mechanisms and Therapies. Antioxid Redox Signal 2022; 36:608-630. [PMID: 34011169 DOI: 10.1089/ars.2021.0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Diabetic heart disease (DHD) is the primary cause of mortality in people with diabetes. A significant contributor to the development of DHD is the disruption of redox balance due to reactive oxygen species (ROS) overproduction resulting from sustained high glucose levels. Therapies specifically focusing on the suppression of ROS will hugely benefit patients with DHD. Recent Advances: In addition to the gold standard pharmacological therapies, the recent development of gene therapy provides an exciting avenue for developing new therapeutics to treat ROS-mediated DHD. In particular, microRNAs (miRNAs) are gaining interest due to their crucial role in several physiological and pathological processes, including DHD. Critical Issues: miRNAs have many targets and differential function depending on the environment. Therefore, a proper understanding of the function of miRNAs in specific cell types and cell states is required for the successful application of this technology. In the present review, we first provide an overview of the role of ROS in contributing to DHD and the currently available treatments. We then discuss the newer gene therapies with a specific focus on the role of miRNAs as the causative factors and therapeutic targets to combat ROS-mediated DHD. Future Directions: The future of miRNA therapeutics in tackling ROS-mediated DHD is dependent on a complete understanding of how miRNAs behave in different cells and environments. Future research should also aim to develop conditional miRNA therapeutic platforms capable of switching on and off in response to disruptions in the redox state. Antioxid. Redox Signal. 36, 608-630.
Collapse
Affiliation(s)
- Matthew Reily-Bell
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - Andrew Bahn
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Kakei Y, Kimura M, Nagashima T, Sawada T, Matoba S. Angiographic Change After Injection of Beperminogene Perplasmid, a Hepatocyte Growth Factor Gene Therapy Product for the Treatment of Critical Limb Ischemia. Circ Rep 2022; 4:105-106. [PMID: 35178487 PMCID: PMC8811228 DOI: 10.1253/circrep.cr-21-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yusuke Kakei
- Department of Cardiology, Japanese Red Cross Kyoto Daiichi Hospital
| | - Masayoshi Kimura
- Department of Cardiology, Japanese Red Cross Kyoto Daiichi Hospital
| | | | - Takahisa Sawada
- Department of Cardiology, Japanese Red Cross Kyoto Daiichi Hospital
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
9
|
Behl T, Kaur I, Kumar A, Mehta V, Zengin G, Arora S. Gene Therapy in the Management of Parkinson's Disease: Potential of GDNF as a Promising Therapeutic Strategy. Curr Gene Ther 2021; 20:207-222. [PMID: 32811394 DOI: 10.2174/1566523220999200817164051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/14/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
The limitations of conventional treatment therapies in Parkinson's disorder, a common neurodegenerative disorder, lead to the development of an alternative gene therapy approach. Multiple treatment options targeting dopaminergic neuronal regeneration, production of enzymes linked with dopamine synthesis, subthalamic nucleus neurons, regulation of astrocytes and microglial cells and potentiating neurotrophic factors, were established. Viral vector-based dopamine delivery, prodrug approaches, fetal ventral mesencephalon tissue transplantation and dopamine synthesizing enzyme encoding gene delivery are significant therapies evidently supported by numerous trials. The review primarily elaborates on the significant role of glial cell-line derived neurotrophic factor in alleviating motor symptoms and the loss of dopaminergic neurons in Parkinson's disease. Neuroprotective and neuroregenerative effects of GDNF were established via preclinical and clinical study outcomes. The binding of GDNF family ligands with associated receptors leads to the formation of a receptor-ligand complex activating Ret receptor of tyrosine kinase family, which is only expressed in dopaminergic neurons, playing an important role in Parkinson's disease, via its association with the essential protein encoded genes. Furthermore, the review establishes delivery aspects, like ventricular delivery of recombinant GDNF, intraparenchymal and intraputaminal delivery using infusion catheters. The review highlights problems and challenges of GDNF delivery, and essential measures to overcome them, like gene therapy combinations, optimization of delivery vectors, newer targeting devices, motor symptoms curbing focused ultrasound techniques, modifications in patient selection criteria and development of novel delivery strategies based on liposomes and encapsulated cells, to promote safe and effective delivery of neurotrophic factor and establishment of routine treatment therapy for patients.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya, Turkey
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
10
|
Morishita R, Shimamura M, Takeya Y, Nakagami H, Chujo M, Ishihama T, Yamada E, Rakugi H. Combined Analysis of Clinical Data on HGF Gene Therapy to Treat Critical Limb Ischemia in Japan. Curr Gene Ther 2021; 20:25-35. [PMID: 32416690 DOI: 10.2174/1566523220666200516171447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The objective of this combined analysis of data from clinical trials in Japan, using naked plasmid DNA encoding hepatocyte growth factor (HGF), was to document the safety and efficacy of intramuscular HGF gene therapy in patients with critical limb ischemia (CLI). METHODS HGF gene transfer was performed in 22 patients with CLI in a single-center open trial at Osaka University; 39 patients in a randomized, placebo-controlled, multi-center phase III trial, 10 patients with Buerger's disease in a multi-center open trial; and 6 patients with CLI in a multi-center open trial using 2 or 3 intramuscular injections of naked HGF plasmid at 2 or 4 mg. Resting pain on a visual analogue scale (VAS) and wound healing as primary endpoints were evaluated at 12 weeks after the initial injection. Serious adverse events caused by gene transfer were detected in 7 out of 77 patients (9.09%). Only one patient experienced peripheral edema (1.30%), in contrast to those who had undergone treatment with VEGF. At 12 weeks after gene transfer, combined evaluation of VAS and ischemic ulcer size demonstrated a significant improvement in HGF gene therapy group as compared to the placebo group (P=0.020). RESULTS The long-term analysis revealed a sustained decrease in the size of ischemic ulcer in HGF gene therapy group. In addition, VAS score over 50 mm at baseline (total 27 patients) demonstrated a tendency (P=0.059), but not significant enough, to improve VAS score in HGF gene therapy as compared to the placebo group. CONCLUSION The findings indicated that intramuscular injection of naked HGF plasmid tended to improve the resting pain and significantly decreased the size of the ischemic ulcer in the patients with CLI who did not have any alternative therapy, such as endovascular treatment (EVT) or bypass graft surgery. An HGF gene therapy product, CollategeneTM, was recently launched with conditional and time-limited approval in Japan to treat ischemic ulcer in patients with CLI. Further clinical trials would provide new therapeutic options for patients with CLI.
Collapse
Affiliation(s)
- Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Munehisa Shimamura
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasushi Takeya
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | | - Hiromi Rakugi
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
11
|
Mansouri V, Beheshtizadeh N, Gharibshahian M, Sabouri L, Varzandeh M, Rezaei N. Recent advances in regenerative medicine strategies for cancer treatment. Biomed Pharmacother 2021; 141:111875. [PMID: 34229250 DOI: 10.1016/j.biopha.2021.111875] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stands as one of the most leading causes of death worldwide, while one of the most significant challenges in treating it is revealing novel alternatives to predict, diagnose, and eradicate tumor cell growth. Although various methods, such as surgery, chemotherapy, and radiation therapy, are used today to treat cancer, its mortality rate is still high due to the numerous shortcomings of each approach. Regenerative medicine field, including tissue engineering, cell therapy, gene therapy, participate in cancer treatment and development of cancer models to improve the understanding of cancer biology. The final intention is to convey fundamental and laboratory research to effective clinical treatments, from the bench to the bedside. Proper interpretation of research attempts helps to lessen the burden of treatment and illness for patients. The purpose of this review is to investigate the role of regenerative medicine in accelerating and improving cancer treatment. This study examines the capabilities of regenerative medicine in providing novel cancer treatments and the effectiveness of these treatments to clarify this path as much as possible and promote advanced future research in this field.
Collapse
Affiliation(s)
- Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
12
|
Xie M, Viviani M, Fussenegger M. Engineering precision therapies: lessons and motivations from the clinic. Synth Biol (Oxf) 2020; 6:ysaa024. [PMID: 33817342 PMCID: PMC7998714 DOI: 10.1093/synbio/ysaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
In the past decade, gene- and cell-based therapies have been at the forefront of the biomedical revolution. Synthetic biology, the engineering discipline of building sophisticated 'genetic software' to enable precise regulation of gene activities in living cells, has been a decisive success factor of these new therapies. Here, we discuss the core technologies and treatment strategies that have already gained approval for therapeutic applications in humans. We also review promising preclinical work that could either enhance the efficacy of existing treatment strategies or pave the way for new precision medicines to treat currently intractable human conditions.
Collapse
Affiliation(s)
- Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Mirta Viviani
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv 2020; 40:107502. [PMID: 31887345 DOI: 10.1016/j.biotechadv.2019.107502] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
|
14
|
Affiliation(s)
- Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland.
| |
Collapse
|
15
|
Gu Y, Cui S, Wang Q, Liu C, Jin B, Guo W, Liu C, Chu T, Shu C, Zhang F, Han C, Liu Y. A Randomized, Double-Blind, Placebo-Controlled Phase II Study of Hepatocyte Growth Factor in the Treatment of Critical Limb Ischemia. Mol Ther 2019; 27:2158-2165. [PMID: 31805256 PMCID: PMC6904746 DOI: 10.1016/j.ymthe.2019.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023] Open
Abstract
NL003 is a plasmid engineered to simultaneously express two isoforms of hepatocyte growth factor. This phase II study was performed to assess the clinical safety and efficacy of intramuscular injection of NL003 in critical limb ischemia (CLI) patients for 6 months. Two hundred patients (Rutherford scale 4-5) were randomly assigned: placebo (n = 50), low-dose NL003 (n = 50), middle-dose NL003 (n = 50), or high-dose NL003 (n = 50). The drug was administered in the affected limb of 197 patients on days 0, 14, and 28. No significant differences in the incidence of adverse events (AEs) or serious AEs were found among the groups. At 6 months, pain severity was significantly reduced in all NL003 groups, but not in the placebo group (p < 0.05). The proportion of patients with complete ulcer healing in the high-dose group was significantly higher than that of the placebo group (p = 0.0095). There were no statistically significant differences in transcutaneous oxygen pressure (TcPO2), ankle-brachial index (ABI), or toe-brachial index (TBI) value among the four groups throughout the study period. These results provide the first effective evidence of significant improvements in total healing of ulcers in treated legs, complete pain relief without analgesics, and safety for NL003 in patients with Rutherford stage 4-5.
Collapse
Affiliation(s)
- Yongquan Gu
- Vascular Surgery Department, Xuan Wu Hospital, Capital Medical University, Beijing, China.
| | - Shijun Cui
- Vascular Surgery Department, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Qi Wang
- Vascular Surgery Department, First Hospital, Jilin University, Changchun, China
| | - Changjian Liu
- Vascular Surgery Department, Nanjing Drum Tower Hospital, Nanjing, China
| | - Bi Jin
- Vascular Surgery Department, Wuhan Union Hospital, Wuhan, China
| | - Wei Guo
- Vascular Surgery Department, Chinese PLA General Hospital, Beijing, China
| | - Changwei Liu
- Vascular Surgery Department, Peking Union Medical College Hospital, Beijing, China
| | - Tongbin Chu
- Diabetic Foot Treatment Center, Second Hospital of Dalian Medical University, Dalian, China
| | - Chang Shu
- Vascular Surgery Department, Second Xiang Ya Hospital, Central South University, Changsha, China
| | - Fuxian Zhang
- Vascular Surgery Department, Shi Ji Tan Hospital, Capital Medical University, Beijing, China
| | - Chengquan Han
- R&D Center of Beijing Northland Biotech. Co., Ltd., China
| | - Yue Liu
- R&D Center of Beijing Northland Biotech. Co., Ltd., China
| |
Collapse
|
16
|
Attitudes of clinical geneticists and certified genetic counselors to genome editing and its clinical applications: A nation-wide questionnaire survey in Japan. J Hum Genet 2019; 64:945-954. [PMID: 31273322 DOI: 10.1038/s10038-019-0635-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/24/2019] [Accepted: 06/10/2019] [Indexed: 11/08/2022]
Abstract
Genome editing of the human embryo using CRISPR/Cas9 has the potential to prevent hereditary diseases from being transmitted to the next generation. However, attitudes to this technology have not been examined sufficiently among the genetic professionals who will use it in the near future. We conducted a questionnaire survey of Japanese clinical geneticists and certified genetic counselors. Differences were observed between them in their recognition of this technology and impressions on its difficulty and cost. Both groups worried about misuse of it, with insufficient information and rules. As key elements for such rules, they considered ethics, safety, and purpose. Most disapproved of modifying physical traits as an enhancement, though they hoped for the treatment of severe diseases. At current clinical sites, they tended to adopt a prudent attitude by mentioning only the possibility of genome editing in the future. Academic policies and legislation are required, especially for application in human embryos, through a consensus of professionals and general citizens. Furthermore, professionals should maintain awareness of new developments and regularly reexamine attitudes for the ongoing development of more suitable rules, education systems, and clinical protocols. As preparation for changes, opportunities to address ethical issues and initiate discussions are also required.
Collapse
|