1
|
Schuster ALR, Folta A, Bollinger J, Geller G, Mehta SR, Little SJ, Sanchez T, Sugarman J, Bridges JFP. User experience with HIV molecular epidemiology in research, surveillance, and cluster detection and response: a needs assessment. Curr Med Res Opin 2024:1-11. [PMID: 39250177 DOI: 10.1080/03007995.2024.2388840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE HIV molecular epidemiology (HIV ME) is a tool that aims to improve HIV research, surveillance, and cluster detection and response. HIV ME is a core pillar of the U.S. initiative to End the HIV Epidemic but faces some challenges and criticisms from stakeholders. We sought to assess user experience to identify the current needs for HIV ME. METHODS Users of HIV ME, including researchers and public health practitioners, were engaged via a structured survey. Needs were assessed via open-ended questions about HIV ME. Data were analyzed using reflexive thematic analysis; the concordance of results was assessed semi-quantitatively. RESULTS Of 90 possible HIV-ME end-users, 57 completed the survey (response rate = 63%), which included users engaged in research (n = 29) and public health (n = 28). Respondents identified current imperatives, challenges, and strategies to improve HIV ME. Imperatives included characterization of the virus, identification of HIV hotspots, and tailoring of HIV interventions. Challenges encompassed technological issues, ethical concerns, and implementation difficulties. Strategies to improve HIV ME involved improving data access and analysis, enhancing implementation guidance and resources, and fostering community engagement and support. Researchers and public health practitioners prioritized different imperatives, but similarly emphasized the ethical concerns with HIV ME. CONCLUSION The imperatives identified by users underscore the necessity of HIV ME, while the challenges highlight the hurdles to be overcome, including ethical concerns which emerged as a shared emphasis across user groups. The strategies outlined offer a roadmap for overcoming these challenges. These insights, drawn from user experience, present a valuable opportunity to inform the development of guidelines for the ethical application of HIV ME in research, surveillance, and cluster detection and response.
Collapse
Affiliation(s)
- Anne L R Schuster
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ashley Folta
- The Ohio State University College of Public Health, Columbus, OH, USA
| | - Juli Bollinger
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
| | - Gail Geller
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sanjay R Mehta
- Division of Infectious Disease, University of California San Diego, San Diego, CA, USA
| | - Susan J Little
- Division of Infectious Disease, University of California San Diego, San Diego, CA, USA
| | - Travis Sanchez
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jeremy Sugarman
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - John F P Bridges
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Health Behavior and Society, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Xu L, Wang C, Xu W, Xing L, Zhou J, Pu J, Fu M, Lu L, Jiang S, Wang Q. A dePEGylated Lipopeptide-Based Pan-Coronavirus Fusion Inhibitor Exhibits Potent and Broad-Spectrum Anti-HIV-1 Activity without Eliciting Anti-PEG Antibodies. Int J Mol Sci 2023; 24:ijms24119779. [PMID: 37298729 DOI: 10.3390/ijms24119779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
We previously identified a lipopeptide, EK1C4, by linking cholesterol to EK1, a pan-CoV fusion inhibitory peptide via a polyethylene glycol (PEG) linker, which showed potent pan-CoV fusion inhibitory activity. However, PEG can elicit antibodies to PEG in vivo, which will attenuate its antiviral activity. Therefore, we designed and synthesized a dePEGylated lipopeptide, EKL1C, by replacing the PEG linker in EK1C4 with a short peptide. Similar to EK1C4, EKL1C displayed potent inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses. In this study, we found that EKL1C also exhibited broad-spectrum fusion inhibitory activity against human immunodeficiency virus type 1 (HIV-1) infection by interacting with the N-terminal heptad repeat 1 (HR1) of viral gp41 to block six-helix bundle (6-HB) formation. These results suggest that HR1 is a common target for the development of broad-spectrum viral fusion inhibitors and EKL1C has potential clinical application as a candidate therapeutic or preventive agent against infection by coronavirus, HIV-1, and possibly other class I enveloped viruses.
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lixiao Xing
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jie Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mingming Fu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Labarile M, Loosli T, Zeeb M, Kusejko K, Huber M, Hirsch HH, Perreau M, Ramette A, Yerly S, Cavassini M, Battegay M, Rauch A, Calmy A, Notter J, Bernasconi E, Fux C, Günthard HF, Pasin C, Kouyos RD, Aebi-Popp K, Anagnostopoulos A, Battegay M, Bernasconi E, Braun DL, Bucher HC, Calmy A, Cavassini M, Ciuffi A, Dollenmaier G, Egger M, Elzi L, Fehr J, Fellay J, Furrer H, Fux CA, Günthard HF, Hachfeld A, Haerry D, Hasse B, Hirsch HH, Hoffmann M, Hösli I, Huber M, Kahlert CR, Kaiser L, Keiser O, Klimkait T, Kouyos RD, Kovari H, Kusejko K, Martinetti G, Martinez de Tejada B, Marzolini C, Metzner KJ, Müller N, Nemeth J, Nicca D, Paioni P, Pantaleo G, Perreau M, Rauch A, Schmid P, Speck R, Stöckle M, Tarr P, Trkola A, Wandeler G, Yerly S. Quantifying and Predicting Ongoing Human Immunodeficiency Virus Type 1 Transmission Dynamics in Switzerland Using a Distance-Based Clustering Approach. J Infect Dis 2023; 227:554-564. [PMID: 36433831 DOI: 10.1093/infdis/jiac457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Despite effective prevention approaches, ongoing human immunodeficiency virus 1 (HIV-1) transmission remains a public health concern indicating a need for identifying its drivers. METHODS We combined a network-based clustering method using evolutionary distances between viral sequences with statistical learning approaches to investigate the dynamics of HIV transmission in the Swiss HIV Cohort Study and to predict the drivers of ongoing transmission. RESULTS We found that only a minority of clusters and patients acquired links to new infections between 2007 and 2020. While the growth of clusters and the probability of individual patients acquiring new links in the transmission network was associated with epidemiological, behavioral, and virological predictors, the strength of these associations decreased substantially when adjusting for network characteristics. Thus, these network characteristics can capture major heterogeneities beyond classical epidemiological parameters. When modeling the probability of a newly diagnosed patient being linked with future infections, we found that the best predictive performance (median area under the curve receiver operating characteristic AUCROC = 0.77) was achieved by models including characteristics of the network as predictors and that models excluding them performed substantially worse (median AUCROC = 0.54). CONCLUSIONS These results highlight the utility of molecular epidemiology-based network approaches for analyzing and predicting ongoing HIV transmission dynamics. This approach may serve for real-time prospective assessment of HIV transmission.
Collapse
Affiliation(s)
- Marco Labarile
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Tom Loosli
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Marius Zeeb
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Katharina Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Hans H Hirsch
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland.,Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Matthieu Perreau
- Division of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Sabine Yerly
- Laboratory of Virology and Division of Infectious Diseases, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, Lausanne University Hospital, Lausanne, Switzerland
| | - Manuel Battegay
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexandra Calmy
- Laboratory of Virology and Division of Infectious Diseases, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Julia Notter
- Division of Infectious Diseases, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland
| | - Christoph Fux
- Department of Infectious Diseases, Kantonsspital Aarau, Aarau, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Human T-Cell Leukemia Virus Type 1-Related Diseases May Constitute a Threat to the Elimination of Human Immunodeficiency Virus, by 2030, in Gabon, Central Africa. Viruses 2022; 14:v14122808. [PMID: 36560812 PMCID: PMC9785256 DOI: 10.3390/v14122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The Joint United Nations Program on HIV/AIDS (UNAIDS) has adopted the Sustainable Development Goals (SDGs) to end the HIV/AIDS epidemic by 2030. Several factors related to the non-suppression of HIV, including interruptions of antiretroviral therapy (ART) and opportunistic infections could affect and delay this projected epidemic goal. Human T-Cell leukemia virus type 1 (HTLV-1) appears to be consistently associated with a high risk of opportunistic infections, an early onset of HTLV-1 and its associated pathologies, as well as a fast progression to the AIDS phase in co-infected individuals, when compared to HIV-1 or HTLV-1 mono-infected individuals. In Gabon, the prevalence of these two retroviruses is very high and little is known about HTLV-1 and the associated pathologies, leaving most of them underdiagnosed. Hence, HTLV-1/HIV-1 co-infections could simultaneously imply a non-diagnosis of HIV-1 positive individuals having developed pathologies associated with HTLV-1, but also a high mortality rate among the co-infected individuals. All of these constitute potential obstacles to pursue targeted objectives. A systematic review was conducted to assess the negative impacts of HTLV-1/HIV-1 co-infections and related factors on the elimination of HIV/AIDS by 2030 in Gabon.
Collapse
|
5
|
Rawson JMO, Nikolaitchik OA, Shakya S, Keele BF, Pathak VK, Hu WS. Transcription Start Site Heterogeneity and Preferential Packaging of Specific Full-Length RNA Species Are Conserved Features of Primate Lentiviruses. Microbiol Spectr 2022; 10:e0105322. [PMID: 35736240 PMCID: PMC9430795 DOI: 10.1128/spectrum.01053-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022] Open
Abstract
HIV-1 must package its RNA genome to generate infectious viruses. Recent studies have revealed that during genome packaging, HIV-1 not only excludes cellular mRNAs, but also distinguishes among full-length viral RNAs. Using NL4-3 and MAL molecular clones, multiple transcription start sites (TSS) were identified, which generate full-length RNAs that differ by only a few nucleotides at the 5' end. However, HIV-1 selectively packages RNAs containing one guanosine (1G RNA) over RNAs with three guanosines (3G RNA) at the 5' end. Thus, the 5' context of HIV-1 full-length RNA can affect its function. To determine whether the regulation of genome packaging by TSS usage is unique to NL4-3 and MAL, we examined 15 primate lentiviruses including transmitted founder viruses of HIV-1, HIV-2, and several simian immunodeficiency viruses (SIVs). We found that all 15 viruses used multiple TSS to some extent. However, the level of TSS heterogeneity in infected cells varied greatly, even among closely related viruses belonging to the same subtype. Most viruses also exhibited selective packaging of specific full-length viral RNA species into particles. These findings demonstrate that TSS heterogeneity and selective packaging of certain full-length viral RNA species are conserved features of primate lentiviruses. In addition, an SIV strain closely related to the progenitor virus that gave rise to HIV-1 group M, the pandemic pathogen, exhibited TSS usage similar to some HIV-1 strains and preferentially packaged 1G RNA. These findings indicate that multiple TSS usage and selective packaging of a particular unspliced RNA species predate the emergence of HIV-1. IMPORTANCE Unspliced HIV-1 RNA serves two important roles during viral replication: as the virion genome and as the template for translation of Gag/Gag-Pol. Previous studies of two HIV-1 molecular clones have concluded that the TSS usage affects unspliced HIV-1 RNA structures and functions. To investigate the evolutionary origin of this replication strategy, we determined TSS of HIV-1 RNA in infected cells and virions for 15 primate lentiviruses. All HIV-1 isolates examined, including several transmitted founder viruses, utilized multiple TSS and selected a particular RNA species for packaging. Furthermore, these features were observed in SIVs related to the progenitors of HIV-1, suggesting that these characteristics originated from the ancestral viruses. HIV-2, SIVs related to HIV-2, and other SIVs also exhibited multiple TSS and preferential packaging of specific unspliced RNA species, demonstrating that this replication strategy is broadly conserved across primate lentiviruses.
Collapse
Affiliation(s)
- Jonathan M. O. Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Saurabh Shakya
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| |
Collapse
|
6
|
Milbank C, Vira B. Wildmeat consumption and zoonotic spillover: contextualising disease emergence and policy responses. Lancet Planet Health 2022; 6:e439-e448. [PMID: 35550083 PMCID: PMC9084621 DOI: 10.1016/s2542-5196(22)00064-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 05/13/2023]
Abstract
Zoonotic diseases are estimated to constitute 75% of all emerging infectious diseases, of which more than 70% come from wild species. The potential threat of zoonotic spillover from the consumption of wildmeat has been the subject of policy and media attention, especially in the context of the COVID-19 pandemic; however, little is known about the actual conditions that contribute to the risk of spillover and associated disease transmission. In this Review, we compile existing evidence from available literature on the conditions of spillover associated with wildmeat consumption, including the types of wild animal and disease, modes of transmission, and the conditions in which spillover is thought to have occurred. We suggest that stronger understanding of the context of spillover from wildmeat is needed to enable more targeted and effective policy responses that reduce the risk of future pandemics of zoonotic origin. Such interventions could also lead to the avoidance of unintended adverse consequences for human communities that rely on wild produce, including wildmeat, as sources of dietary protein, fat, and micronutrients.
Collapse
Affiliation(s)
| | - Bhaskar Vira
- Department of Geography, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Ning S, Dai Z, Zhao C, Feng Z, Jin K, Yang S, Shen Q, Wang X, Sun R, Zhang W. Novel putative pathogenic viruses identified in pangolins by mining metagenomic data. J Med Virol 2022; 94:2500-2509. [PMID: 34978087 DOI: 10.1002/jmv.27564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022]
Abstract
The pangolin is the only scaly mammal in the world and also an important reservoir of pathogenic viruses. Habitat loss and poaching have been shrinking the survival range of pangolins. More information on pangolin virus populations is needed to better understand and assess potential disease risks. In this study, viral metagenomic data were used to reinvestigate the virome in pangolin lung tissue. Complete genome sequences of two novel anelloviruses were acquired and clustered with the referenced feline strains belonging to genus Tettorquevirus and genus Etatorquevirus, respectively. Two genomes belonging to the genus Gemykibivirus, and species Bat-associated cyclovirus 9 were detected, respectively. One genome with a large contig belonging to the genus Senecavirus were also characterized, according to phylogenetic analysis, which can be presumed to be a novel species. In addition, a full genome of endogenous retroviruse (ERV) was assembled from the lungs of pangolin, and this virus may have the possibility of cross-species transmission during the evolution. This virological investigation has increased our understanding of the virome carried by pangolins and provided a reference baseline for possible zoonotic infectious diseases in the future.
Collapse
Affiliation(s)
- Songyi Ning
- Donghai County People's Hospital, Jiangsu University, Donghai, Jiangsu, China
| | - Ziyuan Dai
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chunyan Zhao
- Nursing School, Wuxi Taihu University, Wuxi, Jiangsu, China
| | - Zhanghao Feng
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kexin Jin
- School of Mathematical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Runfeng Sun
- Donghai County People's Hospital, Jiangsu University, Donghai, Jiangsu, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Jelinek HF, Mousa M, Alefishat E, Osman W, Spence I, Bu D, Feng SF, Byrd J, Magni PA, Sahibzada S, Tay GK, Alsafar HS. Evolution, Ecology, and Zoonotic Transmission of Betacoronaviruses: A Review. Front Vet Sci 2021; 8:644414. [PMID: 34095271 PMCID: PMC8173069 DOI: 10.3389/fvets.2021.644414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus infections have been a part of the animal kingdom for millennia. The difference emerging in the twenty-first century is that a greater number of novel coronaviruses are being discovered primarily due to more advanced technology and that a greater number can be transmitted to humans, either directly or via an intermediate host. This has a range of effects from annual infections that are mild to full-blown pandemics. This review compares the zoonotic potential and relationship between MERS, SARS-CoV, and SARS-CoV-2. The role of bats as possible host species and possible intermediate hosts including pangolins, civets, mink, birds, and other mammals are discussed with reference to mutations of the viral genome affecting zoonosis. Ecological, social, cultural, and environmental factors that may play a role in zoonotic transmission are considered with reference to SARS-CoV, MERS, and SARS-CoV-2 and possible future zoonotic events.
Collapse
Affiliation(s)
- Herbert F. Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Wael Osman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ian Spence
- Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Samuel F. Feng
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jason Byrd
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Paola A. Magni
- Discipline of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Murdoch University Singapore, King's Centre, Singapore, Singapore
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S. Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Olusola BA, Olaleye DO, Odaibo GN. New infections and HIV-1 subtypes among febrile persons and blood donors in Oyo State, Nigeria. J Med Virol 2021; 93:4891-4900. [PMID: 33590935 DOI: 10.1002/jmv.26872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE There were approximately 37.9 million persons infected with HIV in 2018 globally, resulting in 770,000 deaths annually. Over 50% of this infection and deaths occur in sub-Saharan Africa, with countries like Nigeria being seriously affected. Nigeria has one of the highest rates of new infections globally. To control HIV infection in Nigeria, there is a need to continually screen high-risk groups for early HIV infection and subtypes using very sensitive methods. In this study, new HIV-1 infection and circulating HIV-1 subtypes among febrile persons and blood donors were determined. Performance characteristics of three commercial EIA kits were also evaluated. METHODS In total, 1028 participants were recruited for the study. New HIV-1 infection and subtypes were determined using enzyme immunoassays and molecular techniques, respectively. Sensitivity, specificity, predictive values, and agreements were compared among the EIA kits using PCR-confirmed HIV-positive and negative samples. RESULTS The overall prevalence of HIV infection in this study was 5.35%. The rate of new HIV infection was significantly different (p < .03674) among 1028 febrile persons (Ibadan: 2.22%; Saki: 1.36%) and blood donors (5.07%) studied. Three subtypes, CRF02_AG, A, and G, were found among those with new HIV infection. Whereas the commercial ELISA kits had very high specificities (94.12%, 100%, and 100%) for HIV-1 detection, Alere Determine HIV-1 antibody rapid kit had the lowest sensitivity score (50%). CONCLUSION Genetic diversity of HIV-1 strains among infected individuals in Oyo State, Nigeria, is still relatively high. This high level of diversity of HIV-1 strains may impact the reliability of diagnosis of the virus in Nigeria and other African countries where many of the virus strains co-circulate.
Collapse
Affiliation(s)
- Babatunde A Olusola
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - David O Olaleye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Georgina N Odaibo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
10
|
He S, Gao Y, An M, Zhao B, Wang L, Ding H, Han X. Characterization of a Novel HIV-1 CRF01_AE/CRF07_BC Recombinant Strain Among Men Who Have Sex with Men in Liaoning, China. AIDS Res Hum Retroviruses 2021; 37:70-74. [PMID: 32972216 DOI: 10.1089/aid.2020.0223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CRF01_AE and CRF07_BC are two widespread human immunodeficiency virus type 1 (HIV-1) strains among different high-risk populations, including men who have sex with men (MSM), in China. This co-epidemic of various HIV strains enables the production of second-generation recombinants. In this study, we detected a novel HIV-1 CRF01_AE/CRF07_BC recombinant from LN321945, an MSM lived in Liaoning province, northeast China. The phylogenetic and recombination analyses indicated the near full-length genome (NFLG) sequence of LN321945 had six recombination breakpoints, with three CRF07_BC fragments inserted into a CRF01_AE backbone. Further subregion trees analysis revealed that both CRF01_AE and CRF07_BC fragments were derived from two predominant HIV-1 strains among MSM. In addition, the NFLG of LN321945 was revealed to be clustered closely to another CRF01_AE/CRF07_BC recombinant previously identified in Shaanxi province, northwest China, but these two recombinants had distinct recombination structure and origin of CRF01_AE fragments. Hence, this study identified a second-generation recombinant between the main strains circulating among MSM, indicating more complicated trend of HIV-1 epidemic in China.
Collapse
Affiliation(s)
- Shan He
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Yang Gao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Minghui An
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Lin Wang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| |
Collapse
|
11
|
Specific Guanosines in the HIV-2 Leader RNA are Essential for Efficient Viral Genome Packaging. J Mol Biol 2020; 433:166718. [PMID: 33221337 DOI: 10.1016/j.jmb.2020.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022]
Abstract
HIV-2, a human pathogen that causes acquired immunodeficiency syndrome, is distinct from the more prevalent HIV-1 in several features including its evolutionary history and certain aspects of viral replication. Like other retroviruses, HIV-2 packages two copies of full-length viral RNA during virus assembly and efficient genome encapsidation is mediated by the viral protein Gag. We sought to define cis-acting elements in the HIV-2 genome that are important for the encapsidation of full-length RNA into viral particles. Based on previous studies of murine leukemia virus and HIV-1, we hypothesized that unpaired guanosines in the 5' untranslated region (UTR) play an important role in Gag:RNA interactions leading to genome packaging. To test our hypothesis, we targeted 18 guanosines located in 9 sites within the HIV-2 5' UTR and performed substitution analyses. We found that mutating as few as three guanosines significantly reduce RNA packaging efficiency. However, not all guanosines examined have the same effect; instead, a hierarchical order exists wherein a primary site, a secondary site, and three tertiary sites are identified. Additionally, there are functional overlaps in these sites and mutations of more than one site can act synergistically to cause genome packaging defects. These studies demonstrate the importance of specific guanosines in HIV-2 5'UTR in mediating genome packaging. Our results also demonstrate an interchangeable and hierarchical nature of guanosine-containing sites, which was not previously established, thereby revealing key insights into the replication mechanisms of HIV-2.
Collapse
|
12
|
Kist NC, Lambert B, Campbell S, Katzourakis A, Lunn D, Lemey P, Iversen AKN. HIV-1 p24Gag adaptation to modern and archaic HLA-allele frequency differences in ethnic groups contributes to viral subtype diversification. Virus Evol 2020; 6:veaa085. [PMID: 33343925 PMCID: PMC7733611 DOI: 10.1093/ve/veaa085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pathogen-driven selection and past interbreeding with archaic human lineages have resulted in differences in human leukocyte antigen (HLA)-allele frequencies between modern human populations. Whether or not this variation affects pathogen subtype diversification is unknown. Here we show a strong positive correlation between ethnic diversity in African countries and both human immunodeficiency virus (HIV)-1 p24gag and subtype diversity. We demonstrate that ethnic HLA-allele differences between populations have influenced HIV-1 subtype diversification as the virus adapted to escape common antiviral immune responses. The evolution of HIV Subtype B (HIV-B), which does not appear to be indigenous to Africa, is strongly affected by immune responses associated with Eurasian HLA variants acquired through adaptive introgression from Neanderthals and Denisovans. Furthermore, we show that the increasing and disproportionate number of HIV-infections among African Americans in the USA drive HIV-B evolution towards an Africa-centric HIV-1 state. Similar adaptation of other pathogens to HLA variants common in affected populations is likely.
Collapse
Affiliation(s)
- Nicolaas C Kist
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Ben Lambert
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, Medical School Building St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Samuel Campbell
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Daniel Lunn
- Department of Statistics, University of Oxford, St Giles’, Oxford OX1 3LB, UK
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Leuven B-3000, Belgium
| | - Astrid K N Iversen
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
13
|
Adewumi OM, Dukhovlinova E, Shehu NY, Zhou S, Council OD, Akanbi MO, Taiwo B, Ogunniyi A, Robertson K, Kanyama C, Hosseinipour MC, Swanstrom R. HIV-1 Central Nervous System Compartmentalization and Cytokine Interplay in Non-Subtype B HIV-1 Infections in Nigeria and Malawi. AIDS Res Hum Retroviruses 2020; 36:490-500. [PMID: 31914800 DOI: 10.1089/aid.2019.0245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HIV-1 compartmentalization in the central nervous system (CNS) and its contribution to neurological disease have been well documented. Previous studies were conducted among people infected with subtypes B or C where CNS compartmentalization has been observed when comparing viral sequences in the blood to virus in cerebrospinal fluid (CSF). However, little is known about CNS compartmentalization in other HIV-1 subtypes. Using a deep sequencing approach with Primer ID, we conducted a cross-sectional study among Nigerian and Malawian HIV-1 cohorts with or without fungal Cryptococcus infection diagnosed as cryptococcal meningitis (CM) to determine the extent of CSF/CNS compartmentalization with CM. Paired plasma and CSF samples from 45 participants were also analyzed for cytokine/chemokine levels. Viral populations comparing virus in the blood and the CSF ranged from compartmentalized to equilibrated, including minor or partial compartmentalization or clonal amplification of a single viral sequence. The frequency of compartmentalized viral populations in the blood and CSF was similar between the CM- and CM+ participants. We confirmed the potential to see compartmentalization with subtype C infection and have also documented CNS compartmentalization of an HIV-1 subtype G infection. Cytokine profiles indicated a proinflammatory environment, especially within the CSF/CNS. However, sCD163 was suppressed in the CSF in the presence of CM, perhaps due to elevated levels of IL-4, which were also a feature of the cytokine profile, showing a distinct cytokine profile with CM.
Collapse
Affiliation(s)
- Olubusuyi Moses Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Infectious Disease Institute, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Elena Dukhovlinova
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathan Y. Shehu
- Department of Medicine, Jos University Teaching Hospital, Jos, Nigeria
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Olivia D. Council
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maxwell O. Akanbi
- Department of Medicine, Jos University Teaching Hospital, Jos, Nigeria
- Health Sciences Integrated PhD Program, Center for Education in Health Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Babafemi Taiwo
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Adesola Ogunniyi
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kevin Robertson
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cecilia Kanyama
- UNC Project-Malawi, Kamuzu Central Hospital, Lilongwe, Malawi
| | - Mina C. Hosseinipour
- UNC Project-Malawi, Kamuzu Central Hospital, Lilongwe, Malawi
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Mikasi SG, Gichana JO, Van der Walt C, Brado D, Obasa AE, Njenda D, Messembe M, Lyonga E, Assoumou O, Cloete R, Ikomey GM, Jacobs GB. HIV-1 Integrase Diversity and Resistance-Associated Mutations and Polymorphisms Among Integrase Strand Transfer Inhibitor-Naive HIV-1 Patients from Cameroon. AIDS Res Hum Retroviruses 2020; 36:450-455. [PMID: 31830799 DOI: 10.1089/aid.2019.0264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The World Health Organization (WHO) has put forth recommendations for the use of integrase (IN) strand transfer inhibitors (INSTIs) to be part of the first-line combination antiretroviral therapy regimen to treat HIV infections. The knowledge of pretreatment drug resistance against INSTIs is still scarce in resource-limited settings (RLS). We characterized the integrase gene to identify resistance-associated mutations (RAMs) in 56 INSTI-naive patient viral sequences from Cameroon. Study analysis used 37 sequences with fragment size ≥500 bp or of good quality .The majority of the sequences were identified as CRF02_AG 54.% (n = 20/37) and 45.9% (n = 17/37), other subtype viral sequences include (A, CRF36_cpx, F,G, and C). A total of 18.9% (n = 7/37) of the sequences had RAMs, with only 5.4% (n = 2/37) having major RAMs (Y143R/C/D/G and P145S), against INSTIs. Accessory RAMs were present in 8.1% (n = 3/37) of the sequences, of which one sequence contained solely E157Q, and another Q95K. One patient sequence had three accessory RAMs (G140E, E157Q, and G163R). We identified major RAMs to INSTIs, which might have a potential clinical impact to dolutegravir rollout in RLS, including Cameroon. This is the first study to describe RAMs among INSTI-naive people living with HIV-1 (PLHIV-1) infected with CRF02_AG and other subtypes in Cameroon.
Collapse
Affiliation(s)
- Sello Given Mikasi
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Josiah Otwoma Gichana
- Division of Oral Surgery, Department of Pathology Laboratory, University of Nairobi, Nairobi, Kenya
| | - Cheri Van der Walt
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Dominik Brado
- Division of Virology, Faculty of Medicine, Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Adetayo Emmanuel Obasa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Duncan Njenda
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, University of Stockholm, Stockholm, Sweden
| | - Martha Messembe
- Faculty of Medicine and Biomedical Sciences, Centre for the Study and Control of Communicable Diseases, University of Yaoundé I, Yaoundé, Cameroon
| | - Emilia Lyonga
- Faculty of Medicine and Biomedical Sciences, Centre for the Study and Control of Communicable Diseases, University of Yaoundé I, Yaoundé, Cameroon
| | - Okomo Assoumou
- Faculty of Medicine and Biomedical Sciences, Centre for the Study and Control of Communicable Diseases, University of Yaoundé I, Yaoundé, Cameroon
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - George Mondinde Ikomey
- Faculty of Medicine and Biomedical Sciences, Centre for the Study and Control of Communicable Diseases, University of Yaoundé I, Yaoundé, Cameroon
| | - Graeme Brendon Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
15
|
Calado R, Duarte J, Borrego P, Marcelino JM, Bártolo I, Martin F, Figueiredo I, Almeida S, Graça L, Vítor J, Aires da Silva F, Dias I, Carrapiço B, Taveira N. A Prime-Boost Immunization Strategy with Vaccinia Virus Expressing Novel gp120 Envelope Glycoprotein from a CRF02_AG Isolate Elicits Cross-Clade Tier 2 HIV-1 Neutralizing Antibodies. Vaccines (Basel) 2020; 8:E171. [PMID: 32272637 PMCID: PMC7349027 DOI: 10.3390/vaccines8020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Development of new immunogens eliciting broadly neutralizing antibodies (bNAbs) is a main priority for the HIV-1 vaccine field. Envelope glycoproteins from non-B-non-C HIV-1clades have not been fully explored as components of a vaccine. We produced Vaccinia viruses expressing a truncated version of gp120 (gp120t) from HIV-1 clades CRF02_AG, H, J, B, and C and examined their immunogenicity in mice and rabbits. Mice primed with the recombinant Vaccinia viruses and boosted with the homologous gp120t or C2V3C3 polypeptides developed antibodies that bind potently to homologous and heterologous envelope glycoproteins. Notably, a subset of mice immunized with the CRF02_AG-based envelope immunogens developed a cross-reactive neutralizing response against tier 2 HIV-1 Env-pseudoviruses and primary isolates. Rabbits vaccinated with the CRF02_AG-based envelope immunogens also generated potent binding antibodies, and one animal elicited antibodies that neutralized almost all (13 of 16, 81.3%) tier 2 HIV-1 isolates tested. Overall, the results suggest that the novel CRF02_AG-based envelope immunogens and prime-boost immunization strategy elicit the type of immune responses required for a preventive HIV-1 vaccine.
Collapse
Affiliation(s)
- Rita Calado
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Joana Duarte
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Pedro Borrego
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - José Maria Marcelino
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Monte de Caparica, Portugal
| | - Inês Bártolo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Francisco Martin
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Inês Figueiredo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Silvia Almeida
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, 1649-02 Lisboa, Portugal; (S.A.); (L.G.)
- Post-Graduate Program in Infectious Diseases, and Department of Social Medicine, Center of Health Sciences, Federal University of Espirito Santo, Vitória 29075-910, Brazil
| | - Luís Graça
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, 1649-02 Lisboa, Portugal; (S.A.); (L.G.)
| | - Jorge Vítor
- Biochemistry and Human Biology Dept, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Frederico Aires da Silva
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (F.A.d.S.); (I.D.); (B.C.)
| | - Inês Dias
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (F.A.d.S.); (I.D.); (B.C.)
| | - Belmira Carrapiço
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (F.A.d.S.); (I.D.); (B.C.)
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Monte de Caparica, Portugal
| |
Collapse
|
16
|
Augier C, Beyne E, Villabona-Arenas CJ, Mpoudi Ngole E, Peeters M, Ayouba A. Identification of a Novel Simian Immunodeficiency Virus-Infected African Green Monkey ( Chlorocebus tantalus) Confirms that Tantalus Monkeys in Cameroon Are Infected with a Mosaic SIVagm Lineage. AIDS Res Hum Retroviruses 2020; 36:167-170. [PMID: 31547667 DOI: 10.1089/aid.2019.0216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study we report on the identification of a simian immunodeficiency virus (SIV) infecting a Chlorocebus tantalus from Cameroon. The isolate, SIVagmTAN-CA1, was molecularly characterized by sequencing partial genome (∼4,000 bp) using the conventional Sanger method and the Oxford Nanopore Technology (ONT). In pol and gp41/nef SIVagmTAN-CA1 clusters with SIVagmSAB infecting Chlorocebus sabaeus from West Africa, whereas in env-gp120 it clusters with SIVagmTAN infecting C. tantalus from Central Africa. This mosaic structure is similar to that of a previously reported isolate infecting another tantalus monkey from Cameroon and confirms that the evolution of SIVagm is complex. Our data show that ONT sequencing gives results comparable with conventional Sanger sequencing on SIV and could help in distinguishing recombination and coinfection.
Collapse
Affiliation(s)
- Camille Augier
- Recherches Translationnelles sur le VIH et Maladies Infectieuses, Institut National de la Santé et de la Recherche Médicale 1175, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Emmanuelle Beyne
- Recherches Translationnelles sur le VIH et Maladies Infectieuses, Institut National de la Santé et de la Recherche Médicale 1175, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Christian Julian Villabona-Arenas
- Recherches Translationnelles sur le VIH et Maladies Infectieuses, Institut National de la Santé et de la Recherche Médicale 1175, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Eitel Mpoudi Ngole
- Centre de Recherches sur les Maladies Émergentes, Ré-émergentes et la Médecine Nucléaire, Institut de Recherches Médicales et D'études des Plantes Médicinales, Yaoundé, Cameroun
| | - Martine Peeters
- Recherches Translationnelles sur le VIH et Maladies Infectieuses, Institut National de la Santé et de la Recherche Médicale 1175, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Ahidjo Ayouba
- Recherches Translationnelles sur le VIH et Maladies Infectieuses, Institut National de la Santé et de la Recherche Médicale 1175, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| |
Collapse
|
17
|
Mak L, Perera D, Lang R, Kossinna P, He J, Gill MJ, Long Q, van Marle G. Evaluation of A Phylogenetic Pipeline to Examine Transmission Networks in A Canadian HIV Cohort. Microorganisms 2020; 8:E196. [PMID: 32023939 PMCID: PMC7074708 DOI: 10.3390/microorganisms8020196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 01/08/2023] Open
Abstract
Keywords: HIV; Canada; molecular phylogenetics; viral evolution; person-to-person transmission inference; transmission network; summary statistics.
Collapse
Affiliation(s)
- Lauren Mak
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada (P.K.)
| | - Deshan Perera
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada (P.K.)
| | - Raynell Lang
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
| | - Pathum Kossinna
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada (P.K.)
| | - Jingni He
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada (P.K.)
| | - M. John Gill
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
| | - Quan Long
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada (P.K.)
- Department of Medical Genetics, and Mathematics & Statistics, Alberta Children’s Hospital Research Institute, O’Brien Institute for Public Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Mathematics & Statistics, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Guido van Marle
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
18
|
An M, Han X, Zhao B, English S, Frost SDW, Zhang H, Shang H. Cross-Continental Dispersal of Major HIV-1 CRF01_AE Clusters in China. Front Microbiol 2020; 11:61. [PMID: 32082287 PMCID: PMC7005055 DOI: 10.3389/fmicb.2020.00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/13/2020] [Indexed: 11/13/2022] Open
Abstract
Since the 1990s, several distinct clusters of human immunodeficiency virus-type 1 (HIV-1) CRF01_AE related to a large epidemic in China have been identified, but it is yet poorly understood whether its transmission has dispersed globally. We aimed to characterize and quantify the genetic relationship of HIV-1 CRF01_AEs circulating in China and other countries. Using representative sequences of Chinese clusters as queries, all relevant CRF01_AE pol sequences in two large databases (the Los Alamos HIV sequence database and the UK HIV Drug Resistance Database) were selected with the online basic local alignment search (BLAST) tool. Phylogenetic and phylogeographic analyses were then carried out to characterize possible linkage of CRF01_AE strains between China and the rest of the world. We identified that 269 strains isolated in other parts of the world were associated with five major Chinese CRF01_AE clusters. 80.7% were located within CN.01AE.HST/IDU-2, most of which were born in Southeast Asia. 17.8% were clustered with CN.01AE.MSM-4 and -5. Two distinct sub-clusters associated with Chinese men who have sex with men (MSM) emerged in HK-United Kingdom and Japan after 2000. Our analysis suggests that HIV-1 CRF01_AE strains related to viral transmission in China were initially brought to the United Kingdom or other countries during the 1990s by Asian immigrants or returning international tourists from Southeast Asia, and then after having circulated among MSM in China for several years, these Chinese strains dispersed outside again, possibly through MSM network. This study provided evidence of regional and global dispersal of Chinese CRF01_AE strains. It would also help understand the global landscape of HIV epidemic associated with CRF01_AE transmission and highlight the need for further international collaborative study in this field.
Collapse
Affiliation(s)
- Minghui An
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Suzanne English
- PHE Clinical Microbiology and Public Health Laboratory, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hongyi Zhang
- PHE Clinical Microbiology and Public Health Laboratory, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
19
|
Banin AN, Tuen M, Bimela JS, Tongo M, Zappile P, Khodadadi‐Jamayran A, Nanfack AJ, Okonko IO, Meli J, Wang X, Mbanya D, Ngogang J, Gorny MK, Heguy A, Fokunang C, Duerr R. Near full genome characterization of HIV-1 unique recombinant forms in Cameroon reveals dominant CRF02_AG and F2 recombination patterns. J Int AIDS Soc 2019; 22:e25362. [PMID: 31353798 PMCID: PMC6661401 DOI: 10.1002/jia2.25362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION In Cameroon, a manifold diversity of HIV strains exists with CRF02_AG and unique recombinant forms (URFs) being the predominant strains. In recent years, a steady increase in URFs and clade F2 viruses has been monitored through partial genome sequencing. There is an information gap in the characterization of emerging URFs along the full genome, which is needed to address the challenges URFs pose towards diagnosis, treatment and HIV-1 vaccine design. METHOD Eighteen Cameroonian URFs from samples collected between the years 2000 and 2015 were studied using a newly developed near full genome sequencing (NFGS) protocol based on variable nested RT-PCRs with a versatile primer set. Near full genomes were characterized for recombination patterns and sequence signatures with possible impact on antiretroviral treatment or Env-directed immune responses. Third-generation sequencing (3GS) of near full or half genomes (HGs) gave insight into intra-patient URF diversity. RESULTS The characterized URFs were composed of a broad variety of subtypes and recombinants including A, F, G, CRF01_AE, CRF02_AG and CRF22_01A1. Phylogenetic analysis unveiled dominant CRF02_AG and F2 recombination patterns. 3GS indicated a high intra-patient URF diversity with up to four distinct viral sub-populations present in plasma at the same time. URF pol genomic analysis revealed a number of accessory drug resistance mutations (DRMs) in the ART-naïve participants. Genotypic env analysis suggests CCR5 usage in 14/18 samples and identified deviations at residues, critical for gp120/gp41 interphase and CD4 binding site broadly neutralizing antibodies in more than half of the studied URFs. V1V2 sites of immune pressure in the human RV144 vaccine study varied in more than a third of URFs. CONCLUSIONS This study identified novel mosaic patterns in URFs in Cameroon. In line with the regional predominance of CRF_02AG and the increased prevalence of clade F2, prominent CRF_02AG and F2 background patterns were observed underlying the URFs. In the context of the novel mosaic genomes, the impact of the identified accessory DRMs and Env epitope variations on treatment and immune control remains elusive. The evolving diversity of HIV-1 URFs in Cameroon requires continuous monitoring to respond to the increasing challenges for diagnosis, antiretroviral treatment and prevention.
Collapse
Affiliation(s)
- Andrew N Banin
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
- Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé 1YaoundéCameroon
| | - Michael Tuen
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
| | - Jude S Bimela
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
- Faculty of ScienceDepartment of BiochemistryUniversity of Yaoundé 1YaoundéCameroon
| | - Marcel Tongo
- Center of Research for Emerging and Re‐Emerging Diseases (CREMER)Institute of Medical Research and Study of Medicinal PlantsYaoundéCameroon
| | - Paul Zappile
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
| | - Alireza Khodadadi‐Jamayran
- Applied Bioinformatics Laboratories (ABL) and Genome Technology Center (GTC)Division of Advanced Research Technologies (DART)New York University Langone Medical CenterNew YorkNYUSA
| | - Aubin J Nanfack
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
- Medical Diagnostic CenterYaoundéCameroon
- Chantal Biya International Reference Center for Research on HIV/AIDS Prevention and ManagementYaoundéCameroon
| | - Iheanyi O Okonko
- Virus Research UnitDepartment of MicrobiologyUniversity of Port HarcourtPort HarcourtNigeria
| | | | - Xiaohong Wang
- Manhattan Veterans Affairs Harbor Healthcare SystemsNew YorkNYUSA
| | - Dora Mbanya
- Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé 1YaoundéCameroon
| | - Jeanne Ngogang
- Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé 1YaoundéCameroon
| | - Miroslaw K Gorny
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
| | - Adriana Heguy
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
| | - Charles Fokunang
- Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé 1YaoundéCameroon
| | - Ralf Duerr
- Department of PathologyNew York University School of MedicineNew YorkNYUSA
- Manhattan Veterans Affairs Harbor Healthcare SystemsNew YorkNYUSA
| |
Collapse
|
20
|
Guégan JF, de Thoisy B, Ayouba A, Cappelle J. [Tropical forests, changes in land uses and emerging infectious hazards]. SANTE PUBLIQUE 2019; S1:91-106. [PMID: 31210496 DOI: 10.3917/spub.190.0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Tropical forests have the greatest biodiversity in macroorganisms on the planet, and they are also the richest in myriads of microorganisms for which so little is known today. Over the last 50 years, many of these microbial forms, that are naturally embedded into wildlife or the environment, e.g. soil, water, have revealed to be more or less dangerous pathogens for people exposed to these new natural threats, i.e. emerging infectious diseases. Here, we discuss about the extraordinary diversity of microorganisms that are present in tropical rainforests. We first present the main global distribution patterns for microbial forms at the interface between tropical wildlife and human, and second we provide an epidemiological picture on how microbial transmission from wild animals or the environment to people operates in tropical areas through four case-studies. We examine the animal hosts or environment, and transmission mechanisms involved in spillover of zoonotic or environmentally-persistent microbes, and identify land-use changes through deforestation for the development of agriculture, and contacts with wildlife notably through bush meat hunting as major drivers that facilitate mixing of diverse animal hosts and their microbial communities with human during practices. With an increase of deforestation in the tropics and more contacts between wildlife and people, new emerging disease events with high epidemic and pandemic potential will happen, that should guide new health policies and strategies at the global scale.
Collapse
|
21
|
Murzakova A, Kireev D, Baryshev P, Lopatukhin A, Serova E, Shemshura A, Saukhat S, Kolpakov D, Matuzkova A, Suladze A, Nosik M, Eremin V, Shipulin G, Pokrovsky V. Molecular Epidemiology of HIV-1 Subtype G in the Russian Federation. Viruses 2019; 11:E348. [PMID: 30995717 PMCID: PMC6521041 DOI: 10.3390/v11040348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/02/2023] Open
Abstract
Although HIV-1 subtype A has predominated in Russia since the end of the 20th century, other viral variants also circulate in this country. The dramatic outbreak of HIV-1 subtype G in 1988-1990 represents the origin of this variant spreading in Russia. However, full genome sequencing of the nosocomial viral variant and an analysis of the current circulating variants have not been conducted. We performed near full-length genome sequencing and phylogenetic and recombination analyses of 11 samples; the samples were determined to be subtype G based on an analysis of the pol region. Three samples were reliably obtained from patients infected during the nosocomial outbreak. The other 8 samples were obtained from patients who were diagnosed in 2010-2015. Phylogenetic analysis confirmed that a man from the Democratic Republic of the Congo was the origin of the outbreak. We also found that currently circulating viral variants that were genotyped as subtype G according to their pol region are in fact unique recombinant forms. These recombinant forms are similar to the BG-recombinants from Western Europe, particularly Spain and Portugal. The limitations of subtyping based on the pol region suggest that these viral variants are more widespread in Europe than is currently supposed.
Collapse
Affiliation(s)
| | - Dmitry Kireev
- Central Research Institute of Epidemiology, 111123 Moscow, Russia.
| | - Pavel Baryshev
- Central Research Institute of Epidemiology, 111123 Moscow, Russia.
| | | | - Ekaterina Serova
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia.
| | - Andrey Shemshura
- Clinical Center of HIV/AIDS of the Ministry of Health of Krasnodar Region, 350015 Krasnodar, Russia.
| | - Sergey Saukhat
- Department of Epidemiology, Rostov State Medical University, 344022 Rostov-on-Don, Russia.
| | - Dmitry Kolpakov
- Rostov Research Institute of Microbiology and Parasitology, 344000 Rostov-on-Don, Russia.
| | - Anna Matuzkova
- Rostov Research Institute of Microbiology and Parasitology, 344000 Rostov-on-Don, Russia.
| | - Alexander Suladze
- Rostov Research Institute of Microbiology and Parasitology, 344000 Rostov-on-Don, Russia.
| | - Marina Nosik
- Ilya Ilyich Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia.
| | - Vladimir Eremin
- Republican Research and Practical Center for Epidemiology and Microbiology, 220114 Minsk, Belarus.
| | - German Shipulin
- Center of Strategical Planning and Management of Biomedical Health Risks of the Ministry of Health, 119121 Moscow, Russia.
| | - Vadim Pokrovsky
- Central Research Institute of Epidemiology, 111123 Moscow, Russia.
- Department of infectious diseases with courses of epidemiology and phthisiology, RUDN University, 117198 Moscow, Russia.
| |
Collapse
|
22
|
Evolution of the Envelope Glycoprotein of HIV-1 Clade B toward Higher Infectious Properties over the Course of the Epidemic. J Virol 2019; 93:JVI.01171-18. [PMID: 30567994 DOI: 10.1128/jvi.01171-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023] Open
Abstract
We showed previously that during the HIV/AIDS epidemic, the envelope glycoprotein (Env) of HIV-1, and in particular, the gp120 subunit, evolved toward an increased resistance to neutralizing antibodies at a population level. Here, we considered whether the antigenic evolution of the HIV-1 Env is associated with modifications of its functional properties, focusing on cell entry efficacy and interactions with the receptor and coreceptors. We tested the infectivity of a panel of Env-pseudotyped viruses derived from patients infected by subtype B viruses at three periods of the epidemic (1987 to 1991, 1996 to 2000, and 2006 to 2010). Pseudotyped viruses harboring Env from patients infected during the most recent period were approximately 10-fold more infectious in cell culture than those from patients infected at the beginning of the epidemic. This was associated with faster viral entry kinetics: contemporary viruses entered target cells approximately twice as fast as historical viruses. Contemporary viruses were also twice as resistant as historical viruses to the fusion inhibitor enfuvirtide. Resistance to enfuvirtide correlated with a resistance to CCR5 antagonists, suggesting that contemporary viruses expanded their CCR5 usage efficiency. Viruses were equally captured by DC-SIGN, but after binding to DC-SIGN, contemporary viruses infected target cells more efficiently than historical viruses. Thus, we report evidence that the infectious properties of the envelope glycoprotein of HIV-1 increased during the course of the epidemic. It is plausible that these changes affected viral fitness during the transmission process and might have contributed to an increasing virulence of HIV-1.IMPORTANCE Following primary infection by HIV-1, neutralizing antibodies (NAbs) exert selective pressure on the HIV-1 envelope glycoprotein (Env), driving the evolution of the viral population. Previous studies suggested that, as a consequence, Env has evolved at the HIV species level since the start of the epidemic so as to display greater resistance to NAbs. Here, we investigated whether the antigenic evolution of the HIV-1 Env is associated with modifications of its functional properties, focusing on cell entry efficacy and interactions with the receptor and coreceptors. Our data provide evidence that the infectious properties of the HIV-1 Env increased during the course of the epidemic. These changes may have contributed to increasing virulence of HIV-1 and an optimization of transmission between individuals.
Collapse
|
23
|
Yuan Z, Kang G, Daharsh L, Fan W, Li Q. SIVcpz closely related to the ancestral HIV-1 is less or non-pathogenic to humans in a hu-BLT mouse model. Emerg Microbes Infect 2018; 7:59. [PMID: 29615603 PMCID: PMC5882851 DOI: 10.1038/s41426-018-0062-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/13/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022]
Abstract
The HIV-1 pandemic is a consequence of the cross-species transmission of simian immunodeficiency virus in wild chimpanzees (SIVcpz) to humans. Our previous study demonstrated SIVcpz strains that are closely related to the ancestral viruses of HIV-1 groups M (SIVcpzMB897) and N (SIVcpzEK505) and two SIVcpz lineages that are not associated with any known HIV-1 infections in humans (SIVcpzMT145 and SIVcpzBF1167), all can readily infect and robustly replicate in the humanized-BLT mouse model of humans. However, the comparative pathogenicity of different SIVcpz strains remains unknown. Herein, we compared the pathogenicity of the above four SIVcpz strains with HIV-1 using humanized-BLT mice. Unexpectedly, we found that all four SIVcpz strains were significantly less pathogenic or non-pathogenic compared to HIV-1, manifesting lower degrees of CD4+ T-cell depletion and immune activation. Transcriptome analyses of CD4+ T cells from hu-BLT mice infected with SIVcpz versus HIV-1 revealed enhanced expression of genes related to cell survival and reduced inflammation/immune activation in SIVcpz-infected mice. Together, our study results demonstrate for the first time that SIVcpz is significantly less or non-pathogenic to human immune cells compared to HIV-1. Our findings lay the groundwork for a possible new understanding of the evolutionary origins of HIV-1, where the initial SIVcpz cross-species transmission virus may be initially less pathogenic to humans.
Collapse
Affiliation(s)
- Zhe Yuan
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, 20892, USA
| | - Guobin Kang
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Lance Daharsh
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Wenjin Fan
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Qingsheng Li
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
24
|
Njouom R, Ngono L, Mekinda-Gometi DD, Ndé CK, Sadeuh-Mba SA, Vernet MA, Tchendjou P, Vernet G. Evaluation of the performances of twelve rapid diagnostic tests for diagnosis of HIV infection in Yaounde, Cameroon. J Virol Methods 2017; 243:158-163. [PMID: 28219762 DOI: 10.1016/j.jviromet.2017.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 01/05/2017] [Accepted: 02/10/2017] [Indexed: 11/26/2022]
Abstract
According to the WHO/UNAIDS recommendations, an acceptable HIV rapid diagnostic tests (RDTs) has to perform a sensitivity≥99% and a specificity≥98%. Given the constant release of new RDTs for HIV testing in the market and the high HIV genetic diversity in Cameroon, it is interesting to monitor their performances in that setting. A total of 240 HIV positive (including 219 HIV-1 M, 15 HIV-1 O, 1 HIV-1 N, 1 HIV-1 M/O recombinant and 4 HIV-2) and 240 HIV negative plasma samples were used to evaluate twelve routinely used RDTs in Cameroon. A reference algorithm combining Enzyme Immunoassays and nucleic acid testing was used as gold standard. The sensitivity, specificity, positive predictive value, and negative predictive value of the twelve RDTs evaluated varied between 93.7 and 100%; 95.8 and 100%; 96.0 and 100%, and 94.1 and 100%, respectively. Five out of the twelve RDTs could not detect some HIV-1 O variants, one of them failed to detect an HIV-2 variant while all them efficiently detected HIV-1 N and HIV M/O recombinant. Our findings underscore the need to monitor the performances of RDTs to be used for HIV testing in Cameroon using locally obtained well-characterized samples panels.
Collapse
Affiliation(s)
- Richard Njouom
- Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaounde II, Yaounde, Cameroon.
| | - Laure Ngono
- Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaounde II, Yaounde, Cameroon.
| | - Desirée Denise Mekinda-Gometi
- Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaounde II, Yaounde, Cameroon.
| | - Cyprien Kengne Ndé
- Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaounde II, Yaounde, Cameroon.
| | - Serge Alain Sadeuh-Mba
- Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaounde II, Yaounde, Cameroon.
| | - Marie-Astrid Vernet
- Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaounde II, Yaounde, Cameroon.
| | - Patrice Tchendjou
- Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaounde II, Yaounde, Cameroon.
| | - Guy Vernet
- Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaounde II, Yaounde, Cameroon.
| |
Collapse
|
25
|
Transspecies Transmission of Gammaretroviruses and the Origin of the Gibbon Ape Leukaemia Virus (GaLV) and the Koala Retrovirus (KoRV). Viruses 2016; 8:v8120336. [PMID: 27999419 PMCID: PMC5192397 DOI: 10.3390/v8120336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 01/05/2023] Open
Abstract
Transspecies transmission of retroviruses is a frequent event, and the human immunodeficiency virus-1 (HIV-1) is a well-known example. The gibbon ape leukaemia virus (GaLV) and koala retrovirus (KoRV), two gammaretroviruses, are also the result of a transspecies transmission, however from a still unknown host. Related retroviruses have been found in Southeast Asian mice although the sequence similarity was limited. Viruses with a higher sequence homology were isolated from Melomys burtoni, the Australian and Indonesian grassland melomys. However, only the habitats of the koalas and the grassland melomys in Australia are overlapping, indicating that the melomys virus may not be the precursor of the GaLV. Viruses closely related to GaLV/KoRV were also detected in bats. Therefore, given the fact that the habitats of the gibbons in Thailand and the koalas in Australia are far away, and that bats are able to fly over long distances, the hypothesis that retroviruses of bats are the origin of GaLV and KoRV deserves consideration. Analysis of previous transspecies transmissions of retroviruses may help to evaluate the potential of transmission of related retroviruses in the future, e.g., that of porcine endogenous retroviruses (PERVs) during xenotransplantation using pig cells, tissues or organs.
Collapse
|
26
|
Bártolo I, Calado R, Borrego P, Leitner T, Taveira N. Rare HIV-1 Subtype J Genomes and a New H/U/CRF02_AG Recombinant Genome Suggests an Ancient Origin of HIV-1 in Angola. AIDS Res Hum Retroviruses 2016; 32:822-8. [PMID: 27098898 DOI: 10.1089/aid.2016.0084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Angola has an extremely diverse HIV-1 epidemic fueled in part by the frequent interchange of people with the Democratic Republic of Congo (DRC) and Republic of Congo (RC). Characterization of HIV-1 strains circulating in Angola should help to better understand the origin of HIV-1 subtypes and recombinant forms and their transmission dynamics. In this study we characterize the first near full-length HIV-1 genomic sequences from HIV-1 infected individuals from Angola. Samples were obtained in 1993 from three HIV-1 infected patients living in Cabinda, Angola. Near full-length genomic sequences were obtained from virus isolates. Maximum likelihood phylogenetic tree inference and analyses of potential recombination patterns were performed to evaluate the sequence classifications and origins. Phylogenetic and recombination analyses revealed that one virus was a pure subtype J, another mostly subtype J with a small uncertain region, and the final virus was classified as a H/U/CRF02_AG recombinant. Consistent with their epidemiological data, the subtype J sequences were more closely related to each other than to other J sequences previously published. Based on the env gene, taxa from Angola occur throughout the global subtype J phylogeny. HIV-1 subtypes J and H are present in Angola at low levels since at least 1993. Low transmission efficiency and/or high recombination potential may explain their limited epidemic success in Angola and worldwide. The high diversity of rare subtypes in Angola suggests that Angola was part of the early establishment of the HIV-1 pandemic.
Collapse
Affiliation(s)
- Inês Bártolo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Calado
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Borrego
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Nuno Taveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, Caparica, Portugal
| |
Collapse
|
27
|
Garcia-Tellez T, Huot N, Ploquin MJ, Rascle P, Jacquelin B, Müller-Trutwin M. Non-human primates in HIV research: Achievements, limits and alternatives. INFECTION GENETICS AND EVOLUTION 2016; 46:324-332. [PMID: 27469027 DOI: 10.1016/j.meegid.2016.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022]
Abstract
An ideal model for HIV-1 research is still unavailable. However, infection of non-human primates (NHP), such as macaques, with Simian Immunodeficiency Virus (SIV) recapitulates most virological, immunological and clinical hallmarks of HIV infection in humans. It has become the most suitable model to study the mechanisms of transmission and physiopathology of HIV/AIDS. On the other hand, natural hosts of SIV, such as African green monkeys and sooty mangabeys that when infected do not progress to AIDS, represent an excellent model to elucidate the mechanisms involved in the capacity of controlling inflammation and disease progression. The use of NHP-SIV models has indeed enriched our knowledge in the fields of: i) viral transmission and viral reservoirs, ii) early immune responses, iii) host cell-virus interactions in tissues, iv) AIDS pathogenesis, v) virulence factors, vi) prevention and vii) drug development. The possibility to control many variables during experimental SIV infection, together with the resemblance between SIV and HIV infections, make the NHP model the most appropriate, so far, for HIV/AIDS research. Nonetheless, some limitations in using these models have to be considered. Alternative models for HIV/AIDS research, such as humanized mice and recombinant forms of HIV-SIV viruses (SHIV) for NHP infection, have been developed. The improvement of SHIV viruses that mimic even better the natural history of HIV infection and of humanized mice that develop a greater variety of human immune cell lineages, is ongoing. None of these models is perfect, but they allow contributing to the progress in managing or preventing HIV infection.
Collapse
Affiliation(s)
- Thalía Garcia-Tellez
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| | - Mickaël J Ploquin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
28
|
Paraskevis D, Nikolopoulos GK, Magiorkinis G, Hodges-Mameletzis I, Hatzakis A. The application of HIV molecular epidemiology to public health. INFECTION GENETICS AND EVOLUTION 2016; 46:159-168. [PMID: 27312102 DOI: 10.1016/j.meegid.2016.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 02/02/2023]
Abstract
HIV is responsible for one of the largest viral pandemics in human history. Despite a concerted global response for prevention and treatment, the virus persists. Thus, urgent public health action, utilizing novel interventions, is needed to prevent future transmission events, critical to eliminating HIV. For public health planning to prove effective and successful, we need to understand the dynamics of regional epidemics and to intervene appropriately. HIV molecular epidemiology tools as implemented in phylogenetic, phylodynamic and phylogeographic analyses have proven to be powerful tools in public health planning across many studies. Numerous applications with HIV suggest that molecular methods alone or in combination with mathematical modelling can provide inferences about the transmission dynamics, critical epidemiological parameters (prevalence, incidence, effective number of infections, Re, generation times, time between infection and diagnosis), or the spatiotemporal characteristics of epidemics. Molecular tools have been used to assess the impact of an intervention and outbreak investigation which are of great public health relevance. In some settings, molecular sequence data may be more readily available than HIV surveillance data, and can therefore allow for molecular analyses to be conducted more easily. Nonetheless, classic methods have an integral role in monitoring and evaluation of public health programmes, and should supplement emerging techniques from the field of molecular epidemiology. Importantly, molecular epidemiology remains a promising approach in responding to viral diseases.
Collapse
Affiliation(s)
- D Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - G K Nikolopoulos
- Hellenic Center for Diseases Control and Prevention, Maroussi, Greece
| | - G Magiorkinis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, United Kingdom
| | | | - A Hatzakis
- Hellenic Center for Diseases Control and Prevention, Maroussi, Greece
| |
Collapse
|
29
|
Nikolopoulos GK, Kostaki EG, Paraskevis D. Overview of HIV molecular epidemiology among people who inject drugs in Europe and Asia. INFECTION GENETICS AND EVOLUTION 2016; 46:256-268. [PMID: 27287560 DOI: 10.1016/j.meegid.2016.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 01/14/2023]
Abstract
HIV strains continuously evolve, tend to recombine, and new circulating variants are being discovered. Novel strains complicate efforts to develop a vaccine against HIV and may exhibit higher transmission efficiency and virulence, and elevated resistance to antiretroviral agents. The United Nations Joint Programme on HIV/AIDS (UNAIDS) set an ambitious goal to end HIV as a public health threat by 2030 through comprehensive strategies that include epidemiological input as the first step of the process. In this context, molecular epidemiology becomes invaluable as it captures trends in HIV evolution rates that shape epidemiological pictures across several geographical areas. This review briefly summarizes the molecular epidemiology of HIV among people who inject drugs (PWID) in Europe and Asia. Following high transmission rates of subtype G and CRF14_BG among PWID in Portugal and Spain, two European countries, Greece and Romania, experienced recent HIV outbreaks in PWID that consisted of multiple transmission clusters including subtypes B, A, F1, and recombinants CRF14_BG and CRF35_AD. The latter was first identified in Afghanistan. Russia, Ukraine, and other Former Soviet Union (FSU) states are still facing the devastating effects of epidemics in PWID produced by AFSU (also known as IDU-A), BFSU (known as IDU-B), and CRF03_AB. In Asia, CRF01_AE and subtype B (Western B and Thai B) travelled from PWID in Thailand to neighboring countries. Recombination hotspots in South China, Northern Myanmar, and Malaysia have been generating several intersubtype and inter-CRF recombinants (e.g. CRF07_BC, CRF08_BC, CRF33_01B etc.), increasing the complexity of HIV molecular patterns.
Collapse
Affiliation(s)
- Georgios K Nikolopoulos
- Hellenic Centre for Diseases Control and Prevention, Amarousio, Greece; Hellenic Scientific Society for the Study of AIDS and Sexually Transmitted Diseases, Transmission Reduction Intervention Project-Athens site, Athens, Greece.
| | - Evangelia-Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Abstract
INTRODUCTION Laboratory diagnosis of HIV infection is essential for the prevention of infection and the identification of infected individuals who could benefit from highly active antiretroviral therapy. Since the release of the first assays for the detection of anti-HIV antibodies, the technology of immunoassays has improved. AREAS COVERED Fourth generation assays - simultaneously detecting HIV p24 antigen and antibodies - have been developed and have been a major improvement in the detection of HIV infection, with a reduction of the diagnostic window. Studies have provided definite evidence for their clinical utility. Combination assays with separate results for anti-HIV antibodies and p24 antigen have been developed. Expert Commentary: In conclusion, fourth generation assays are an effective tool for the laboratory diagnosis of HIV infection. The ADVIA Centaur HIV Ag/Ab Combo assay is in line with most recent fourth generation assays and its clinical utility has been assessed.
Collapse
Affiliation(s)
- Luca Vallefuoco
- a Dipartimento di Scienze Mediche Traslazionali , Università di Napoli Federico II , Napoli , Italy
| | - Claudia Mazzarella
- a Dipartimento di Scienze Mediche Traslazionali , Università di Napoli Federico II , Napoli , Italy
| | - Giuseppe Portella
- a Dipartimento di Scienze Mediche Traslazionali , Università di Napoli Federico II , Napoli , Italy
| |
Collapse
|
31
|
Abstract
Zoonotic diseases are the main contributor to emerging infectious diseases (EIDs) and present a major threat to global public health. Bushmeat is an important source of protein and income for many African people, but bushmeat-related activities have been linked to numerous EID outbreaks, such as Ebola, HIV, and SARS. Importantly, increasing demand and commercialization of bushmeat is exposing more people to pathogens and facilitating the geographic spread of diseases. To date, these linkages have not been systematically assessed. Here we review the literature on bushmeat and EIDs for sub-Saharan Africa, summarizing pathogens (viruses, fungi, bacteria, helminths, protozoan, and prions) by bushmeat taxonomic group to provide for the first time a comprehensive overview of the current state of knowledge concerning zoonotic disease transmission from bushmeat into humans. We conclude by drawing lessons that we believe are applicable to other developing and developed regions and highlight areas requiring further research to mitigate disease risk.
Collapse
|
32
|
High level of APOBEC3F/3G editing in HIV-2 DNA vif and pol sequences from antiretroviral-naive patients. AIDS 2015; 29:779-84. [PMID: 25985400 DOI: 10.1097/qad.0000000000000607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In HIV-1, hypermutation introduced by APOBEC3F/3G cytidine deaminase activity leads to defective viruses. In-vivo impact of APOBEC3F/3G editing on HIV-2 sequences remains unknown. The objective of this study was to assess the level of APOBEC3F/3G editing in HIV-2-infected antiretroviral-naive patients. METHODS Direct sequencing of vif and pol regions was performed on HIV-2 proviral DNA from antiretroviral-naive patients included in the French Agence Nationale de Recherches sur le SIDA et les hépatites virales CO5 HIV-2 cohort. Hypermutated sequences were identified using Hypermut2.0 program. HIV-1 proviral sequences from Genbank were also assessed. RESULTS Among 82 antiretroviral-naive HIV-2-infected patients assessed, 15 (28.8%) and five (16.7%) displayed Vif proviral defective sequences in HIV-2 groups A and B, respectively. A lower proportion of defective sequences was observed in protease-reverse transcriptase region. A higher median number of G-to-A mutations was observed in HIV-2 group B than in group A, both in Vif and protease-reverse transcriptase regions (P = 0.02 and P = 0.006, respectively). Compared with HIV-1 Vif sequences, a higher number of Vif defective sequences was observed in HIV-2 group A (P = 0.00001) and group B sequences (P = 0.013). CONCLUSION We showed for the first time a high level of APOBEC3F/3G editing in HIV-2 sequences from antiretroviral-naive patients. Our study reported a group effect with a significantly higher level of APOBEC3F/3G editing in HIV-2 group B than in group A sequences.
Collapse
|
33
|
Menéndez-Arias L, Alvarez M. Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. Antiviral Res 2013; 102:70-86. [PMID: 24345729 DOI: 10.1016/j.antiviral.2013.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 12/19/2022]
Abstract
One to two million people worldwide are infected with the human immunodeficiency virus type 2 (HIV-2), with highest prevalences in West African countries, but also present in Western Europe, Asia and North America. Compared to HIV-1, HIV-2 infection undergoes a longer asymptomatic phase and progresses to AIDS more slowly. In addition, HIV-2 shows lower transmission rates, probably due to its lower viremia in infected individuals. There is limited experience in the treatment of HIV-2 infection and several antiretroviral drugs used to fight HIV-1 are not effective against HIV-2. Effective drugs against HIV-2 include nucleoside analogue reverse transcriptase (RT) inhibitors (e.g. zidovudine, tenofovir, lamivudine, emtricitabine, abacavir, stavudine and didanosine), protease inhibitors (saquinavir, lopinavir and darunavir), and integrase inhibitors (raltegravir, elvitegravir and dolutegravir). Maraviroc, a CCR5 antagonist blocking coreceptor binding during HIV entry, is active in vitro against CCR5-tropic HIV-2 but more studies are needed to validate its use in therapeutic treatments against HIV-2 infection. HIV-2 strains are naturally resistant to a few antiretroviral drugs developed to suppress HIV-1 propagation such as nonnucleoside RT inhibitors, several protease inhibitors and the fusion inhibitor enfuvirtide. Resistance selection in HIV-2 appears to be faster than in HIV-1. In this scenario, the development of novel drugs specific for HIV-2 is an important priority. In this review, we discuss current anti-HIV-2 therapies and mutational pathways leading to drug resistance.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Mar Alvarez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|