1
|
Verma M, Suryanarayana N, Tuteja U, Thavachelvam K, Rao MK, Bhargava R, Shukla S. Anthrax lethal toxin (LeTx) neutralization by PA domain specific antisera. Toxicon 2017; 139:58-65. [PMID: 28919458 DOI: 10.1016/j.toxicon.2017.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 12/23/2022]
Abstract
Anthrax associated causalities in humans and animals are implicated mainly due to the action of two exotoxins that are secreted by the bacterium Bacillus antharcis during the infection. These exotoxins comprise of three protein components namely protective antigen (PA), lethal factor (LF) and edema factor (EF). The protective antigen is the common toxin component required to form both lethal toxin (LeTx) and edema toxin (EdTx). The LeTx is formed, when PA combines with LF and EdTx is formed when PA combines with EF. Therapeutic interventions aiming to neutralize these key effectors of anthrax pathology would therefore, provide an effective means to counter the toxicity imposed by the anthrax toxins on the host. The present work describes the lethal toxin neutralization potential of polyclonal antisera developed against the individual domains of the protective antigen component of the anthrax toxin. The individual domains were produced as recombinant proteins in E. coli and validated with peptide mass fingerprinting by MALDI-TOF analysis and corresponding mice polyclonal antisera by western blotting. Each domain specific antibody titre and isotype was ascertained by ELISA. The isotyping revealed the predominance of IgG1 isotype. The toxin neutralizing potential of these domain specific antisera were evaluated by in-vitro cell viability MTT assay, employing J774.1 mouse macrophage cell line against LeTx (0.25 μg ml-1 PA and 0.125 μg ml-1 LF concentrations). Among the four domain specific antisera, the antiserum against PA domain IV could neutralize LeTx with high efficiency. No significant neutralization of LeTx was observed with other domain specific antibodies. Results indicate that antibodies to r-PA domain IV could be explored further as therapeutic anti toxin molecule along with appropriate antibiotic regimens against anthrax.
Collapse
Affiliation(s)
- Monika Verma
- Microbiology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior, Madhya Pradesh, 474002, India.
| | - Nagendra Suryanarayana
- Microbiology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior, Madhya Pradesh, 474002, India.
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior, Madhya Pradesh, 474002, India.
| | - Kulanthaivel Thavachelvam
- Microbiology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior, Madhya Pradesh, 474002, India.
| | - M K Rao
- Pharmacology and toxicology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior, Madhya Pradesh, 474002, India.
| | - Rakesh Bhargava
- Microbiology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior, Madhya Pradesh, 474002, India.
| | - Sangeeta Shukla
- School of studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, 474002, India.
| |
Collapse
|
2
|
Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli. Mol Biol Int 2016; 2016:4732791. [PMID: 26966576 PMCID: PMC4761392 DOI: 10.1155/2016/4732791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/12/2016] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis secretory protein protective antigen (PA) is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression constructs. The PA gene was cloned in expression vectors bearing trc, T5, and T7 promoters and transformed into their respective E. coli hosts. The growth conditions were optimized to obtain maximum expression of PA in soluble form. The expression construct PA-pET32c in DE3-pLysS E. coli host resulted in a maximum production of soluble PA (15 mg L(-1)) compared to other combinations. Purified PA was subjected to trypsin digestion and binding assay with lethal factor to confirm the protein's functionality. Biological activity was confirmed by cytotoxicity assay on J774.1 cells. Balb/c mice were immunized with PA and the immunogenicity was tested by ELISA and toxin neutralization assay. This study highlights the expression of soluble and biologically active recombinant PA in larger quantity using simpler E. coli production platform.
Collapse
|
3
|
Efficacy of ETI-204 monoclonal antibody as an adjunct therapy in a New Zealand white rabbit partial survival model for inhalational anthrax. Antimicrob Agents Chemother 2015; 59:2206-14. [PMID: 25645849 DOI: 10.1128/aac.04593-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inhalational anthrax is characterized by extensive bacteremia and toxemia as well as nonspecific to mild flu-like symptoms, until the onset of hypotension, shock, and mortality. Without treatment, the mortality rate approaches 100%. Antibiotic treatment is not always effective, and alternative treatments are needed, such as monotherapy for antibiotic-resistant inhalational anthrax or as an adjunct therapy in combination with antibiotics. The Bacillus anthracis antitoxin monoclonal antibody (MAb) ETI-204 is a high-affinity chimeric deimmunized antibody which targets the anthrax toxin protective antigen (PA). In this study, a partial protection New Zealand White (NZW) rabbit model was used to evaluate the protective efficacy of the adjunct therapy with the MAb. Following detection of PA in the blood, NZW rabbits were administered either an antibiotic (doxycycline) alone or the antibiotic in conjunction with ETI-204. Survival was evaluated to compare the efficacy of the combination adjunct therapy with that of an antibiotic alone in treating inhalational anthrax. Overall, the results from this study indicate that a subtherapeutic regimen consisting of an antibiotic in combination with an anti-PA MAb results in increased survival compared to the antibiotic alone and would provide an effective therapeutic strategy against symptomatic anthrax in nonvaccinated individuals.
Collapse
|
4
|
Xi Y, Wu X, Gao L, Shao Y, Peng H, Chen H, Chen H, Hu X, Yue J. Improving the anti-toxin abilities of the CMG2-Fc fusion protein with the aid of computational design. PLoS One 2014; 9:e104674. [PMID: 25101992 PMCID: PMC4125234 DOI: 10.1371/journal.pone.0104674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/16/2014] [Indexed: 01/01/2023] Open
Abstract
CMG2-Fc is a fusion protein composed of the extracellular domain of capillary morphogenesis protein 2 (CMG2) and the Fc region of human immunoglobulin G; CMG2-Fc neutralizes anthrax toxin and offers protection against Bacillus anthracis challenge. To enhance the efficacy of CMG2-Fc against anthrax toxin, we attempted to engineer a CMG2-Fc with an improved affinity for PA. Using the automatic design algorithm FoldX and visual inspection, we devised two CMG2-Fc variants that introduce mutations in the CMG2 binding interface and improve the computationally assessed binding affinity for PA. An experimental affinity assay revealed that the two variants showed increased binding affinity, and in vitro and in vivo toxin neutralization testing indicated that one of these mutants (CMG2-Fc(E117Q)) has superior activity against anthrax toxin and was suitable for further development as a therapeutic agent for anthrax infections. This study shows that the computational design of the PA binding interface of CMG2 to obtain CMG2-Fc variants with improving anti-toxin abilities is viable. Our results demonstrate that computational design can be further applied to generate other CMG2-Fc mutants with greatly improved therapeutic efficacy.
Collapse
Affiliation(s)
- Yongyi Xi
- Beijing Institute of Biotechnology, Beijing, China
| | - Xiaojie Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Gao
- Beijing Institute of Biotechnology, Beijing, China
| | - Yong Shao
- Beijing Institute of Biotechnology, Beijing, China
| | - Hui Peng
- Beijing Institute of Biotechnology, Beijing, China
| | | | - Huipeng Chen
- Beijing Institute of Biotechnology, Beijing, China
- * E-mail: (HPC); (XWH); (JJY)
| | - Xianwen Hu
- Beijing Institute of Biotechnology, Beijing, China
- * E-mail: (HPC); (XWH); (JJY)
| | - Junjie Yue
- Beijing Institute of Biotechnology, Beijing, China
- * E-mail: (HPC); (XWH); (JJY)
| |
Collapse
|
5
|
Adamo R. Glycan surface antigens fromBacillus anthracisas vaccine targets: current status and future perspectives. Expert Rev Vaccines 2014; 13:895-907. [DOI: 10.1586/14760584.2014.924404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Battle KN, Uba FI, Soper SA. Microfluidics for the analysis of membrane proteins: How do we get there? Electrophoresis 2014; 35:2253-66. [DOI: 10.1002/elps.201300625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/16/2014] [Accepted: 02/17/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Katrina N. Battle
- Department of Chemistry; Louisiana State University; Baton Rouge LA USA
| | - Franklin I. Uba
- Department of Chemistry; University of North Carolina; Chapel Hill NC USA
| | - Steven A. Soper
- Department of Chemistry; Louisiana State University; Baton Rouge LA USA
- Department of Chemistry; University of North Carolina; Chapel Hill NC USA
- Department of Biomedical Engineering; University of North Carolina; Chapel Hill NC USA
- BioFluidica, LLC, c/o Carolina Kick-Start; Chapel Hill NC USA
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology; Ulsan Korea
| |
Collapse
|
7
|
Abstract
INTRODUCTION Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded 'for the development of multiscale models for complex chemical systems' once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial-and-error approach to a minimum. The intentional dissemination of Bacillus anthracis spores in 2001 via the so-called anthrax letters has led to increased efforts, politically and scientifically, to develop medical countermeasures that will protect people from the threat of anthrax bioterrorism. AREAS COVERED This article provides an overview of the recent rational drug design approaches for discovering inhibitors of anthrax toxin. The review also directs the readers to the vast literature on the recognized advances and future possibilities in the field. EXPERT OPINION Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (protective antigen-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, the situation, in our view, is still insecure. Further, the FDA's animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Better identification and validation of anthrax toxin therapeutic targets at the molecular level as well as elucidation of the parameters determining the corresponding therapeutic windows are still necessary for more effective therapeutic options.
Collapse
Affiliation(s)
- Ekaterina M Nestorovich
- The Catholic University of America, Department of Biology , Washington, DC , USA +1 202 319 6723 ;
| | | |
Collapse
|
8
|
Affiliation(s)
| | - Sergey M. Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
9
|
Mo KF, Li X, Li H, Low LY, Quinn CP, Boons GJ. Endolysins of Bacillus anthracis bacteriophages recognize unique carbohydrate epitopes of vegetative cell wall polysaccharides with high affinity and selectivity. J Am Chem Soc 2012; 134:15556-62. [PMID: 22935003 PMCID: PMC3489029 DOI: 10.1021/ja3069962] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacteriophages express endolysins which are the enzymes that hydrolyze peptidoglycan resulting in cell lysis and release of bacteriophages. Endolysins have acquired stringent substrate specificities, which have been attributed to cell wall binding domains (CBD). Although it has been realized that CBDs of bacteriophages that infect Gram-positive bacteria target cell wall carbohydrate structures, molecular mechanisms that confer selectivity are not understood. A range of oligosaccharides, derived from the secondary cell wall polysaccharides of Bacillus anthracis, has been chemically synthesized. The compounds contain an α-d-GlcNAc-(1→4)-β-d-ManNAc-(1→4)-β-d-GlcNAc backbone that is modified by various patterns of α-d-Gal and β-d-Gal branching points. The library of compounds could readily be prepared by employing a core trisaccharide modified by the orthogonal protecting groups N(α)-9-fluorenylmethyloxycarbonate (Fmoc), 2-methylnaphthyl ether (Nap), levulinoyl ester (Lev) and dimethylthexylsilyl ether (TDS) at key branching points. Dissociation constants for the binding the cell wall binding domains of the endolysins PlyL and PlyG were determined by surface plasmon resonance (SPR). It was found that the pattern of galactosylation greatly influenced binding affinities, and in particular a compound having a galactosyl moiety at C-4 of the nonreducing GlcNAc moiety bound in the low micromolar range. It is known that secondary cell wall polysaccharides of various bacilli may have both common and variable structural features and in particular differences in the pattern of galactosylation have been noted. Therefore, it is proposed that specificity of endolysins for specific bacilli is achieved by selective binding to a uniquely galactosylated core structure.
Collapse
Affiliation(s)
- Kai-For Mo
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
10
|
Rotoli SM, Biswas-Fiss E, Biswas SB. Quantitative analysis of the mechanism of DNA binding by Bacillus DnaA protein. Biochimie 2012; 94:2764-75. [PMID: 22974984 DOI: 10.1016/j.biochi.2012.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/30/2012] [Indexed: 11/29/2022]
Abstract
DnaA protein has the sole responsibility of initiating a new round of DNA replication in prokaryotic organisms. It recognizes the origin of DNA replication, and initiates chromosomal DNA replication in the bacterial genome. In Gram-negative Escherichia coli, a large number of DnaA molecules bind to specific DNA sequences (known as DnaA boxes) in the origin of DNA replication, oriC, leading to the activation of the origin. We have cloned, expressed, and purified full-length DnaA protein in large quantity from Gram-positive pathogen Bacillus anthracis (DnaA(BA)). DnaA(BA) was a highly soluble monomeric protein making it amenable to quantitative analysis of its origin recognition mechanisms. DnaA(BA) bound DnaA boxes with widely divergent affinities in sequence and ATP-dependent manner. In the presence of ATP, the K(D) ranged from 3.8 × 10(-8) M for a specific DnaA box sequence to 4.1 × 10(-7) M for a non-specific DNA sequence and decreased significantly in the presence of ADP. Thermodynamic analyses of temperature and salt dependence of DNA binding indicated that hydrophobic (entropic) and ionic bonds contributed to the DnaA(BA)·DNA complex formation. DnaA(BA) had a DNA-dependent ATPase activity. DNA sequences acted as positive effectors and modulated the rate (V(max)) of ATP hydrolysis without any significant change in ATP binding affinity.
Collapse
Affiliation(s)
- Shawna M Rotoli
- Department of Molecular Biology, Graduate School of Biomedical Sciences, University of Medicine & Dentistry of New Jersey, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | | | | |
Collapse
|
11
|
Rucevic M, Hixson D, Josic D. Mammalian plasma membrane proteins as potential biomarkers and drug targets. Electrophoresis 2011; 32:1549-64. [PMID: 21706493 DOI: 10.1002/elps.201100212] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented.
Collapse
Affiliation(s)
- Marijana Rucevic
- COBRE Center for Cancer Research Development, Rhode Island Hospital, Providence, RI, USA
| | | | | |
Collapse
|
12
|
Jesus S, Borges O. Recent Developments in the Nasal Immunization against Anthrax. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/wjv.2011.13008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Ramasamy S, Liu CQ, Tran H, Gubala A, Gauci P, McAllister J, Vo T. Principles of antidote pharmacology: an update on prophylaxis, post-exposure treatment recommendations and research initiatives for biological agents. Br J Pharmacol 2010; 161:721-48. [PMID: 20860656 DOI: 10.1111/j.1476-5381.2010.00939.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The use of biological agents has generally been confined to military-led conflicts. However, there has been an increase in non-state-based terrorism, including the use of asymmetric warfare, such as biological agents in the past few decades. Thus, it is becoming increasingly important to consider strategies for preventing and preparing for attacks by insurgents, such as the development of pre- and post-exposure medical countermeasures. There are a wide range of prophylactics and treatments being investigated to combat the effects of biological agents. These include antibiotics (for both conventional and unconventional use), antibodies, anti-virals, immunomodulators, nucleic acids (analogues, antisense, ribozymes and DNAzymes), bacteriophage therapy and micro-encapsulation. While vaccines are commercially available for the prevention of anthrax, cholera, plague, Q fever and smallpox, there are no licensed vaccines available for use in the case of botulinum toxins, viral encephalitis, melioidosis or ricin. Antibiotics are still recommended as the mainstay treatment following exposure to anthrax, plague, Q fever and melioidosis. Anti-toxin therapy and anti-virals may be used in the case of botulinum toxins or smallpox respectively. However, supportive care is the only, or mainstay, post-exposure treatment for cholera, viral encephalitis and ricin - a recommendation that has not changed in decades. Indeed, with the difficulty that antibiotic resistance poses, the development and further evaluation of techniques and atypical pharmaceuticals are fundamental to the development of prophylaxis and post-exposure treatment options. The aim of this review is to present an update on prophylaxis and post-exposure treatment recommendations and research initiatives for biological agents in the open literature from 2007 to 2009.
Collapse
Affiliation(s)
- S Ramasamy
- Defence Science & Technology Organisation, Human Protection and Performance Division, Fishermans Bend, Vic., Australia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Bouzianas DG. Current and future medical approaches to combat the anthrax threat. J Med Chem 2010; 53:4305-31. [PMID: 20102155 DOI: 10.1021/jm901024b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dimitrios G Bouzianas
- Laboratory of Molecular Endocrinology, Division of Endocrinology and Metabolism, AHEPA University Hospital, 1 S. Kyriakidi Street, P.C. 54636, Thessaloniki, Macedonia, Greece.
| |
Collapse
|
15
|
Mallozzi M, Viswanathan VK, Vedantam G. Spore-forming Bacilli and Clostridia in human disease. Future Microbiol 2010; 5:1109-23. [DOI: 10.2217/fmb.10.60] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many Gram-positive spore-forming bacteria in the Firmicute phylum are important members of the human commensal microbiota, which, in rare cases, cause opportunistic infections. Other spore-formers, however, have evolved to become dedicated pathogens that can cause a striking variety of diseases. Despite variations in disease presentation, the etiologic agent is often the spore, with bacterially produced toxins playing a central role in the pathophysiology of infection. This review will focus on the specific diseases caused by spores of the Clostridia and Bacilli.
Collapse
Affiliation(s)
- Michael Mallozzi
- Department of Veterinary Science and Microbiology, University of Arizona, 1117, East Lowell St., Building 90, Room 303, Tucson, AZ 85721, USA
| | - VK Viswanathan
- Department of Veterinary Science and Microbiology, University of Arizona, 1117, East Lowell St., Building 90, Room 303, Tucson, AZ 85721, USA
| | | |
Collapse
|
16
|
Modrie P, Beuls E, Mahillon J. Differential transfer dynamics of pAW63 plasmid among members of the Bacillus cereus group in food microcosms. J Appl Microbiol 2010; 108:888-897. [PMID: 19709333 DOI: 10.1111/j.1365-2672.2009.04488.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM To assess the dynamics of plasmid transfer between Bacillus thuringiensis and B. cereus in various food microcosms using the B. thuringiensis pAW63 and Staphylococcus aureus pUB110 plasmids as models. METHODS AND RESULTS The conjugative behaviour of pAW63, which resembles the B. anthracis virulence plasmid pXO2, and the mobilization of pUB110 were investigated using kinetics studies performed in reference LB (lysogeny broth) medium, full-cream and skimmed milks, soya milk and rice milk. Transfers of pAW63 and pUB110 were found to occur in the five tested media, with higher frequencies observed in food matrices, most notably in full-cream milk, skimmed milk and soya milk, where the mean transfer frequencies reached 10(-3) transconjugants per recipient cell. The most notable observations were that the higher transfer frequencies obtained in foodstuffs compared to those observed in LB were because of an earlier onset of conjugation in combination with a higher transfer rate and/or a longer mating period. CONCLUSION These results indicate that not only the potential for plasmid transfer but also the overall timing of conjugation is affected by each of these food matrices. SIGNIFICANCE AND IMPACT OF THE STUDY This new approach to study plasmid transfer provides insights for a better understanding of conjugation in food microcosms from both animal and vegetable origins among members of the B. cereus group.
Collapse
Affiliation(s)
- P Modrie
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, Louvain-la-Neuve, Belgium
| | - E Beuls
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, Louvain-la-Neuve, Belgium
| | - J Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, Louvain-la-Neuve, Belgium
| |
Collapse
|
17
|
Bouzianas DG. Medical countermeasures to protect humans from anthrax bioterrorism. Trends Microbiol 2009; 17:522-8. [PMID: 19781945 DOI: 10.1016/j.tim.2009.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 07/25/2009] [Accepted: 08/24/2009] [Indexed: 12/27/2022]
Abstract
The deliberate dissemination of Bacillus anthracis spores via the US mail system in 2001 confirmed their potential use as a biological weapon for mass human casualties. This dramatically highlighted the need for specific medical countermeasures to enable the authorities to protect individuals from a future bioterrorism attack. Although vaccination appears to be the most effective and economical form of mass protection, current vaccines have significant drawbacks that justify the immense research effort to develop improved treatment modalities. After eight years and an expenditure of more than $50 billion, only marginal progress has been made in developing effective therapeutics. This article summarizes the most important medical countermeasures that have mostly been developed since the 2001 events, and highlights current problems and possible avenues for future research.
Collapse
Affiliation(s)
- Dimitrios G Bouzianas
- Technological Educational Institute of Thessaloniki, Department of Medical Laboratories, Laboratory of Immunology and Microbiology, PO Box 145-61, Thessaloniki 541-01, Macedonia, Greece.
| |
Collapse
|
18
|
Schuch R, Fischetti VA. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS One 2009; 4:e6532. [PMID: 19672290 PMCID: PMC2716549 DOI: 10.1371/journal.pone.0006532] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 07/01/2009] [Indexed: 12/31/2022] Open
Abstract
Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities.
Collapse
|
19
|
Evans SE, Scott BL, Clement CG, Larson DT, Kontoyiannis D, Lewis RE, Lasala PR, Pawlik J, Peterson JW, Chopra AK, Klimpel G, Bowden G, Höök M, Xu Y, Tuvim MJ, Dickey BF. Stimulated innate resistance of lung epithelium protects mice broadly against bacteria and fungi. Am J Respir Cell Mol Biol 2009; 42:40-50. [PMID: 19329554 DOI: 10.1165/rcmb.2008-0260oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pneumonia is a serious problem worldwide. We recently demonstrated that innate defense mechanisms of the lung are highly inducible against pneumococcal pneumonia. To determine the breadth of protection conferred by stimulation of lung mucosal innate immunity, and to identify cells and signaling pathways activated by this treatment, mice were treated with an aerosolized bacterial lysate, then challenged with lethal doses of bacterial and fungal pathogens. Mice were highly protected against a broad array of Gram-positive, Gram-negative, and class A bioterror bacterial pathogens, and the fungal pathogen, Aspergillus fumigatus. Protection was associated with rapid pathogen killing within the lungs, and this effect was recapitulated in vitro using a respiratory epithelial cell line. Gene expression analysis of lung tissue showed marked activation of NF-kappaB, type I and II IFN, and antifungal Card9-Bcl10-Malt1 pathways. Cytokines were the most strongly induced genes, but the inflammatory cytokines TNF and IL-6 were not required for protection. Lung-expressed antimicrobial peptides were also highly up-regulated. Taken together, stimulated innate resistance appears to occur through the activation of multiple host defense signaling pathways in lung epithelial cells, inducing rapid pathogen killing, and conferring broad protection against virulent bacterial and fungal pathogens. Augmentation of innate antimicrobial defenses of the lungs might have therapeutic value for protection of patients with neutropenia or impaired adaptive immunity against opportunistic pneumonia, and for defense of immunocompetent subjects against a bioterror threat or epidemic respiratory infection.
Collapse
Affiliation(s)
- Scott E Evans
- Department of Pulmonary Medicine, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vasan M, Rauvolfova J, Wolfert MA, Leoff C, Kannenberg EL, Quinn CP, Carlson RW, Boons GJ. Chemical synthesis and immunological properties of oligosaccharides derived from the vegetative cell wall of Bacillus anthracis. Chembiochem 2008; 9:1716-20. [PMID: 18563773 PMCID: PMC2832322 DOI: 10.1002/cbic.200800210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Indexed: 11/08/2022]
Abstract
Bacillus anthracis vaccine candidate : Sera of rabbits exposed to live and irradiated-killed spores of B. anthracis Sterne 34F2 or immunized with B. anthracis polysaccharide conjugated to KLH elicited antibodies that recognize isolated polysaccharide and two synthetic trisaccharides providing a proof-of-concept step in the development of vegetative and spore-specific reagents for detection and targeting of non-protein structures of B. anthracis .
Collapse
Affiliation(s)
- Mahalakshmi Vasan
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Jana Rauvolfova
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Christine Leoff
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Elmar L. Kannenberg
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Conrad P. Quinn
- Centers for Disease Control and Prevention§, Microbial Pathogenesis and Immune Response Laboratory, Meningitis and Vaccine Preventable Diseases Branch, NCIRD, DBD, 1600 Clifton Road, MS D-11, Atlanta, GA 30333 (USA)
| | - Russell W. Carlson
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| |
Collapse
|
21
|
Verma RP, Hansch C. Combating the Threat of Anthrax: A Quantitative Structure−Activity Relationship Approach. Mol Pharm 2008; 5:745-59. [DOI: 10.1021/mp8000149] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rajeshwar P. Verma
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711
| | - Corwin Hansch
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711
| |
Collapse
|