1
|
He J, Deng X, Ma X, Yao L, Li Y, Chen C, He Y. Evaluation of BVDV E2 proteins based on recombinant baculovirus expression system production as diagnostic antigens and immunogens. Protein Expr Purif 2025; 226:106611. [PMID: 39317297 DOI: 10.1016/j.pep.2024.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Bovine viral diarrhea virus (BVDV) is a significant immunosuppressive pathogen that has a major impact on the global cattle industry. Research efforts are currently focused on the envelope glycoprotein E2 of BVDV to improve immune responses. However, the full-length E2 protein is not ideal as an immune antigen and diagnostic tool, leading to the exploration of alternative strategies. In this study, we optimized the E2 gene using IDEB and ExpOptimizer software, then expressed the E2 gene using both baculovirus and E. coli expression systems. Subsequently, we assessed the immunogenicity of the purified E2 protein in mice and its application in indirect ELISA assays. Our findings showed that the Bac-E2 protein produced by the baculovirus system induced higher levels of antibody production and splenic lymphocyte proliferation in mice compared to the E. coli system. Moreover, the indirect ELISA assay developed using Bac-E2 protein exhibited superior specificity, sensitivity, and accuracy in comparison to the E. coli-expressed E2 ELISA. Overall, our study demonstrates that the optimized E2 protein generated through a baculovirus expression system elicits robust humoral and cellular immune responses in mice, making it a promising candidate for vaccine development. Furthermore, the optimized E2 protein ELISA assay shows enhanced sensitivity and accuracy, suggesting its potential as a valuable diagnostic antigen.
Collapse
Affiliation(s)
- Jinke He
- Department of Basic Medicine, Xinjiang Second Medical College, Kelamayi, 834000, Xinjiang, China; Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, 832003, Shihezi, China
| | - Xiaoyu Deng
- Department of Basic Medicine, Hunan University of Medicine, Huaihua, 418000, Hunan, China
| | - Xusheng Ma
- Department of Basic Medicine, Xinjiang Second Medical College, Kelamayi, 834000, Xinjiang, China
| | - Liangjia Yao
- Department of Basic Medicine, Xinjiang Second Medical College, Kelamayi, 834000, Xinjiang, China
| | - Yiguo Li
- Department of Basic Medicine, Xinjiang Second Medical College, Kelamayi, 834000, Xinjiang, China
| | - Chuangfu Chen
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, 832003, Shihezi, China.
| | - Yanhua He
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553000, Guizhou, China.
| |
Collapse
|
2
|
Xu T, Tong L, Zhang Z, Zhou H, Zheng P. Glycosylation in Drosophila S2 cells. Biotechnol Bioeng 2024; 121:3672-3683. [PMID: 39140464 DOI: 10.1002/bit.28827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/12/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
In recent years, there has been a remarkable surge in the approval of therapeutic protein drugs, particularly recombinant glycoproteins. Drosophila melanogaster S2 cells have become an appealing platform for the production of recombinant proteins due to their simplicity and low cost in cell culture. However, a significant limitation associated with using the S2 cell expression system is its propensity to introduce simple paucimannosidic glycosylation structures, which differs from that in the mammalian expression system. It is well established that the glycosylation patterns of glycoproteins have a profound impact on the physicochemical properties, bioactivity, and immunogenicity. Therefore, understanding the mechanisms behind these glycosylation modifications and implementing measures to address it has become a subject of considerable interest. This review aims to comprehensively summarize recent advancements in glycosylation modification in S2 cells, with a particular focus on comparing the glycosylation patterns among S2, other insect cells, and mammalian cells, as well as developing strategies for altering the glycosylation patterns of recombinant glycoproteins.
Collapse
Affiliation(s)
- Tingting Xu
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Lixiang Tong
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Zhifu Zhang
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Hairong Zhou
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Peilin Zheng
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
3
|
Chen M, Ma A, Sun Z, Xie B, Shi L, Chen S, Chen L, Xiong G, Wang L, Wu W. Enhancing activity of food protein-derived peptides: An overview of pretreatment, preparation, and modification methods. Compr Rev Food Sci Food Saf 2023; 22:4698-4733. [PMID: 37732471 DOI: 10.1111/1541-4337.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
Food protein-derived peptides have garnered considerable attention due to their potential bioactivities and functional properties. However, the limited activity poses a challenge in effective utilization aspects. To overcome this hurdle, various methods have been explored to enhance the activity of these peptides. This comprehensive review offers an extensive overview of pretreatment, preparation methods, and modification strategies employed to augment the activity of food protein-derived peptides. Additionally, it encompasses a discussion on the current status and future prospects of bioactive peptide applications. The review also addresses the standardization of mass production processes and safety considerations for bioactive peptides while examining the future challenges and opportunities associated with these compounds. This comprehensive review serves as a valuable guide for researchers in the food industry, offering insights and recommendations to optimize the production process of bioactive peptides.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Zhang S, He Y, Wu Z, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Gao Q, Sun D, Zhang L, Yu Y, Chen S, Cheng A. Secretory pathways and multiple functions of nonstructural protein 1 in flavivirus infection. Front Immunol 2023; 14:1205002. [PMID: 37520540 PMCID: PMC10372224 DOI: 10.3389/fimmu.2023.1205002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The genus Flavivirus contains a wide variety of viruses that cause severe disease in humans, including dengue virus, yellow fever virus, Zika virus, West Nile virus, Japanese encephalitis virus and tick-borne encephalitis virus. Nonstructural protein 1 (NS1) is a glycoprotein that encodes a 352-amino-acid polypeptide and has a molecular weight of 46-55 kDa depending on its glycosylation status. NS1 is highly conserved among multiple flaviviruses and occurs in distinct forms, including a dimeric form within the endoplasmic reticulum, a cell-associated form on the plasma membrane, or a secreted hexameric form (sNS1) trafficked to the extracellular matrix. Intracellular dimeric NS1 interacts with other NSs to participate in viral replication and virion maturation, while extracellular sNS1 plays a critical role in immune evasion, flavivirus pathogenesis and interactions with natural vectors. In this review, we provide an overview of recent research progress on flavivirus NS1, including research on the structural details, the secretory pathways in mammalian and mosquito cells and the multiple functions in viral replication, immune evasion, pathogenesis and interaction with natural hosts, drawing together the previous data to determine the properties of this protein.
Collapse
Affiliation(s)
- Senzhao Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
5
|
Bandi C, Mendoza-Roldan JA, Otranto D, Alvaro A, Louzada-Flores VN, Pajoro M, Varotto-Boccazzi I, Brilli M, Manenti A, Montomoli E, Zuccotti G, Epis S. Leishmania tarentolae: a vaccine platform to target dendritic cells and a surrogate pathogen for next generation vaccine research in leishmaniases and viral infections. Parasit Vectors 2023; 16:35. [PMID: 36703216 PMCID: PMC9879565 DOI: 10.1186/s13071-023-05651-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
Parasites of the genus Leishmania are unusual unicellular microorganisms in that they are characterized by the capability to subvert in their favor the immune response of mammalian phagocytes, including dendritic cells. Thus, in overt leishmaniasis, dendritic cells and macrophages are converted into a niche for Leishmania spp. in which the parasite, rather than being inactivated and disassembled, survives and replicates. In addition, Leishmania parasites hitchhike onto phagocytic cells, exploiting them as a mode of transport to lymphoid tissues where other phagocytic cells are potentially amenable to parasite colonization. This propensity of Leishmania spp. to target dendritic cells has led some researchers to consider the possibility that the non-pathogenic, reptile-associated Leishmania tarentolae could be exploited as a vaccine platform and vehicle for the production of antigens from different viruses and for the delivery of the antigens to dendritic cells and lymph nodes. In addition, as L. tarentolae can also be regarded as a surrogate of pathogenic Leishmania parasites, this parasite of reptiles could possibly be developed into a vaccine against human and canine leishmaniases, exploiting its immunological cross-reactivity with other Leishmania species, or, after its engineering, for the expression of antigens from pathogenic species. In this article we review published studies on the use of L. tarentolae as a vaccine platform and vehicle, mainly in the areas of leishmaniases and viral infections. In addition, a short summary of available knowledge on the biology of L. tarentolae is presented, together with information on the use of this microorganism as a micro-factory to produce antigens suitable for the serodiagnosis of viral and parasitic infections.
Collapse
Affiliation(s)
- Claudio Bandi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Domenico Otranto
- grid.7644.10000 0001 0120 3326Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Alessandro Alvaro
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Massimo Pajoro
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | - Ilaria Varotto-Boccazzi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | - Matteo Brilli
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Emanuele Montomoli
- grid.511037.1VisMederi, Siena, Italy ,grid.9024.f0000 0004 1757 4641Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gianvincenzo Zuccotti
- grid.4708.b0000 0004 1757 2822Department of Biomedical and Clinical Sciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy ,Department of Pediatrics, Ospedale dei Bambini-Buzzi, Milan, Italy
| | - Sara Epis
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| |
Collapse
|
6
|
Treberg JR, Martyniuk CJ, Moyes CD. Getting the most out of reductionist approaches in comparative biochemistry and physiology. Comp Biochem Physiol B Biochem Mol Biol 2020; 250:110483. [DOI: 10.1016/j.cbpb.2020.110483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
|
7
|
Grindel B, Engel BJ, Hall CG, Kelderhouse LE, Lucci A, Zacharias NM, Takahashi TT, Millward SW. Mammalian Expression and In Situ Biotinylation of Extracellular Protein Targets for Directed Evolution. ACS OMEGA 2020; 5:25440-25455. [PMID: 33043224 PMCID: PMC7542843 DOI: 10.1021/acsomega.0c03990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 05/17/2023]
Abstract
Directed evolution is a powerful tool for the selection of functional ligands from molecular libraries. Extracellular domains (ECDs) of cell surface receptors are common selection targets for therapeutic and imaging agent development. Unfortunately, these proteins are often post-translationally modified and are therefore unsuitable for expression in bacterial systems. Directional immobilization of these targets is further hampered by the absence of biorthogonal groups for site-specific chemical conjugation. We have developed a nonadherent mammalian expression system for rapid, high-yield expression of biotinylated ECDs. ECDs from EGFR, HER2, and HER3 were site-specifically biotinylated in situ and recovered from the cell culture supernatant with yields of up to 10 mg/L at >90% purity. Biotinylated ECDs also contained a protease cleavage site for rapid and selective release of the ECD after immobilization on avidin/streptavidin resins and library binding. A model mRNA display selection round was carried out against the HER2 ECD with the HER2 affibody expressed as an mRNA-protein fusion. HER2 affibody-mRNA fusions were selectively released by thrombin and quantitative PCR revealed substantial improvements in the enrichment of functional affibody-mRNA fusions relative to direct PCR amplification of the resin-bound target. This methodology allows rapid purification of high-quality targets for directed evolution and selective elution of functional sequences at the conclusion of each selection round.
Collapse
Affiliation(s)
- Brian
J. Grindel
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| | - Brian J. Engel
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| | - Carolyn G. Hall
- Department
of Breast Surgical Oncology, MD Anderson
Cancer Center, Houston, Texas 77030, United States
| | - Lindsay E. Kelderhouse
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| | - Anthony Lucci
- Department
of Breast Surgical Oncology, MD Anderson
Cancer Center, Houston, Texas 77030, United States
| | - Niki M. Zacharias
- Department
of Urology, MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Terry T. Takahashi
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Steven W. Millward
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| |
Collapse
|
8
|
Zimmermann A, Hercher D, Regner B, Frischer A, Sperger S, Redl H, Hacobian A. Evaluation of BMP-2 Minicircle DNA for Enhanced Bone Engineering and Regeneration. Curr Gene Ther 2020; 20:55-63. [PMID: 32338217 DOI: 10.2174/1566523220666200427121350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND To date, the significant osteoinductive potential of bone morphogenetic protein 2 (BMP-2) non-viral gene therapy cannot be fully exploited therapeutically. This is mainly due to weak gene delivery and brief expression peaks restricting the therapeutic effect. OBJECTIVE Our objective was to test the application of minicircle DNA, allowing prolonged expression potential. It offers notable advantages over conventional plasmid DNA. The lack of bacterial sequences and the resulting reduction in size, enables safe usage and improved performance for tissue regeneration. METHODS We inserted an optimized BMP-2 gene cassette with minicircle plasmid technology. BMP-2 minicircle plasmids were produced in E. coli yielding plasmids lacking bacterial backbone elements. Comparative studies of these BMP-2 minicircles and conventional BMP-2 plasmids were performed in vitro in cell systems, including bone marrow derived stem cells. Tests performed included gene expression profiles and cell differentiation assays. RESULTS A C2C12 cell line transfected with the BMP-2-Advanced minicircle showed significantly elevated expression of osteocalcin, alkaline phosphatase (ALP) activity, and BMP-2 protein amount when compared to cells transfected with conventional BMP-2-Advanced plasmid. Furthermore, the plasmids show suitability for stem cell approaches by showing significantly higher levels of ALP activity and mineralization when introduced into human bone marrow stem cells (BMSCs). CONCLUSION We have designed a highly bioactive BMP-2 minicircle plasmid with the potential to fulfil clinical requirements for non-viral gene therapy in the field of bone regeneration.
Collapse
Affiliation(s)
- Alice Zimmermann
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Benedikt Regner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Amelie Frischer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Simon Sperger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
9
|
Kuczera D, Assolini JP, Tomiotto-Pellissier F, Pavanelli WR, Silveira GF. Highlights for Dengue Immunopathogenesis: Antibody-Dependent Enhancement, Cytokine Storm, and Beyond. J Interferon Cytokine Res 2019; 38:69-80. [PMID: 29443656 DOI: 10.1089/jir.2017.0037] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infection with dengue virus (DENV) can lead to a wide spectrum of clinical presentations, ranging from asymptomatic infection to death. It is estimated that the disease manifests only in 90 million cases out of the total 390 million yearly infections. Even though research has not yet elucidated which are the precise pathophysiological mechanisms that trigger severe forms of dengue, the infection elicits a critical immune response significant for dengue pathogenesis development. Understanding how the immune response to DENV is established and how it can resolve the infection or turn into an immunopathology is of great importance in DENV research. Currently, studies have extensively debated 2 hypotheses involving immune response: antibody-dependent enhancement and cytokine storm. However, despite its undeniable importance in severe forms of the disease, these 2 hypotheses are based on a primed immune status resulting from previous heterologous infection, abstaining them from explaining the severe forms of dengue in naive immune subjects, for example. Thus, it seems that a more intricate arrangement of causes and conditions must be achieved to severe dengue to occur. Among them, the cytokine network signature elicited, in association with viral aspects deserves special attention regarding the establishment of infection and evolution to pathogenesis. In this work, we intend to shed light on how those elements contribute to severe dengue development.
Collapse
Affiliation(s)
- Diogo Kuczera
- 1 Laboratório de Virologia Molecular, Instituto Carlos Chagas , ICC/Fiocruz/PR, Curitiba, Brazil
| | - João Paulo Assolini
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Fernanda Tomiotto-Pellissier
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Wander Rogério Pavanelli
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | | |
Collapse
|
10
|
Growth and adaptation of Zika virus in mammalian and mosquito cells. PLoS Negl Trop Dis 2018; 12:e0006880. [PMID: 30418969 PMCID: PMC6258428 DOI: 10.1371/journal.pntd.0006880] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/26/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
The recent emergence of Zika virus (ZIKV) in the Americas coincident with increased caseloads of microcephalic infants and Guillain-Barre syndrome has prompted a flurry of research on ZIKV. Much of the research is difficult to compare or repeat because individual laboratories use different virus isolates, growth conditions, and quantitative assays. Here we obtained three readily available contemporary ZIKV isolates and the prototype Ugandan isolate. We generated stocks of each on Vero mammalian cells (ZIKVmam) and C6/36 mosquito cells (ZIKVmos), determined titers by different assays side-by-side, compared growth characteristics using one-step and multi-step growth curves on Vero and C6/36 cells, and examined plaque phenotype. ZIKV titers consistently peaked earlier on Vero cells than on C6/36 cells. Contemporary ZIKV isolates reached peak titer most quickly in a multi-step growth curve when the amplifying cell line was the same as the titering cell line (e.g., ZIKVmam titered on Vero cells). Growth of ZIKVmam on mosquito cells was particularly delayed. These data suggest that the ability to infect and/or replicate in insect cells is limited after growth in mammalian cells. In addition, ZIKVmos typically had smaller, more homogenous plaques than ZIKVmam in a standard plaque assay. We hypothesized that the plaque size difference represented early adaptation to growth in mammalian cells. We plaque purified representative-sized plaques from ZIKVmos and ZIKVmam. ZIKVmos isolates maintained the initial phenotype while plaques from ZIKVmam isolates became larger with passaging. Our results underscore the importance of the cells used to produce viral stocks and the potential for adaptation with minimal cell passages. In addition, these studies provide a foundation to compare current and emerging ZIKV isolates in vitro and in vivo.
Collapse
|
11
|
Singh SK, Tiendrebeogo RW, Chourasia BK, Kana IH, Singh S, Theisen M. Lactococcus lactis provides an efficient platform for production of disulfide-rich recombinant proteins from Plasmodium falciparum. Microb Cell Fact 2018; 17:55. [PMID: 29618355 PMCID: PMC5885415 DOI: 10.1186/s12934-018-0902-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The production of recombinant proteins with proper conformation, appropriate post-translational modifications in an easily scalable and cost-effective system is challenging. Lactococcus lactis has recently been identified as an efficient Gram positive cell factory for the production of recombinant protein. We and others have used this expression host for the production of selected malaria vaccine candidates. The safety of this production system has been confirmed in multiple clinical trials. Here we have explored L. lactis cell factories for the production of 31 representative Plasmodium falciparum antigens with varying sizes (ranging from 9 to 90 kDa) and varying degree of predicted structural complexities including eleven antigens with multiple predicted structural disulfide bonds, those which are considered difficult-to-produce proteins. RESULTS Of the 31 recombinant constructs attempted in the L. lactis expression system, the initial expression efficiency was 55% with 17 out of 31 recombinant gene constructs producing high levels of secreted recombinant protein. The majority of the constructs which failed to produce a recombinant protein were found to consist of multiple intra-molecular disulfide-bonds. We found that these disulfide-rich constructs could be produced in high yields when genetically fused to an intrinsically disorder protein domain (GLURP-R0). By exploiting the distinct biophysical and structural properties of the intrinsically disordered protein region we developed a simple heat-based strategy for fast purification of the disulfide-rich protein domains in yields ranging from 1 to 40 mg/l. CONCLUSIONS A novel procedure for the production and purification of disulfide-rich recombinant proteins in L. lactis is described.
Collapse
Affiliation(s)
- Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Régis Wendpayangde Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Bishwanath Kumar Chourasia
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Subhash Singh
- Indian Institute of Integrative Medicine, Jammu, India
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark. .,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
12
|
Vazquez-Lombardi R, Nevoltris D, Rouet R, Christ D. Expression of IgG Monoclonals with Engineered Immune Effector Functions. Methods Mol Biol 2018; 1827:313-334. [PMID: 30196504 DOI: 10.1007/978-1-4939-8648-4_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The therapeutic development of monoclonal antibodies requires robust and reliable methods for their recombinant expression and characterization. In this context, an increasingly important aspect in the antibody development process is to determine the contribution of Fc-mediated immune effector functions to therapeutic activity. Here we describe steps for the cloning and mammalian expression of mouse and human IgG monoclonals with reduced immune effector functions, based on mutation of Fc-gamma receptor and complement-binding sites. The resulting antibody preparations contain low levels of endotoxin and are suitable for testing in animal models of disease.
Collapse
Affiliation(s)
| | - Damien Nevoltris
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW, Australia. .,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Sant'Ana PM, Oliveira JE, Lima ER, Soares CRJ, Peroni CN, Bartolini P, Ribela MTCP. Human thyroid-stimulating hormone synthesis in human embryonic kidney cells and related N-glycoprofiling analysis for carbohydrate composition determination. Appl Microbiol Biotechnol 2017; 102:1215-1228. [PMID: 29247366 DOI: 10.1007/s00253-017-8684-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/01/2022]
Abstract
A strain of embryonic human kidney cells (HEK293) was transiently co-transfected with the expression vectors coding for the α- and β-subunits of human thyroid-stimulating hormone (hTSH), and, for the first time, a human cell-derived recombinant hTSH was synthesized and extensively characterized. The purification strategy involving two steps provided an overall yield of 55% and a purity level > 90%. The purified material (hTSH-HEK) was analyzed and compared to a CHO-derived recombinant preparation (hTSH-CHO) and to a pituitary-derived (hTSH-Pit) preparation. The three preparations showed an equivalent purity (> 95%) with a hTSH-HEK molecular mass 2.1% lower than that of hTSH-CHO and 2.7% higher than that of hTSH-Pit. Remarkable differences were found in the carbohydrate moiety, the lowest sialic acid content and highest fucose content being observed in hTSH-HEK. In vivo biological activity was confirmed for the three preparations, the hTSH-HEK bioactivity being 39 and 16% lower than those of hTSH-CHO and hTSH-Pit, respectively. The hTSH-HEK circulatory half-life (t 1/2) was also shorter than those of hTSH-CHO (1.5-fold) and hTSH-Pit (1.2-fold). According to these findings, HEK-293-derived hTSH can be considered to be useful for clinical applications, in view as well of its human origin and particular carbohydrate composition.
Collapse
Affiliation(s)
- P M Sant'Ana
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - J E Oliveira
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - E R Lima
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - C R J Soares
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - C N Peroni
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - P Bartolini
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Maria Teresa C P Ribela
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
14
|
Abstract
Recombinant expression of antibody molecules in mammalian cells offers important advantages over traditionally utilized bacterial expression, including glycosylation required for antibody functionality and markedly reduced levels of endotoxin contamination. Advances in transient mammalian expression systems enable high yields (>100 mg/liter) that now allow for effective recombinant antibody production at a reasonable cost. Here, we provide step-by-step protocols for the design and recombinant expression of full-length IgG antibodies and antibody-derived constructs (including Fab, Fc-fusions and bispecifics) in mammalian cells. Antibody constructs are designed by combining antibody variable domains, generated by phage display or derived from human/humanized monoclonals, with constant regions. The constructs are then expressed from mammalian vectors, secreted into culture media, purified by affinity chromatography and characterized by biolayer interferometry. This article provides detailed protocols, sequences and strategies that allow the expression and purification of endotoxin-free antibody reagents suitable for testing in animal models within a 3-week time frame.
Collapse
|
15
|
Gregory JM, Whiten DR, Brown RA, Barros TP, Kumita JR, Yerbury JJ, Satapathy S, McDade K, Smith C, Luheshi LM, Dobson CM, Wilson MR. Clusterin protects neurons against intracellular proteotoxicity. Acta Neuropathol Commun 2017; 5:81. [PMID: 29115989 PMCID: PMC5678579 DOI: 10.1186/s40478-017-0481-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
It is now widely accepted in the field that the normally secreted chaperone clusterin is redirected to the cytosol during endoplasmic reticulum (ER) stress, although the physiological function(s) of this physical relocation remain unknown. We have examined in this study whether or not increased expression of clusterin is able to protect neuronal cells against intracellular protein aggregation and cytotoxicity, characteristics that are strongly implicated in a range of neurodegenerative diseases. We used the amyotrophic lateral sclerosis-associated protein TDP-43 as a primary model to investigate the effects of clusterin on protein aggregation and neurotoxicity in complementary in vitro, neuronal cell and Drosophila systems. We have shown that clusterin directly interacts with TDP-43 in vitro and potently inhibits its aggregation, and observed that in ER stressed neuronal cells, clusterin co-localized with TDP-43 and specifically reduced the numbers of cytoplasmic inclusions. We further showed that the expression of TDP-43 in transgenic Drosophila neurons induced ER stress and that co-expression of clusterin resulted in a dramatic clearance of mislocalized TDP-43 from motor neuron axons, partially rescued locomotor activity and significantly extended lifespan. We also showed that in Drosophila photoreceptor cells, clusterin co-expression gave ER stress-dependent protection against proteotoxicity arising from both Huntingtin-Q128 and mutant (R406W) human tau. We therefore conclude that increased expression of clusterin can provide an important defense against intracellular proteotoxicity under conditions that mimic specific features of neurodegenerative disease.
Collapse
Affiliation(s)
- Jenna M Gregory
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, 49 Little France Crescent-Chancellor, Edinburgh, EH16 4SB, UK
| | - Daniel R Whiten
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rebecca A Brown
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Teresa P Barros
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Janet R Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Sandeep Satapathy
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Karina McDade
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Leila M Luheshi
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Mark R Wilson
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
16
|
Liesner RJ, Abashidze M, Aleinikova O, Altisent C, Belletrutti MJ, Borel-Derlon A, Carcao M, Chambost H, Chan AKC, Dubey L, Ducore J, Fouzia NA, Gattens M, Gruel Y, Guillet B, Kavardakova N, El Khorassani M, Klukowska A, Lambert T, Lohade S, Sigaud M, Turea V, Wu JKM, Vdovin V, Pavlova A, Jansen M, Belyanskaya L, Walter O, Knaub S, Neufeld EJ. Immunogenicity, efficacy and safety of Nuwiq®
(human-cl rhFVIII) in previously untreated patients with severe haemophilia A-Interim results from the NuProtect Study. Haemophilia 2017; 24:211-220. [PMID: 28815880 DOI: 10.1111/hae.13320] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
Affiliation(s)
- R. J. Liesner
- Great Ormond Hospital for Children NHS Trust Haemophilia Centre; London UK
| | - M. Abashidze
- JSC Institute of Haematology and Transfusiology; Tbilisi Georgia
| | - O. Aleinikova
- Republican Scientific and Practical Centre of Children Oncology, Hematology and Immunology; Minsk Belarus
| | - C. Altisent
- Unitat d'Hemofilia; Hospital Vall D'Hebron; Barcelona Spain
| | - M. J. Belletrutti
- Pediatric Hematology; Department of Pediatrics; University of Alberta; Edmonton AB Canada
| | | | - M. Carcao
- Hospital for Sick Children; Toronto ON Canada
| | - H. Chambost
- Department of Pediatric Hematology Oncology; Children Hospital La Timone; APHM and Inserm; UMR 1062; Aix Marseille University; Marseille France
| | - A. K. C. Chan
- Division of Pediatric Hematology/Oncology; McMaster University; Hamilton ON Canada
| | - L. Dubey
- Western Ukrainian Specialized Children's Medical Centre; Lviv Ukraine
| | - J. Ducore
- Department of Pediatrics; UC Davis Medical Center; Sacramento CA USA
| | - N. A. Fouzia
- Christian Medical College Vellore; Vellore India
| | - M. Gattens
- Cambridge University Hospital NHS Foundation Trust; Cambridge UK
| | - Y. Gruel
- Hôpital Trousseau; Centre Régional de Traitement de l'Hémophilie; Tours France
| | - B. Guillet
- Haemophilia Treatment Centre of Rennes-Brittany; University Hospital of Rennes; Rennes France
| | - N. Kavardakova
- National Children's Specialized Clinic “OHMATDET”; Kiev Ukraine
| | - M. El Khorassani
- Centre de traitement de l'hémophilie; University Mohamed V; Rabat Morocco
| | | | - T. Lambert
- CRTH Hôpital Universitaire Bicêtre APHP; Le Kremlin Bicêtre France
| | - S. Lohade
- Sahyadri Speciality Hospital; Pune India
| | - M. Sigaud
- Centre Régional de Traitement de I'Hémophilie; University Hospital of Nantes; Nantes France
| | - V. Turea
- Scientific Research Institute of Mother and Child Health Care; Chişinău Moldova
| | - J. K. M. Wu
- B.C. Children's Hospital; Vancouver BC Canada
| | - V. Vdovin
- Morozovskaya Children's Hospital; Moscow Russia
| | - A. Pavlova
- Institute of Experimental Haematology and Transfusion Medicine; University Clinic Bonn; Bonn Germany
| | - M. Jansen
- Octapharma Pharmazeutika Produktionsges.mbH; Vienna Austria
| | | | | | - S. Knaub
- Octapharma AG; Lachen Switzerland
| | - E. J. Neufeld
- St. Jude Children’s Research Hospital; Memphis TN USA
| |
Collapse
|
17
|
Torkashvand F, Vaziri B. Main Quality Attributes of Monoclonal Antibodies and Effect of Cell Culture Components. IRANIAN BIOMEDICAL JOURNAL 2017; 21:131-41. [PMID: 28176518 PMCID: PMC5392216 DOI: 10.18869/acadpub.ibj.21.3.131] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 11/09/2022]
Abstract
The culture media optimization is an inevitable part of upstream process development in therapeutic monoclonal antibodies (mAbs) production. The quality by design (QbD) approach defines the assured quality of the final product through the development stage. An important step in QbD is determination of the main quality attributes. During the media optimization, some of the main quality attributes such as glycosylation pattern, charge variants, aggregates, and low-molecular-weight species, could be significantly altered. Here, we provide an overview of how cell culture medium components affects the main quality attributes of the mAbs. Knowing the relationship between the culture media components and the main quality attributes could be successfully utilized for a rational optimization of mammalian cell culture media for industrial mAbs production.
Collapse
Affiliation(s)
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Gugliotta A, Ceaglio N, Raud B, Forno G, Mauro L, Kratje R, Oggero M. Glycosylation and antiproliferative activity of hyperglycosylated IFN-α2 potentiate HEK293 cells as biofactories. Eur J Pharm Biopharm 2016; 112:119-131. [PMID: 27867113 DOI: 10.1016/j.ejpb.2016.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/22/2016] [Accepted: 11/13/2016] [Indexed: 01/23/2023]
Abstract
Both CHO and HEK cells are interesting hosts for the production of biotherapeutics due to their ability to introduce post-translational modifications such as glycosylation. Even though oligosaccharide structures attached to proteins are conserved among eukaryotes, many differences have been found between therapeutic glycoproteins expressed in hamster and human derived cells. In this work, a hyperglycosylated IFN-α2b mutein (IFN4N) was produced in CHO and HEK cell lines and an extensive characterization of their properties was performed. IFN4NCHO exhibited a higher average molecular mass and more acidic isoforms compared to IFN4NHEK. In agreement with these results, a 2-times higher sialic acid content was found for IFN4NCHO in comparison with the HEK-derived protein. This result was in agreement with monosaccharide quantification and glycan's analysis using WAX chromatography and HILIC coupled to mass spectrometry; all methods supported the existence of highly sialylated and also branched structures for IFN4NCHO glycans, in contrast with smaller and truncated structures among IFN4NHEK glycans. Unexpectedly, those remarkable differences in the glycosylation pattern had not a considerable impact on the clearance rate of both molecules in rats. In fact, although IFN4NHEK reached maximum plasma concentration 3-times faster than IFN4NCHO, their elimination profile did not differ significantly. Also, despite the in vitro antiviral specific biological activity of both proteins was the same, IFN4NHEK was more efficient as an antiproliferative agent in different tumor-derived cell lines. Accordingly, IFN4NHEK showed a higher in vivo antitumor activity in animal models. Our results show the importance of an appropriate host selection to set up a bioprocess and potentiate the use of HEK293 cells for the production of a new hyperglycosylated protein-based pharmaceutical.
Collapse
Affiliation(s)
- Agustina Gugliotta
- UNL, CONICET, FBCB, Cell Culture Laboratory, Ciudad Universitaria UNL.C.C. 242, (S3000ZAA) Santa Fe, Argentina
| | - Natalia Ceaglio
- UNL, CONICET, FBCB, Cell Culture Laboratory, Ciudad Universitaria UNL.C.C. 242, (S3000ZAA) Santa Fe, Argentina
| | - Brenda Raud
- UNL, FBCB, Cell Culture Laboratory, Ciudad Universitaria UNL.C.C. 242, (S3000ZAA) Santa Fe, Argentina
| | - Guillermina Forno
- UNL, FBCB, Cell Culture Laboratory, Ciudad Universitaria UNL.C.C. 242, (S3000ZAA) Santa Fe, Argentina; Zelltek S.A., PTLC RN 168, (S3000ZAA) Santa Fe, Argentina
| | - Laura Mauro
- Zelltek S.A., PTLC RN 168, (S3000ZAA) Santa Fe, Argentina
| | - Ricardo Kratje
- UNL, CONICET, FBCB, Cell Culture Laboratory, Ciudad Universitaria UNL.C.C. 242, (S3000ZAA) Santa Fe, Argentina
| | - Marcos Oggero
- UNL, CONICET, FBCB, Cell Culture Laboratory, Ciudad Universitaria UNL.C.C. 242, (S3000ZAA) Santa Fe, Argentina.
| |
Collapse
|
19
|
Rastogi M, Sharma N, Singh SK. Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J 2016; 13:131. [PMID: 27473856 PMCID: PMC4966872 DOI: 10.1186/s12985-016-0590-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022] Open
Abstract
Flaviviruses are emerging arthropod-borne viruses representing an immense global health problem. The prominent viruses of this group include dengue virus, yellow fever virus, Japanese encephalitis virus, West Nile virus tick borne encephalitis virus and Zika Virus. These are endemic in many parts of the world. They are responsible for the illness ranging from mild flu like symptoms to severe hemorrhagic, neurologic and cognitive manifestations leading to death. NS1 is a highly conserved non-structural protein among flaviviruses, which exist in diverse forms. The intracellular dimer form of NS1 plays role in genome replication, whereas, the secreted hexamer plays role in immune evasion. The secreted NS1 has been identified as a potential diagnostic marker for early detection of the infections caused by flaviviruses. In addition to the diagnostic marker, the importance of NS1 has been reported in the development of therapeutics. NS1 based subunit vaccines are at various stages of development. The structural details and diverse functions of NS1 have been discussed in detail in this review.
Collapse
Affiliation(s)
- Meghana Rastogi
- Institute of Medical Sciences (IMS), Laboratory of Human Molecular Virology & Immunology, Molecular Biology Unit, Faculty of Medicine, Banaras Hindu University, Varanasi, 221005, India
| | - Nikhil Sharma
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Sunit Kumar Singh
- Institute of Medical Sciences (IMS), Laboratory of Human Molecular Virology & Immunology, Molecular Biology Unit, Faculty of Medicine, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
20
|
Hou W, Qiu Y, Hashimoto N, Ching WK, Aoki-Kinoshita KF. A systematic framework to derive N-glycan biosynthesis process and the automated construction of glycosylation networks. BMC Bioinformatics 2016; 17 Suppl 7:240. [PMID: 27454116 PMCID: PMC4965717 DOI: 10.1186/s12859-016-1094-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Abnormalities in glycan biosynthesis have been conclusively related to various diseases, whereas the complexity of the glycosylation process has impeded the quantitative analysis of biochemical experimental data for the identification of glycoforms contributing to disease. To overcome this limitation, the automatic construction of glycosylation reaction networks in silico is a critical step. Results In this paper, a framework K2014 is developed to automatically construct N-glycosylation networks in MATLAB with the involvement of the 27 most-known enzyme reaction rules of 22 enzymes, as an extension of previous model KB2005. A toolbox named Glycosylation Network Analysis Toolbox (GNAT) is applied to define network properties systematically, including linkages, stereochemical specificity and reaction conditions of enzymes. Our network shows a strong ability to predict a wider range of glycans produced by the enzymes encountered in the Golgi Apparatus in human cell expression systems. Conclusions Our results demonstrate a better understanding of the underlying glycosylation process and the potential of systems glycobiology tools for analyzing conventional biochemical or mass spectrometry-based experimental data quantitatively in a more realistic and practical way.
Collapse
Affiliation(s)
- Wenpin Hou
- Department of Mathematics, The University of Hong Kong, Hong Kong, 999077, China.
| | - Yushan Qiu
- Hematology Oncology Division, Northwestern University, Evanston, IL 60208, USA
| | - Nobuyuki Hashimoto
- Faculty of Science and Engineering, Soka University, Tokyo, 192-8577, Japan
| | - Wai-Ki Ching
- Department of Mathematics, The University of Hong Kong, Hong Kong, 999077, China
| | | |
Collapse
|
21
|
Watterson D, Modhiran N, Young PR. The many faces of the flavivirus NS1 protein offer a multitude of options for inhibitor design. Antiviral Res 2016; 130:7-18. [DOI: 10.1016/j.antiviral.2016.02.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/23/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
|
22
|
Tegument Glycoproteins and Cathepsins of Newly Excysted Juvenile Fasciola hepatica Carry Mannosidic and Paucimannosidic N-glycans. PLoS Negl Trop Dis 2016; 10:e0004688. [PMID: 27139907 PMCID: PMC4854454 DOI: 10.1371/journal.pntd.0004688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/14/2016] [Indexed: 11/19/2022] Open
Abstract
Recently, the prevalence of Fasciola hepatica in some areas has increased considerably and the availability of a vaccine to protect livestock from infection would represent a major advance in tools available for controlling this disease. To date, most vaccine-target discovery research on this parasite has concentrated on proteomic and transcriptomic approaches whereas little work has been carried out on glycosylation. As the F. hepatica tegument (Teg) may contain glycans potentially relevant to vaccine development and the Newly Excysted Juvenile (NEJ) is the first lifecycle stage in contact with the definitive host, our work has focused on assessing the glycosylation of the NEJTeg and identifying the NEJTeg glycoprotein repertoire. After in vitro excystation, NEJ were fixed and NEJTeg was extracted. Matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of released N-glycans revealed that oligomannose and core-fucosylated truncated N-glycans were the most dominant glycan types. By lectin binding studies these glycans were identified mainly on the NEJ surface, together with the oral and ventral suckers. NEJTeg glycoproteins were affinity purified after targeted biotinylation of the glycans and identified using liquid chromatography and tandem mass spectrometry (LC-MS/MS). From the total set of proteins previously identified in NEJTeg, eighteen were also detected in the glycosylated fraction, including the F. hepatica Cathepsin B3 (FhCB3) and two of the Cathepsin L3 (FhCL3) proteins, among others. To confirm glycosylation of cathepsins, analysis at the glycopeptide level by LC-ESI-ion-trap-MS/MS with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) was carried out. We established that cathepsin B1 (FhCB1) on position N80, and FhCL3 (BN1106_s10139B000014, scaffold10139) on position N153, carry unusual paucimannosidic Man2GlcNAc2 glycans. To our knowledge, this is the first description of F. hepatica NEJ glycosylation and the first report of N-glycosylation of F. hepatica cathepsins. The significance of these findings for immunological studies and vaccine development is discussed.
Collapse
|
23
|
A Designed Angiopoietin-1 Variant, Dimeric CMP-Ang1 Activates Tie2 and Stimulates Angiogenesis and Vascular Stabilization in N-glycan Dependent Manner. Sci Rep 2015; 5:15291. [PMID: 26478188 PMCID: PMC4609988 DOI: 10.1038/srep15291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/22/2015] [Indexed: 01/09/2023] Open
Abstract
Angiopoietin-1 (Ang1), a potential growth factor for therapeutic angiogenesis and vascular stabilization, is known to specifically cluster and activate Tie2 in high oligomeric forms, which is a unique and essential process in this ligand-receptor interaction. However, highly oligomeric native Ang1 and Ang1 variants are difficult to produce, purify, and store in a stable and active form. To overcome these limitations, we developed a simple and active dimeric CMP-Ang1 by replacing the N-terminal of native Ang1 with the coiled-coil domain of cartilage matrix protein (CMP) bearing mutations in its cysteine residues. This dimeric CMP-Ang1 effectively increased the migration, survival, and tube formation of endothelial cells via Tie2 activation. Furthermore, dimeric CMP-Ang1 induced angiogenesis and suppressed vascular leakage in vivo. Despite its dimeric structure, the potencies of such Tie2-activation-induced effects were comparable to those of a previously engineered protein, COMP-Ang1. We also revealed that these effects of dimeric CMP-Ang1 were affected by specified N-glycosylation in its fibrinogen-like domain. Taken together, our results indicate that dimeric CMP-Ang1 is capable of activating Tie2 and stimulating angiogenesis in N-glycan dependent manner.
Collapse
|
24
|
Xie C, Zhang Y, Tran TDN, Wang H, Li S, George EV, Zhuang H, Zhang P, Kandel A, Lai Y, Tang D, Reeves WH, Cheng H, Ding Y, Yang LJ. Irisin Controls Growth, Intracellular Ca2+ Signals, and Mitochondrial Thermogenesis in Cardiomyoblasts. PLoS One 2015; 10:e0136816. [PMID: 26305684 PMCID: PMC4549318 DOI: 10.1371/journal.pone.0136816] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/07/2015] [Indexed: 12/31/2022] Open
Abstract
Exercise offers short-term and long-term health benefits, including an increased metabolic rate and energy expenditure in myocardium. The newly-discovered exercise-induced myokine, irisin, stimulates conversion of white into brown adipocytes as well as increased mitochondrial biogenesis and energy expenditure. Remarkably, irisin is highly expressed in myocardium, but its physiological effects in the heart are unknown. The objective of this work is to investigate irisin’s potential multifaceted effects on cardiomyoblasts and myocardium. For this purpose, H9C2 cells were treated with recombinant irisin produced in yeast cells (r-irisin) and in HEK293 cells (hr-irisin) for examining its effects on cell proliferation by MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and on gene transcription profiles by qRT-PCR. R-irisin and hr-irisin both inhibited cell proliferation and activated genes related to cardiomyocyte metabolic function and differentiation, including myocardin, follistatin, smooth muscle actin, and nuclear respiratory factor-1. Signal transduction pathways affected by r-irisin in H9C2 cells and C57BL/6 mice were examined by detecting phosphorylation of PI3K-AKT, p38, ERK or STAT3. We also measured intracellular Ca2+ signaling and mitochondrial thermogenesis and energy expenditure in r-irisin-treated H9C2 cells. The results showed that r-irisin, in a certain concentration rage, could activate PI3K-AKT and intracellular Ca2+ signaling and increase cellular oxygen consumption in H9C2 cells. Our study also suggests the existence of irisin-specific receptor on the membrane of H9C2 cells. In conclusion, irisin in a certain concentration rage increased myocardial cell metabolism, inhibited cell proliferation and promoted cell differentiation. These effects might be mediated through PI3K-AKT and Ca2+ signaling, which are known to activate expression of exercise-related genes such as follistatin and myocardin. This work supports the value of exercise, which promotes irisin release.
Collapse
Affiliation(s)
- Chao Xie
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Yuan Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Tran D. N. Tran
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States of America
| | - Hai Wang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Shiwu Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Eva Vertes George
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Haoyang Zhuang
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Peilan Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States of America
| | - Avi Kandel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Yimu Lai
- Department of Cell Biology and Anatomy, University of South Carolina of Medicine, Columbia, SC, 29209, United States of America
| | - Dongqi Tang
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Westley H. Reeves
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States of America
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States of America
- * E-mail: (L-JY); (YD)
| | - Li-Jun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
- * E-mail: (L-JY); (YD)
| |
Collapse
|
25
|
Brühlmann D, Jordan M, Hemberger J, Sauer M, Stettler M, Broly H. Tailoring recombinant protein quality by rational media design. Biotechnol Prog 2015; 31:615-29. [DOI: 10.1002/btpr.2089] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/04/2015] [Indexed: 02/07/2023]
Affiliation(s)
- David Brühlmann
- Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Zone Industrielle B; CH-1809 Fenil-sur-Corsier Switzerland
- Dept. of Biotechnology and Biophysics; Julius-Maximilians-Universität Würzburg, Biozentrum; Am Hubland DE-97074 Würzburg Germany
| | - Martin Jordan
- Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Zone Industrielle B; CH-1809 Fenil-sur-Corsier Switzerland
| | - Jürgen Hemberger
- Inst. for Biochemical Engineering and Analytics; University of Applied Sciences Giessen; Wiesenstrasse 14, DE-35390 Giessen Germany
| | - Markus Sauer
- Dept. of Biotechnology and Biophysics; Julius-Maximilians-Universität Würzburg, Biozentrum; Am Hubland DE-97074 Würzburg Germany
| | - Matthieu Stettler
- Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Zone Industrielle B; CH-1809 Fenil-sur-Corsier Switzerland
| | - Hervé Broly
- Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Zone Industrielle B; CH-1809 Fenil-sur-Corsier Switzerland
| |
Collapse
|
26
|
Wang M, Ishino T, Joyce A, Tam A, Duan W, Lin L, Somers WS, Kriz R, O'Hara DM. Faster in vivo clearance of human embryonic kidney than Chinese hamster ovary cell derived protein: Role of glycan mediated clearance. J Biosci Bioeng 2015; 119:657-60. [PMID: 25575972 DOI: 10.1016/j.jbiosc.2014.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/01/2014] [Accepted: 11/10/2014] [Indexed: 11/17/2022]
Abstract
This investigation used in vivo and in vitro tools to study pharmacokinetics and glycosylation of two monomeric antibodies produced either transiently by HEK293 cells or stably by Chinese hamster ovary cells, and demonstrated that higher in vivo clearance of human embryonic kidney antibody was due to higher glycosylation, thus higher mannose receptor mediated uptake.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Andover, MA 01810, USA.
| | - Tetsuya Ishino
- Department of Global Biotherapeutics Technologies, Pfizer Inc., Cambridge, MA 02140, USA
| | - Alison Joyce
- Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Andover, MA 01810, USA
| | - Amy Tam
- Department of Global Biotherapeutics Technologies, Pfizer Inc., Cambridge, MA 02140, USA
| | - Weili Duan
- Department of Global Biotherapeutics Technologies, Pfizer Inc., Cambridge, MA 02140, USA
| | - Laura Lin
- Department of Global Biotherapeutics Technologies, Pfizer Inc., Cambridge, MA 02140, USA
| | - William S Somers
- Department of Global Biotherapeutics Technologies, Pfizer Inc., Cambridge, MA 02140, USA
| | - Ronald Kriz
- Department of Global Biotherapeutics Technologies, Pfizer Inc., Cambridge, MA 02140, USA
| | - Denise M O'Hara
- Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Andover, MA 01810, USA
| |
Collapse
|
27
|
Naegeli A, Aebi M. Current Approaches to Engineering N-Linked Protein Glycosylation in Bacteria. Methods Mol Biol 2015; 1321:3-16. [PMID: 26082211 DOI: 10.1007/978-1-4939-2760-9_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
N-Linked protein glycosylation is a common posttranslational protein modification in eukaryotes involved in many biological processes. As glycosylation is also important for the function and the pharmacokinetic properties of many protein therapeutics, there is an increasing interest in expression systems able to produce glycoproteins of well-defined structure. Bacterial expression hosts generally do not glycosylate proteins at all. However, the discovery of bacterial N-glycosylation systems has opened up a new route for the production of therapeutically interesting glycoproteins in glyco-engineered bacteria. This review offers an introduction to the many efforts taken to engineer bacteria in order to produce N-glycoproteins with defined eukaryotic glycan structures, completely novel protein glycoconjugates as well as to establish screening approaches for improvement and adaptation of the glycosylation machinery to specific applications.
Collapse
Affiliation(s)
- Andreas Naegeli
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
28
|
Magistrelli G, Malinge P. Antigen production for monoclonal antibody generation. Methods Mol Biol 2014; 1131:3-20. [PMID: 24515456 DOI: 10.1007/978-1-62703-992-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The quality of the target antigen is very important in order to generate a good antibody, in particular when binding to a conformational epitope is desired. The use of mammalian cells for recombinant protein expression provides an efficient machinery for the correct folding and posttranslational modification of proteins. In this chapter, we describe a process to rapidly generate semi-stable human cell lines secreting a recombinant protein of interest into the culture medium. Simple disposable bioreactors that can be used in any standard cell culture laboratory enable the production of recombinant protein in the multi-milligram range. The protein can be readily purified from the culture supernatant by immobilized metal affinity chromatography. In addition, by inserting a tag recognized by a co-expressed biotin ligase, the protein can be biotinylated during the secretion process. This greatly facilitates the immobilization of the protein for assay development or for antibody isolation using in vitro selection technologies.
Collapse
|
29
|
Feichtinger GA, Hofmann AT, Slezak P, Schuetzenberger S, Kaipel M, Schwartz E, Neef A, Nomikou N, Nau T, van Griensven M, McHale AP, Redl H. Sonoporation increases therapeutic efficacy of inducible and constitutive BMP2/7 in vivo gene delivery. Hum Gene Ther Methods 2013; 25:57-71. [PMID: 24164605 DOI: 10.1089/hgtb.2013.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An ideal novel treatment for bone defects should provide regeneration without autologous or allogenous grafting, exogenous cells, growth factors, or biomaterials while ensuring spatial and temporal control as well as safety. Therefore, a novel osteoinductive nonviral in vivo gene therapy approach using sonoporation was investigated in ectopic and orthotopic models. Constitutive or regulated, doxycycline-inducible, bone morphogenetic protein 2 and 7 coexpression plasmids were repeatedly applied for 5 days. Ectopic and orthotopic gene transfer efficacy was monitored by coapplication of a luciferase plasmid and bioluminescence imaging. Orthotopic plasmid DNA distribution was investigated using a novel plasmid-labeling method. Luciferase imaging demonstrated an increased trend (61% vs. 100%) of gene transfer efficacy, and micro-computed tomography evaluation showed significantly enhanced frequency of ectopic bone formation for sonoporation compared with passive gene delivery (46% vs. 100%) dependent on applied ultrasound power. Bone formation by the inducible system (83%) was stringently controlled by doxycycline in vivo, and no ectopic bone formation was observed without induction or with passive gene transfer without sonoporation. Orthotopic evaluation in a rat femur segmental defect model demonstrated an increased trend of gene transfer efficacy using sonoporation. Investigation of DNA distribution demonstrated extensive binding of plasmid DNA to bone tissue. Sonoporated animals displayed a potentially increased union rate (33%) without extensive callus formation or heterotopic ossification. We conclude that sonoporation of BMP2/7 coexpression plasmids is a feasible, minimally invasive method for osteoinduction and that improvement of bone regeneration by sonoporative gene delivery is superior to passive gene delivery.
Collapse
Affiliation(s)
- Georg A Feichtinger
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, European Institute of Excellence on Tissue Engineering and Regenerative Medicine Research (Expertissues EEIG) , Vienna-Branch, 1200 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Schmidt SR. Fusion Proteins: Applications and Challenges. FUSION PROTEIN TECHNOLOGIES FOR BIOPHARMACEUTICALS 2013:1-24. [DOI: 10.1002/9781118354599.ch1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Go EP, Liao HX, Alam SM, Hua D, Haynes BF, Desaire H. Characterization of host-cell line specific glycosylation profiles of early transmitted/founder HIV-1 gp120 envelope proteins. J Proteome Res 2013; 12:1223-34. [PMID: 23339644 PMCID: PMC3674872 DOI: 10.1021/pr300870t] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosylation plays an essential role in regulating protein function by modulating biological, structural, and therapeutic properties. However, due to its inherent heterogeneity and diversity, the comprehensive analysis of protein glycosylation remains a challenge. As part of our continuing effort in the analysis of glycosylation profiles of recombinant HIV-1 envelope-based immunogens, we evaluated and compared the host-cell specific glycosylation pattern of recombinant HIV-1 surface glycoprotein, gp120, derived from clade C transmitted/founder virus 1086.C expressed in Chinese hamster ovary (CHO) and human embryonic kidney containing T antigen (293T) cell lines. We used an integrated glycopeptide-based mass mapping workflow that includes a partial deglycosylation step described in our previous study with the inclusion of a fragmentation technique, electron transfer dissociation (ETD), to complement collision-induced dissociation. The inclusion of ETD facilitated the analysis by providing additional validation for glycopeptide identification and expanding the identified glycopeptides to include coverage of O-linked glycosylation. The site-specific glycosylation analysis shows that the transmitted/founder 1086.C gp120 expressed in CHO and 293T displayed distinct similarities and differences. For N-linked glycosylation, two sites (N386 and N392) in the V4 region were populated with high mannose glycans in the CHO cell-derived 1086.C gp120, while these sites had a mixture of high mannose and processed glycans in the 293T cell-derived 1086.C gp120. Compositional analysis of O-linked glycans revealed that 293T cell-derived 1086.C gp120 consisted of core 1, 2, and 4 type O-linked glycans, while CHO cell-derived 1086.C exclusively consisted of core 1 type O-linked glycans. Overall, glycosylation site occupancy of the CHO and 293T cell-derived 1086.C gp120 showed a high degree of similarity except for one site at N88 in the C1 region. This site was partially occupied in 293T-gp120 but fully occupied in CHO-gp120. Site-specific glycopeptide analysis of transmitted/founder 1086.C gp120 expressed in CHO cells revealed the presence of phosphorylated glycans, while 293T cell-produced 1086.C gp120 glycans were not phosphorylated. While the influence of phosphorylated glycans on immunogenicity is unclear, distinguishing host-cell specific variations in glycosylation profiles provide insights into the similarity (or difference) in recombinant vaccine products. While these differences had minimal effect on envelope antigenicity, they may be important in considering immunogenicity and functional capacities of recombinant envelope proteins produced in different expression systems.
Collapse
Affiliation(s)
- Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, KS
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Department of Medicine, Duke University Medical Center, Durham, NC
| | - S. Munir Alam
- Duke Human Vaccine Institute, Department of Medicine, Duke University Medical Center, Durham, NC
| | - David Hua
- Department of Chemistry, University of Kansas, Lawrence, KS
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Department of Medicine, Duke University Medical Center, Durham, NC
- Department of Immunology, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
32
|
Kannicht C, Ramström M, Kohla G, Tiemeyer M, Casademunt E, Walter O, Sandberg H. Characterisation of the post-translational modifications of a novel, human cell line-derived recombinant human factor VIII. Thromb Res 2013; 131:78-88. [PMID: 23058466 DOI: 10.1016/j.thromres.2012.09.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/27/2012] [Accepted: 09/18/2012] [Indexed: 12/30/2022]
|
33
|
Croset A, Delafosse L, Gaudry JP, Arod C, Glez L, Losberger C, Begue D, Krstanovic A, Robert F, Vilbois F, Chevalet L, Antonsson B. Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J Biotechnol 2012; 161:336-48. [PMID: 22814405 DOI: 10.1016/j.jbiotec.2012.06.038] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 01/26/2023]
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins. It has important roles for protein structure, stability and functions. In vivo the glycostructures influence pharmacokinetics and immunogenecity. It is well known that significant differences in glycosylation and glycostructures exist between recombinant proteins expressed in mammalian, yeast and insect cells. However, differences in protein glycosylation between different mammalian cell lines are much less well known. In order to examine differences in glycosylation in mammalian cells we have expressed 12 proteins in the two commonly used cell lines HEK and CHO. The cells were transiently transfected, and the expressed proteins were purified. To identify differences in glycosylation the proteins were analyzed on SDS-PAGE, isoelectric focusing (IEF), mass spectrometry and released glycans on capillary gel electrophoresis (CGE-LIF). For all proteins significant differences in the glycosylation were detected. The proteins migrated differently on SDS-PAGE, had different isoform patterns on IEF, showed different mass peak distributions on mass spectrometry and showed differences in the glycostructures detected in CGE. In order to verify that differences detected were attributed to glycosylation the proteins were treated with deglycosylating enzymes. Although, culture conditions induced minor changes in the glycosylation the major differences were between the two cell lines.
Collapse
Affiliation(s)
- Amelie Croset
- Protein and Cell Sciences, Geneva Research Center, Merck Serono S.A., 9 chemin des Mines, 1202 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: An assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog 2012; 28:608-22. [DOI: 10.1002/btpr.1548] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/26/2012] [Indexed: 12/12/2022]
|
35
|
Wagner L, Wermann M, Rosche F, Rahfeld JU, Hoffmann T, Demuth HU. Isolation of dipeptidyl peptidase IV (DP 4) isoforms from porcine kidney by preparative isoelectric focusing to improve crystallization. Biol Chem 2011; 392:665-77. [DOI: 10.1515/bc.2011.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractIn the present studies we resolved the post-translational microheterogeneity of purified porcine dipeptidyl peptidase IV (DP 4) from kidney cortex. Applying SDS-homogeneous DP 4 onto an analytical agarose isoelectric focusing (IEF) gel, pH 4–6, activity staining resulted in at least 17 isoforms between pH 4.8–6.0. These could be separated into fractions with only two to six isoforms by means of preparative liquid-phase IEF, using a Rotofor cell. Starting off with three parallel Rotofor runs under the same conditions at pH 5–6, the fractions were pooled according to the specific activity of DP 4, pH and analytical IEF profile, and further refractionated without any additional ampholytes. Since excessive dilution of ampholytes and proteins was kept to the minimum, a second refractionation step could be introduced, resulting in pH gradients between 0.022 and 0.028 pH increments per fraction. By performing two consecutive refractionation steps, the high resolution necessary for the separation of DP 4 isoforms could be achieved. This represents an alternative method if isolation of isoforms with similar pI's results in precipitation and denaturation in presence of a narrow pH range. Furthermore, it demonstrates that preparative IEF is a powerful tool to resolve post-translational microheterogeneity of a purified protein required for crystallization processing.
Collapse
|
36
|
Teh SH, Fong MY, Mohamed Z. Expression and analysis of the glycosylation properties of recombinant human erythropoietin expressed in Pichia pastoris. Genet Mol Biol 2011; 34:464-70. [PMID: 21931521 PMCID: PMC3168189 DOI: 10.1590/s1415-47572011005000022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 01/25/2011] [Indexed: 12/21/2022] Open
Abstract
The Pichia pastoris expression system was used to produce recombinant human erythropoietin, a protein synthesized by the adult kidney and responsible for the regulation of red blood cell production. The entire recombinant human erythropoietin (rhEPO) gene was constructed using the Splicing by Overlap Extension by PCR (SOE-PCR) technique, cloned and expressed through the secretory pathway of the Pichia expression system. Recombinant erythropoietin was successfully expressed in P. pastoris. The estimated molecular mass of the expressed protein ranged from 32 kDa to 75 kDa, with the variation in size being attributed to the presence of rhEPO glycosylation analogs. A crude functional analysis of the soluble proteins showed that all of the forms were active in vivo.
Collapse
Affiliation(s)
- Ser Huy Teh
- Unit of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
37
|
Karlsson G. Development and Application of Methods for Separation of Carbohydrates by Hydrophilic Interaction Liquid Chromatography. ACTA ACUST UNITED AC 2011. [DOI: 10.1201/b10609-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
38
|
Li B, Russell SC, Zhang J, Hedrick JL, Lebrilla CB. Structure determination by MALDI-IRMPD mass spectrometry and exoglycosidase digestions of O-linked oligosaccharides from Xenopus borealis egg jelly. Glycobiology 2011; 21:877-94. [PMID: 21220250 DOI: 10.1093/glycob/cwr003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Differences in the fertilization behavior of Xenopus borealis from X. laevis and X. tropicalis suggest differences in the glycosylation of the egg jellies. To test this assumption, O-linked glycans were chemically released from the egg jelly coat glycoproteins of X. borealis. Over 50 major neutral glycans were observed, and no anionic glycans were detected from the released O-glycan pool. Preliminary structures of ∼30 neutral oligosaccharides were determined using matrix-assisted laser desorption/ionization (MALDI) infrared multiphoton dissociation tandem mass spectrometry (MS). The mass fingerprint of a group of peaks for the core-2 structure of O-glycans was conserved in the tandem mass spectra and was instrumental in rapid and efficient structure determination. Among the 29 O-glycans, 22 glycans contain the typical core-2 structure, 3 glycans have the core-1 structure and 2 glycans contained a previously unobserved core structure with hexose at the reducing end. There were seven pairs of structural isomers observed in the major O-linked oligosaccharides. To further elucidate the structures of a dozen O-linked glycans, specific and targeted exoglycosidase digestions were carried out and the products were monitored with MALDI-MS. Reported here are the elucidated structures of O-linked oligosaccharides from glycoproteins of X. borealis egg jelly coats. The structural differences in O-glycans from jelly coats of X. borealis and its close relatives may provide a better understanding of the structure-function relationships and the role of glycans in the fertilization process within Xenopodinae.
Collapse
Affiliation(s)
- Bensheng Li
- Department of Chemistry, Biochemistry and Molecular Medicine, University of California, Davis, USA
| | | | | | | | | |
Collapse
|
39
|
Singh SK. Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci 2010; 100:354-87. [PMID: 20740683 DOI: 10.1002/jps.22276] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 05/13/2010] [Accepted: 05/24/2010] [Indexed: 12/12/2022]
Abstract
All protein therapeutics have the potential to be immunogenic. Several factors, including patient characteristics, disease state, and the therapy itself, influence the generation of an immune response. Product-related factors such as the molecule design, the expression system, post-translational modifications, impurities, contaminants, formulation and excipients, container, closure, as well as degradation products are all implicated. However, a critical examination of the available data shows that clear unequivocal evidence for the impact of these latter factors on clinical immunogenicity is lacking. No report could be found that clearly deconvolutes the clinical impact of the product attributes on patient susceptibility. Aggregation carries the greatest concern as a risk factor for immunogenicity, but the impact of aggregates is likely to depend on their structure as well as on the functionality (e.g., immunostimulatory or immunomodulatory) of the therapeutic. Preclinical studies are not yet capable of assessing the clinically relevant immunogenicity potential of these product-related factors. Simply addressing these risk factors as part of product development will not eliminate immunogenicity. Minimization of immunogenicity has to begin at the molecule design stage by reducing or eliminating antigenic epitopes and building in favorable physical and chemical properties.
Collapse
Affiliation(s)
- Satish Kumar Singh
- Pfizer, Inc., BioTherapeutics Pharmaceutical Sciences, Pharmaceutical Research and Development, Chesterfield, Missouri 63017, USA.
| |
Collapse
|
40
|
Liu Y, Nguyen A, Wolfert RL, Zhuo S. Enhancing the secretion of recombinant proteins by engineering N-glycosylation sites. Biotechnol Prog 2010; 25:1468-75. [PMID: 19637381 DOI: 10.1002/btpr.241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
N-glycosylation is important for the folding and quality control of membrane and secretory proteins. We used mutagenesis to introduce N-glycosylation sequons in recombinant proteins to improve their secretion in HEK293 cells. Seven recombinant proteins, with or without endogenous N-glycosylation sequons, were tested by this method. Our results indicate that N-glycosylation sequons located at the N- or C-terminal are glycosylated at high rates and thus the N- and C-terminal may be convenient sites for effectively attaching oligosaccharide chains. More importantly, introduction of oligosaccharide chains at such positions has been found to improve the secretion levels for the majority of the recombinant proteins in our studies, regardless of endogenous N-glycosylation, presumably by improving their folding in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Yan Liu
- Dept. of Protein Science, diaDexus, Inc., South San Francisco, CA 94080, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN). DC-SIGN is a C-type lectin receptor that recognizes N-linked high-mannose oligosaccharides and branched fucosylated structures. It is now clear that the biological role of DC-SIGN is two-fold. It is primarily expressed by dendritic cells and mediates important functions necessary for the induction of successful immune responses that are essential for the clearance of microbial infections, such as the capture, destruction, and presentation of microbial pathogens to induce successful immune responses. Yet, on the other hand, pathogens may also exploit DC-SIGN to modulate DC functioning thereby skewing the immune response and promoting their own survival. This chapter presents an overview of the structure of DC-SIGN and its expression pattern among immune cells. The current state of knowledge of DC-SIGN-carbohydrate interactions is discussed and how these interactions influence dendritic cell functioning is examined. The molecular aspects that underlie the selectivity of DC-SIGN for mannose-and fucose-containing carbohydrates are detailed. Furthermore, the chapter discusses the role of DC-SIGN in dendritic cell biology and how certain bacterial pathogens exploit DC-SIGN to escape immune surveillance.
Collapse
|
42
|
Kim PJ, Lee DY, Jeong H. Centralized modularity of N-linked glycosylation pathways in mammalian cells. PLoS One 2009; 4:e7317. [PMID: 19802388 PMCID: PMC2750756 DOI: 10.1371/journal.pone.0007317] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 09/15/2009] [Indexed: 12/02/2022] Open
Abstract
Glycosylation is a highly complex process to produce a diverse repertoire of cellular glycans that are attached to proteins and lipids. Glycans are involved in fundamental biological processes, including protein folding and clearance, cell proliferation and apoptosis, development, immune responses, and pathogenesis. One of the major types of glycans, N-linked glycans, is formed by sequential attachments of monosaccharides to proteins by a limited number of enzymes. Many of these enzymes can accept multiple N-linked glycans as substrates, thereby generating a large number of glycan intermediates and their intermingled pathways. Motivated by the quantitative methods developed in complex network research, we investigated the large-scale organization of such N-linked glycosylation pathways in mammalian cells. The N-linked glycosylation pathways are extremely modular, and are composed of cohesive topological modules that directly branch from a common upstream pathway of glycan synthesis. This unique structural property allows the glycan production between modules to be controlled by the upstream region. Although the enzymes act on multiple glycan substrates, indicating cross-talk between modules, the impact of the cross-talk on the module-specific enhancement of glycan synthesis may be confined within a moderate range by transcription-level control. The findings of the present study provide experimentally-testable predictions for glycosylation processes, and may be applicable to therapeutic glycoprotein engineering.
Collapse
Affiliation(s)
- Pan-Jun Kim
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- * E-mail: (DYL); (HJ)
| | - Hawoong Jeong
- Institute for the BioCentury, KAIST, Daejeon, South Korea
- Department of Physics, KAIST, Daejeon, South Korea
- * E-mail: (DYL); (HJ)
| |
Collapse
|
43
|
Karg SR, Kallio PT. The production of biopharmaceuticals in plant systems. Biotechnol Adv 2009; 27:879-894. [PMID: 19647060 DOI: 10.1016/j.biotechadv.2009.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 12/20/2022]
Abstract
Biopharmaceuticals present the fastest growing segment in the pharmaceutical industry, with an ever widening scope of applications. Whole plants as well as contained plant cell culture systems are being explored for their potential as cheap, safe, and scalable production hosts. The first plant-derived biopharmaceuticals have now reached the clinic. Many biopharmaceuticals are glycoproteins; as the Golgi N-glycosylation machinery of plants differs from the mammalian machinery, the N-glycoforms introduced on plant-produced proteins need to be taken into consideration. Potent systems have been developed to change the plant N-glycoforms to a desired or even superior form compared to the native mammalian N-glycoforms. This review describes the current status of biopharmaceutical production in plants for industrial applications. The recent advances and tools which have been utilized to generate glycoengineered plants are also summarized and compared with the relevant mammalian systems whenever applicable.
Collapse
Affiliation(s)
- Saskia R Karg
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland.
| | - Pauli T Kallio
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland.
| |
Collapse
|
44
|
Strategies for analysis of the glycosylation of proteins: current status and future perspectives. Mol Biotechnol 2009; 43:76-88. [PMID: 19507069 DOI: 10.1007/s12033-009-9184-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 04/30/2009] [Indexed: 01/27/2023]
Abstract
More than half of human proteins are glycosylated by a bewildering array of complex and heterogeneous N- and O-linked glycans. They function in myriad biological processes, including cell adhesion and signalling and influence the physical characteristics, stability, function, activity and immunogenicity of soluble glycoproteins. A single protein may be glycosylated differently to yield heterogenous glycoforms. Glycosylation analysis is of increasing interest in biomedical and biological research, the pharmaceutical and healthcare industry and biotechnology. This is because it is increasingly apparent that glycosylation changes in diseases, such as cancer, making it a promising target for development of clinically useful biomarkers and therapeutics. Furthermore, as the non-human cells employed in expression systems glycosylate their proteins very differently to human cells, and as glycosylation changes unpredictably under changing environmental conditions, glycans analysis for quality control, optimum efficacy and safety of recombinant glycoproteins destined for human therapeutic use is paramount. The complexities of carbohydrate chemistry make analysis challenging and while there are a variety of robust methodologies available for glycan analysis, there is currently a pressing need for the development of new, streamlined, high throughput approaches accessible to non-specialist laboratories.
Collapse
|
45
|
Müller A, Solem ST, Karlsen CR, Jørgensen TØ. Heterologous expression and purification of the infectious salmon anemia virus hemagglutinin esterase. Protein Expr Purif 2008; 62:206-15. [PMID: 18799134 DOI: 10.1016/j.pep.2008.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/22/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
Abstract
This study presents the heterologous production and purification of a soluble and functional form of the hemagglutinin esterase (HE) of the infectious salmon anemia virus (ISAV) isolate 4 (Glesvaer/2/90). The HE possesses receptor binding and receptor destroying enzyme (RDE) activity and is probably involved in the infection process. The recombinant HE protein (recHE 4) was expressed in insect cells (Sf9) using the baculovirus expression vector system. Both the transmembrane region and the cytoplasmic tail were deleted, and a C-terminal His(6)-tag was attached to facilitate identification and purification of the recHE 4 protein. As determined by Western analysis the recHE 4 was secreted at 20 degrees C and not at 28 degrees C. By testing three HE constructs differing in their promoter and secretion signal sequences it was clear that the HE's own secretion signal sequence is more important than the promoter with respect to the amount of secreted recHE 4 obtained under the conditions used. A one-step purification by nickel-affinity chromatography resulted in a highly purified recHE 4, identified by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis. Also, the recHE 4 is glycosylated and contains disulfide bridges within the molecule. Functional studies including the verification of the receptor destroying enzyme (RDE) activity as well as the binding to Atlantic salmon erythrocytes (hemagglutination) indicate that the recHE 4 has similar functions as its native counterpart. In conclusion, insect cells secrete a functional form of the ISAV 4 HE. This is suitable for further analyses on its function and immunogenicity.
Collapse
Affiliation(s)
- Anita Müller
- Department of Marine Biotechnology, Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway.
| | | | | | | |
Collapse
|
46
|
Gaudry JP, Arod C, Sauvage C, Busso S, Dupraz P, Pankiewicz R, Antonsson B. Purification of the extracellular domain of the membrane protein GlialCAM expressed in HEK and CHO cells and comparison of the glycosylation. Protein Expr Purif 2008; 58:94-102. [DOI: 10.1016/j.pep.2007.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/23/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
|
47
|
Geldhof P, De Maere V, Vercruysse J, Claerebout E. Recombinant expression systems: the obstacle to helminth vaccines? Trends Parasitol 2007; 23:527-32. [DOI: 10.1016/j.pt.2007.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 01/06/2023]
|
48
|
Affiliation(s)
- Stephen W Hunsucker
- Department of Pediatrics, School of Medicine, University of Colorado at Denver and Health Sciences Center, 12801 East 17th Avenue, Aurora, CO 80010, USA
| | | | | |
Collapse
|