1
|
Duan Z, Zhang Q, Liu M, Hu Z. Multifunctionality of matrix protein in the replication and pathogenesis of Newcastle disease virus: A review. Int J Biol Macromol 2023; 249:126089. [PMID: 37532184 DOI: 10.1016/j.ijbiomac.2023.126089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
As an important structural protein in virion morphogenesis, the matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to be a nuclear-cytoplasmic trafficking protein and plays essential roles in viral assembly and budding. In recent years, increasing lines of evidence have indicated that the M protein has obvious influence on the pathotypes of NDV, and the interaction of M protein with cellular proteins is also closely associated with the replication and pathogenicity of NDV. Although substantial progress has been made in the past 40 years towards understanding the structure and function of NDV M protein, the available information is scattered. Therefore, this review article summarizes and updates the research progress on the structural feature, virulence and pathotype correlation, and nucleocytoplasmic transport mechanism of NDV M protein, as well as the functions of M protein and cellular protein interactions in M's intracellular localization, viral RNA synthesis and transcription, viral protein synthesis, viral immune evasion, and viral budding and release, which will provide an in-depth understanding of the biological functions of M protein in the replication and pathogenesis of NDV, and also contribute to the development of effective antiviral strategies aiming at blocking the early or late steps of NDV lifecycles.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| | - Qianyong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Menglan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Zhang S, Zheng S. Host Combats IBDV Infection at Both Protein and RNA Levels. Viruses 2022; 14:v14102309. [PMID: 36298864 PMCID: PMC9607458 DOI: 10.3390/v14102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, with the emergence of IBDV variants and recombinant strains, IBDV still threatens the poultry industry worldwide. It seems that the battle between host and IBDV will never end. Thus, it is urgent to develop a more comprehensive and effective strategy for the control of this disease. A better understanding of the mechanisms underlying virus-host interactions would be of help in the development of novel vaccines. Recently, much progress has been made in the understanding of the host response against IBDV infection. If the battle between host and IBDV at the protein level is considered the front line, at the RNA level, it can be taken as a hidden line. The host combats IBDV infection at both the front and hidden lines. Therefore, this review focuses on our current understanding of the host response to IBDV infection at both the protein and RNA levels.
Collapse
Affiliation(s)
- Shujun Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-(10)-6273-4681
| |
Collapse
|
3
|
Xu X, Liu L, Feng J, Li X, Zhang J. Comparative transcriptome analysis reveals potential anti-viral immune pathways of turbot (Scophthalmus maximus) subverted by megalocytivirus RBIV-C1 for immune evasion. FISH & SHELLFISH IMMUNOLOGY 2022; 122:153-161. [PMID: 35150827 DOI: 10.1016/j.fsi.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Successful viral infection and multiplication chiefly rely on virus subversion mechanisms against host anti-viral immune responses. In this study, in order to reveal the anti-viral immune-related pathways suppressed by megalocytivirus infection, transcriptome analysis was performed on the head-kidney of turbot (Scophthalmus maximus) infected with lethal dose of RBIV-C1 at 3, 6 and 9 days post challenge (dpc). The results showed that, compared to unchallenged groups, 190, 1220, and 3963 DEGs were detected in RBIV-C1 infected groups at 3, 6 and 9 dpc, respectively, of which, DEGs of complement components and pattern recognition proteins were up-regulated at 3 dpc and down-regulated at 6 and 9 dpc, DEGs of cytokines were up-regulated at 6 dpc and down-regulated at 9 dpc. Expression trend analysis revealed that DEGs of profiles 9 and 13 featured decreased expression patterns and were significantly enriched into 10 immune-related pathways, i.e., complement and coagulation cascades, cytokine-cytokine receptor interaction, chemokine signaling pathway, B/T cell receptor signaling pathway, antigen processing and presentation, and so on. Further co-expression network analysis (WGCNA) revealed positive correlated innate immune related pathways at 3 and 6 dpc, and negative correlated innate and adaptive immune related pathways at 9 dpc. This study revealed a set of anti-viral immune genes/pathways that would also be potential targets subverted by RBIV-C1 for immune evasion, which can serve as a valuable resource for future studies on the molecular mechanisms of anti-viral immune defense of turbot and immune escape of megalocytivirus.
Collapse
Affiliation(s)
- Xiudan Xu
- School of Ocean, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Ling Liu
- School of Ocean, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Jixing Feng
- School of Ocean, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Xuepeng Li
- School of Ocean, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Jian Zhang
- School of Ocean, Yantai University, 30 Qingquan Road, Yantai, 264005, China.
| |
Collapse
|
4
|
Tripathi D, Sodani M, Gupta PK, Kulkarni S. Host directed therapies: COVID-19 and beyond. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100058. [PMID: 34870156 PMCID: PMC8464038 DOI: 10.1016/j.crphar.2021.100058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 12/15/2022] Open
Abstract
The global spread of SARS-CoV-2 has necessitated the development of novel, safe and effective therapeutic agents against this virus to stop the pandemic, however the development of novel antivirals may take years, hence, the best alternative available, is to repurpose the existing antiviral drugs with known safety profile in humans. After more than one year into this pandemic, global efforts have yielded the fruits and with the launch of many vaccines in the market, the world is inching towards the end of this pandemic, nonetheless, future pandemics of this magnitude or even greater cannot be denied. The preparedness against viruses of unknown origin should be maintained and the broad-spectrum antivirals with activity against range of viruses should be developed to curb future viral pandemics. The majority of antivirals developed till date are pathogen specific agents, which target critical viral pathways and lack broad spectrum activity required to target wide range of viruses. The surge in drug resistance among pathogens has rendered a compelling need to shift our focus towards host directed factors in the treatment of infectious diseases. This gains special relevance in the case of viral infections, where the pathogen encodes a handful of genes and predominantly depends on host factors for their propagation and persistence. Therefore, future antiviral drug development should focus more on targeting molecules of host pathways that are often hijacked by many viruses. Such cellular proteins of host pathways offer attractive targets for the development of broad-spectrum anticipatory antivirals. In the present article, we have reviewed the host directed therapies (HDTs) effective against viral infections with a special focus on COVID-19. This article also discusses the strategies involved in identifying novel host targets and subsequent development of broad spectrum HDTs.
Collapse
Affiliation(s)
- Devavrat Tripathi
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Megha Sodani
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pramod Kumar Gupta
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Corresponding author.
| | - Savita Kulkarni
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Corresponding author. Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India.
| |
Collapse
|
5
|
Liu F, Seto WK, Wong DKH, Huang FY, Cheung KS, Mak LY, Sharma R, Zhang S, Fung J, Lai CL, Yuen MF. Plasma Fibronectin Levels Identified via Quantitative Proteomics Profiling Predicts Hepatitis B Surface Antigen Seroclearance in Chronic Hepatitis B. J Infect Dis 2020; 220:940-950. [PMID: 31056649 DOI: 10.1093/infdis/jiz223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/01/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Seroclearance of hepatitis B surface antigen (HBsAg) is a potentially achievable target of chronic hepatitis B (CHB). Plasma proteins relevant to HBsAg seroclearance remain undetermined. METHODS We prospectively recruited treatment-naive CHB patients with spontaneous HBsAg seroclearance and matched HBsAg-positive controls. Plasma protein profiling was performed using isobaric tags for relative and absolute quantitation-based proteomics, with the expression of candidate proteins validated in a separate cohort. The predictive value of fibronectin was assessed at 3 years, 1 year (Year -1) before, and at the time (Year 0) of HBsAg seroclearance. RESULTS Four hundred eighty-seven plasma proteins were identified via proteomics, with 97 proteins showing altered expression. In the verification cohort (n = 90), median plasma fibronectin levels in patients with HBsAg seroclearance was higher than in controls (P = .009). In the longitudinal cohort (n = 164), patients with HBsAg seroclearance, compared with controls, had a higher median fibronectin levels at Year -1 (413.26 vs 227.95 µg/mL) and Year 0 (349.45 vs 208.72 µg/mL) (both P < .001). In patients with an annual HBsAg log reduction >0.5, Year -1 fibronectin level achieved an area under the receiving operator characteristic of 0.884 in predicting HBsAg seroclearance. CONCLUSIONS Using proteomics-based technology, plasma fibronectin may be associated with HBsAg seroclearance and a potential predictor of "functional cure".
Collapse
Affiliation(s)
- Fen Liu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, China
| | - Wai-Kay Seto
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, China.,State Key Laboratory for Liver Research, The University of Hong Kong, China.,Department of Medicine, The University of Hong Kong-Shenzhen Hospital, China
| | - Danny Ka-Ho Wong
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, China.,State Key Laboratory for Liver Research, The University of Hong Kong, China
| | - Fung-Yu Huang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, China
| | - Ka-Shing Cheung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, China
| | - Lung-Yi Mak
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, China
| | - Rakesh Sharma
- Proteomics and Metabolomics Core Facility, Li Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Saisai Zhang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, China
| | - James Fung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, China.,State Key Laboratory for Liver Research, The University of Hong Kong, China
| | - Ching-Lung Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, China.,State Key Laboratory for Liver Research, The University of Hong Kong, China
| | - Man-Fung Yuen
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, China.,State Key Laboratory for Liver Research, The University of Hong Kong, China
| |
Collapse
|
6
|
Abstract
The analysis of HSV-1 mature extracellular virions by proteomics requires highly enriched samples to limit false-positives and favor the detection of true components. The protocol described below involves the removal of highly contaminating serum proteins and purification of the virions by a series of differential and density centrifugation steps. In addition, L-particles, which are viral particles devoid of a genome and capsid but present in the extracellular milieu, are depleted on Ficoll 400 gradients. As previously reported, the resulting viral particles are free of most contaminants and suitable for mass spectrometry.
Collapse
|
7
|
Cervera H, Ambrós S, Bernet GP, Rodrigo G, Elena SF. Viral Fitness Correlates with the Magnitude and Direction of the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus-Tobacco Case Study. Mol Biol Evol 2018; 35:1599-1615. [PMID: 29562354 PMCID: PMC5995217 DOI: 10.1093/molbev/msy038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts.
Collapse
Affiliation(s)
- Héctor Cervera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
| | - Silvia Ambrós
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
| | - Guillermo P Bernet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
| | - Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, Paterna, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, Paterna, València, Spain
- The Santa Fe Institute, Santa Fe, NM
| |
Collapse
|
8
|
Biron D, Nedelkov D, Missé D, Holzmuller P. Proteomics and Host–Pathogen Interactions. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2017. [PMCID: PMC7149668 DOI: 10.1016/b978-0-12-799942-5.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Hörmann K, Stukalov A, Müller AC, Heinz LX, Superti-Furga G, Colinge J, Bennett KL. A Surface Biotinylation Strategy for Reproducible Plasma Membrane Protein Purification and Tracking of Genetic and Drug-Induced Alterations. J Proteome Res 2016; 15:647-58. [PMID: 26699813 DOI: 10.1021/acs.jproteome.5b01066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasma membrane (PM) proteins contribute to the identity of a cell, mediate contact and communication, and account for more than two-thirds of known drug targets.1-8 In the past years, several protocols for the proteomic profiling of PM proteins have been described. Nevertheless, comparative analyses have mainly focused on different variations of one approach.9-11 We compared sulfo-NHS-SS-biotinylation, aminooxy-biotinylation, and surface coating with silica beads to isolate PM proteins for subsequent analysis by one-dimensional gel-free liquid chromatography mass spectrometry. Absolute and relative numbers of PM proteins and reproducibility parameters on a qualitative and quantitative level were assessed. Sulfo-NHS-SS-biotinylation outperformed aminooxy-biotinylation and surface coating using silica beads for most of the monitored criteria. We further simplified this procedure by a competitive biotin elution strategy achieving an average PM annotated protein fraction of 54% (347 proteins). Computational analysis using additional databases and prediction tools revealed that in total over 90% of the purified proteins were associated with the PM, mostly as interactors. The modified sulfo-NHS-SS-biotinylation protocol was validated by tracking changes in the plasma membrane proteome composition induced by genetic alteration and drug treatment. Glycosylphosphatidylinositol (GPI)-anchored proteins were depleted in PM purifications from cells deficient in the GPI transamidase component PIGS, and treatment of cells with tunicamycin significantly reduced the abundance of N-glycoproteins in surface purifications.
Collapse
Affiliation(s)
- Katrin Hörmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria.,Center for Physiology and Pharmacology, Medical University of Vienna , 1090 Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences , 1090 Vienna, Austria
| |
Collapse
|
10
|
Büscher N, Paulus C, Nevels M, Tenzer S, Plachter B. The proteome of human cytomegalovirus virions and dense bodies is conserved across different strains. Med Microbiol Immunol 2015; 204:285-93. [PMID: 25732096 DOI: 10.1007/s00430-015-0397-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/20/2015] [Indexed: 02/06/2023]
Abstract
The morphogenesis of human cytomegalovirus (HCMV) particles is incompletely understood. Analysis of the protein composition of HCMV virions and subviral dense bodies (DBs) by mass spectrometry provides valuable information to increase our knowledge about viral morphogenesis. Here we addressed the viral proteome of virions and DBs from two fibroblast-passaged isolates and the widely used endotheliotropic TB4-BAC40 strain of HCMV. The results show a striking concordance of the particle proteomes of different strains. One surprising finding was that only low levels of gpUL128-131A were found in TB40-BAC4 virions. These three proteins, together with gH and gL, form a protein complex that is critical for the endothelial cell tropism of that strain. This indicates that either few molecules of that complex per virion or a small fraction of pentamer-positive virions suffice to retain the tropism. Furthermore, using a pp65-deficient variant of TB40-BAC4, we confirm our previous finding that the major tegument protein serves as a scaffold to support the upload of a fraction of the outer tegument proteins into particles. The results demonstrate that HCMV particle morphogenesis is an orchestrated process that leads to the formation of particles with a largely strain-independent protein composition.
Collapse
Affiliation(s)
- Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz and Research Center for Immunotherapy (FZI), Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131, Mainz, Germany
| | | | | | | | | |
Collapse
|
11
|
Battle KN, Uba FI, Soper SA. Microfluidics for the analysis of membrane proteins: How do we get there? Electrophoresis 2014; 35:2253-66. [DOI: 10.1002/elps.201300625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/16/2014] [Accepted: 02/17/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Katrina N. Battle
- Department of Chemistry; Louisiana State University; Baton Rouge LA USA
| | - Franklin I. Uba
- Department of Chemistry; University of North Carolina; Chapel Hill NC USA
| | - Steven A. Soper
- Department of Chemistry; Louisiana State University; Baton Rouge LA USA
- Department of Chemistry; University of North Carolina; Chapel Hill NC USA
- Department of Biomedical Engineering; University of North Carolina; Chapel Hill NC USA
- BioFluidica, LLC, c/o Carolina Kick-Start; Chapel Hill NC USA
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology; Ulsan Korea
| |
Collapse
|
12
|
Wu D, Yuan Y, Liu P, Wu Y, Gao M. Cellular responses in Bacillus thuringiensis CS33 during bacteriophage BtCS33 infection. J Proteomics 2014; 101:192-204. [PMID: 24565692 DOI: 10.1016/j.jprot.2014.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/09/2013] [Accepted: 02/16/2014] [Indexed: 11/26/2022]
Abstract
UNLABELLED Bacillus thuringiensis (Bt) has been widely used for 50years as a biopesticide for controlling insect pests. However, bacteriophage infection can cause failures in 50%-80% of the batches during Bt fermentation, resulting in severe losses. In the present work, the physiological and biochemical impacts of Bt strain CS33 have been studied during bacteriophage infection. This study adopted a gel-based proteomics approach to probe the sequential changed proteins in phage-infected Bt cells. To phage, it depressed the host energy metabolism by suppressing the respiration chain, the TCA cycle, and the utilization of PHB on one hand; on the other hand, it hijacked the host translational machine for its own macromolecular synthesis. To host, superinfection exclusion might be triggered by the changes of S-layer protein and flagella related proteins, which were located on the cell surface and might play as the candidates for the phage recognition. More importantly, the growth rate, cell mass, and ICPs yield were significantly decreased. The low yield of ICPs was mainly due to the suppressed utilization of PHB granules. Further functional study on these altered proteins may lead to a better understanding of the pathogenic mechanisms and the identification of new targets for phage control. BIOLOGICAL SIGNIFICANCE B. thuringiensis (Bt) has been widely used for 50years as a safe biopesticide for controlling agricultural and sanitary insect pests. However, bacteriophage infection can cause severe losses during B. thuringiensis fermentation. The processes and consequences of interactions between bacteriophage and Bt were still poorly understood, and the molecular mechanisms involved were more unknown. This study adopted a gel-based proteomics approach to probe the physiological and biochemical impacts of Bt strain CS33 after phage-infection. The interactions between phage BtCS33 and its host Bt strain CS33 occurred mainly on four aspects. First, phage synthesized its nucleic acids through metabolic regulation by increasing the amount of NDK. Second, it is reasonable to infer that a phage resistance or superinfection exclusion was triggered by several increased or decreased proteins (SLP, FliD, FlaB), which were located on the cell surface and might play as candidates for the phage recognition. Third, combining the decreased flavoproteins (SdhA and EtfB) and the down regulated Fe-S cluster biosynthesis pathway together, it can be suggested that the respiration chain was weakened after phage infection. Additionally, three key enzymes (AcnB, FumC and AdhA) involved in the TCA cycle were all decreased, indicating the TCA cycle was seriously inhibited after infection. Fourth, the growth rate, cell mass and ICPs yield of the host were significantly decreased. To the best of our knowledge, this work represents the first systematic study on the interactions of an insecticidal bacterium with its phage, and has contributed novel information to understand the molecular events in the important biological pesticide producer, B. thuringiensis, in response to phage challenge.
Collapse
Affiliation(s)
- Dandan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Pengming Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| |
Collapse
|
13
|
Abstract
The analysis of herpes simplex virus type 1 mature extracellular virions by proteomics requires highly enriched samples to limit false positives and favor the detection of true components. The protocol described below involves the removal of highly contaminating serum proteins and purification of the virions by a series of differential and density centrifugation steps. In addition, L-particles, which are viral particles devoid of genome and capsid but present in the extracellular milieu, are depleted on Ficoll 400 gradients. As previously reported, the resulting viral particles are free of most contaminants and suitable for mass spectrometry.
Collapse
Affiliation(s)
- Roger Lippé
- Department of Pathology and Cell Biology, University of Montreal, V-541 Pavillon Roger Gaudry, 2900 boul. Édouard-Montpetit, Montreal, QC, Canada, H3C 3J7,
| |
Collapse
|
14
|
Protein arrays as tool for studies at the host-pathogen interface. J Proteomics 2013; 94:387-400. [PMID: 24140974 DOI: 10.1016/j.jprot.2013.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 09/06/2013] [Accepted: 10/08/2013] [Indexed: 01/10/2023]
Abstract
Pathogens and parasites encode a wide spectrum of multifunctional proteins interacting to and modifying proteins in host cells. However, the current lack of a reliable method to unveil the protein-protein interactions (PPI) at the host-pathogen interface is retarding our understanding of many important pathogenic processes. Thus, the identification of proteins involved in host-pathogen interactions is important for the elucidation of virulence determinants, mechanisms of infection, host susceptibility and/or disease resistance. In this sense, proteomic technologies have experienced major improvements in recent years and protein arrays are a powerful and modern method for studying PPI in a high-throughput format. This review focuses on these techniques analyzing the state-of-the-art of proteomic technologies and their possibilities to diagnose and explore host-pathogen interactions. Major technical advancements, applications and protocol concerns are presented, so readers can appreciate the immense progress achieved and the current technical options available for studying the host-pathogen interface. Finally, future uses of this kind of array-based proteomic tools in the fight against infectious and parasitic diseases are discussed.
Collapse
|
15
|
Rusnati M, Chiodelli P, Bugatti A, Urbinati C. Bridging the past and the future of virology: surface plasmon resonance as a powerful tool to investigate virus/host interactions. Crit Rev Microbiol 2013; 41:238-60. [PMID: 24059853 DOI: 10.3109/1040841x.2013.826177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite decades of antiviral drug research and development, viruses still remain a top global healthcare problem. Compared to eukaryotic cells, viruses are composed by a limited numbers of proteins that, nevertheless, set up multiple interactions with cellular components, allowing the virus to take control of the infected cell. Each virus/host interaction can be considered as a therapeutical target for new antiviral drugs but, unfortunately, the systematic study of a so huge number of interactions is time-consuming and expensive, calling for models overcoming these drawbacks. Surface plasmon resonance (SPR) is a label-free optical technique to study biomolecular interactions in real time by detecting reflected light from a prism-gold film interface. Launched 20 years ago, SPR has become a nearly irreplaceable technology for the study of biomolecular interactions. Accordingly, SPR is increasingly used in the field of virology, spanning from the study of biological interactions to the identification of putative antiviral drugs. From the literature available, SPR emerges as an ideal link between conventional biological experimentation and system biology studies functional to the identification of highly connected viral or host proteins that act as nodal points in virus life cycle and thus considerable as therapeutical targets for the development of innovative antiviral strategies.
Collapse
Affiliation(s)
- Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia , Brescia , Italy
| | | | | | | |
Collapse
|
16
|
Down-regulation of cellular protein heme oxygenase 1 inhibits proliferation of classical swine fever virus in PK-15 cells. Virus Res 2013; 173:315-20. [DOI: 10.1016/j.virusres.2013.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 01/22/2023]
|
17
|
Lippé R. Deciphering novel host-herpesvirus interactions by virion proteomics. Front Microbiol 2012; 3:181. [PMID: 22783234 PMCID: PMC3390586 DOI: 10.3389/fmicb.2012.00181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/27/2012] [Indexed: 12/15/2022] Open
Abstract
Over the years, a vast array of information concerning the interactions of viruses with their hosts has been collected. However, recent advances in proteomics and other system biology techniques suggest these interactions are far more complex than anticipated. One particularly interesting and novel aspect is the analysis of cellular proteins incorporated into mature virions. Though sometimes considered purification contaminants in the past, their repeated detection by different laboratories suggests that a number of these proteins are bona fide viral components, some of which likely contribute to the viral life cycles. The present mini review focuses on cellular proteins detected in herpesviruses. It highlights the common cellular functions of these proteins, their potential implications for host–pathogen interactions, discusses technical limitations, the need for complementing methods and probes potential future research avenues.
Collapse
Affiliation(s)
- Roger Lippé
- Department of Pathology and Cell biology, University of Montreal Montreal, QC, Canada
| |
Collapse
|
18
|
Ren X, Xue C, Kong Q, Zhang C, Bi Y, Cao Y. Proteomic analysis of purified Newcastle disease virus particles. Proteome Sci 2012; 10:32. [PMID: 22571704 PMCID: PMC3413529 DOI: 10.1186/1477-5956-10-32] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/09/2012] [Indexed: 12/20/2022] Open
Abstract
Background Newcastle disease virus (NDV) is an enveloped RNA virus, bearing severe economic losses to the poultry industry worldwide. Previous virion proteomic studies have shown that enveloped viruses carry multiple host cellular proteins both internally and externally during their life cycle. To address whether it also occurred during NDV infection, we performed a comprehensive proteomic analysis of highly purified NDV La Sota strain particles. Results In addition to five viral structural proteins, we detected thirty cellular proteins associated with purified NDV La Sota particles. The identified cellular proteins comprised several functional categories, including cytoskeleton proteins, annexins, molecular chaperones, chromatin modifying proteins, enzymes-binding proteins, calcium-binding proteins and signal transduction-associated proteins. Among these, three host proteins have not been previously reported in virions of other virus families, including two signal transduction-associated proteins (syntenin and Ras small GTPase) and one tumor-associated protein (tumor protein D52). The presence of five selected cellular proteins (i.e., β-actin, tubulin, annexin A2, heat shock protein Hsp90 and ezrin) associated with the purified NDV particles was validated by Western blot or immunogold labeling assays. Conclusions The current study presented the first standard proteomic profile of NDV. The results demonstrated the incorporation of cellular proteins in NDV particles, which provides valuable information for elucidating viral infection and pathogenesis.
Collapse
Affiliation(s)
- Xiangpeng Ren
- School of Environmental Science and Public Health, Wenzhou Medical College, Wenzhou, 325035, Peoples Republic of China.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Qingming Kong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Chengwen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Peoples Republic of China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| |
Collapse
|
19
|
Host responses of a marine bacterium, Roseobacter denitrificans OCh114, to phage infection. Arch Microbiol 2011; 194:323-30. [PMID: 22033766 DOI: 10.1007/s00203-011-0765-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 01/25/2023]
Abstract
RDJLΦ1 is a marine siphophage infecting Roseobacter denitrificans OCh114. In this study, host responses of R. denitrificans OCh114 to phage infection were investigated through in situ real-time atomic force microscopy (AFM) and proteomics approaches. As seen from the AFM observations, during phage infection processes, depression areas appeared on the host cell surface in a few minutes after infection and expanded in both diameter and depth over time and finally led to the collapse of host cells within 30 min. The two-dimensional polyacrylamide gel electrophoresis revealed significant changes in the proteomic composition of the host cells during infection. The expression of 91 proteins, including some involved in DNA transcription regulation and substrate transportation, was changed with at least twofold up- or downregulation as compared to the control without phage infection. This observed rapid lysis of host cells and the great changes in protein expression caused by phage infection added more perspectives to the documented important roles of viruses in mediating carbon cycling in the ocean.
Collapse
|
20
|
Rucevic M, Hixson D, Josic D. Mammalian plasma membrane proteins as potential biomarkers and drug targets. Electrophoresis 2011; 32:1549-64. [PMID: 21706493 DOI: 10.1002/elps.201100212] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented.
Collapse
Affiliation(s)
- Marijana Rucevic
- COBRE Center for Cancer Research Development, Rhode Island Hospital, Providence, RI, USA
| | | | | |
Collapse
|
21
|
Denman B, Goodman SR. Emerging and neglected tropical diseases: translational application of proteomics. Exp Biol Med (Maywood) 2011; 236:972-6. [PMID: 21737579 DOI: 10.1258/ebm.2011.011067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The challenges of identifying and controlling emerging diseases impact individual health, as well as political, social and economic situations. In this review we discuss the role of proteomics for investigation of pathogen discovery, outbreak investigation, bio-defense, disease control, host-pathogen dynamics and vaccine development of emerging and neglected tropical diseases (NTDs). In the future the discipline of proteomics may help define multiple aspects of emerging and NTDs with respect to personalized medicine and public health.
Collapse
Affiliation(s)
- Britta Denman
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
22
|
Sánchez-Quiles V, Mora MI, Segura V, Greco A, Epstein AL, Foschini MG, Dayon L, Sanchez JC, Prieto J, Corrales FJ, Santamaría E. HSV-1 Cgal+ infection promotes quaking RNA binding protein production and induces nuclear-cytoplasmic shuttling of quaking I-5 isoform in human hepatoma cells. Mol Cell Proteomics 2011; 10:M111.009126. [PMID: 21467216 DOI: 10.1074/mcp.m111.009126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpesvirus type 1 (HSV-1) based oncolytic vectors arise as a promising therapeutic alternative for neoplastic diseases including hepatocellular carcinoma. However, the mechanisms mediating the host cell response to such treatments are not completely known. It is well established that HSV-1 infection induces functional and structural alterations in the nucleus of the host cell. In the present work, we have used gel-based and shotgun proteomic strategies to elucidate the signaling pathways impaired in the nucleus of human hepatoma cells (Huh7) upon HSV-1 Cgal(+) infection. Both approaches allowed the identification of differential proteins suggesting impairment of cell functions involved in many aspects of host-virus interaction such as transcription regulation, mRNA processing, and mRNA splicing. Based on our proteomic data and additional functional studies, cellular protein quaking content (QKI) increases 4 hours postinfection (hpi), when viral immediate-early genes such as ICP4 and ICP27 could be also detected. Depletion of QKI expression by small interfering RNA results in reduction of viral immediate-early protein levels, subsequent decrease in early and late viral protein content, and a reduction in the viral yield indicating that QKI directly interferes with viral replication. In particular, HSV-1 Cgal(+) induces a transient increase in quaking I-5 isoform (QKI-5) levels, in parallel with an enhancement of p27(Kip1) protein content. Moreover, immunofluorescence microscopy showed an early nuclear redistribution of QKI-5, shuttling from the nucleus to the cytosol and colocalizing with nectin-1 in cell to cell contact regions at 16-24 hpi. This evidence sheds new light on mechanisms mediating hepatoma cell response to HSV-1 vectors highlighting QKI as a central molecular mediator.
Collapse
Affiliation(s)
- Virginia Sánchez-Quiles
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang C, Xue C, Li Y, Kong Q, Ren X, Li X, Shu D, Bi Y, Cao Y. Profiling of cellular proteins in porcine reproductive and respiratory syndrome virus virions by proteomics analysis. Virol J 2010; 7:242. [PMID: 20849641 PMCID: PMC2949843 DOI: 10.1186/1743-422x-7-242] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/18/2010] [Indexed: 11/14/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped virus, bearing severe economic consequences to the swine industry worldwide. Previous studies on enveloped viruses have shown that many incorporated cellular proteins associated with the virion's membranes that might play important roles in viral infectivity. In this study, we sought to proteomically profile the cellular proteins incorporated into or associated with the virions of a highly virulent PRRSV strain GDBY1, and to provide foundation for further investigations on the roles of incorporated/associated cellular proteins on PRRSV's infectivity. Results In our experiment, sixty one cellular proteins were identified in highly purified PRRSV virions by two-dimensional gel electrophoresis coupled with mass spectrometric approaches. The identified cellular proteins could be grouped into eight functional categories including cytoskeletal proteins, chaperones, macromolecular biosynthesis proteins, metabolism-associated proteins, calcium-dependent membrane-binding proteins and other functional proteins. Among the identified proteins, four have not yet been reported in other studied envelope viruses, namely, guanine nucleotide-binding proteins, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase, peroxiredoxin 1 and galectin-1 protein. The presence of five selected cellular proteins (i.e., β-actin, Tubulin, Annexin A2, heat shock protein Hsp27, and calcium binding proteins S100) in the highly purified PRRSV virions was validated by Western blot and immunogold labeling assays. Conclusions Taken together, the present study has demonstrated the incorporation of cellular proteins in PRRSV virions, which provides valuable information for the further investigations for the effects of individual cellular proteins on the viral replication, assembly, and pathogenesis.
Collapse
Affiliation(s)
- Chengwen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Navratil V, Lotteau V, Rabourdin-Combe C. [The virtual infected cell: a systems biology rational for antiviral drug discovery]. Med Sci (Paris) 2010; 26:603-9. [PMID: 20619162 DOI: 10.1051/medsci/2010266-7603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Infection caused by pathogens kills millions of people every year. Comprehensive understanding of molecular pathogen-host interactions, i.e. the infectome, is one of the key steps towards the development of novel diagnostic, therapeutic and preventive strategies. In this quest, progress in high-throughput << omics >> technologies applied to pathogens, i.e. infectomics, opens new perspectives toward systemic understanding of perturbations induced during infection. Deciphering the pathogen-host system also relies on the analytical and predictive power of molecular systems biology and by developing in silico models taking into account the whole picture of the molecules and their interactions. In this context, we have reconstructed a prototype of the human virtual infected cell based on 30 years of intensive research in the field of molecular virology. This model contains more than one hundred viral infectomes, including major human pathogens (HCV, HBV, HIV, HHV, HPV) and has led to the generation of novel systems-level hypotheses that could be suitable for the development of innovative antiviral strategies based on the control of cellular functions.
Collapse
|
25
|
Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication. J Virol 2010; 84:6050-9. [PMID: 20392858 DOI: 10.1128/jvi.00213-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The discovery of a novel coronavirus (CoV) as the causative agent of severe acute respiratory syndrome (SARS) has highlighted the need for a better understanding of CoV replication. The replication of SARS-CoV is highly dependent on host cell factors. However, relatively little is known about the cellular proteome changes that occur during SARS-CoV replication. Recently, we developed a cell line expressing a SARS-CoV subgenomic replicon and used it to screen inhibitors of SARS-CoV replication. To identify host proteins important for SARS-CoV RNA replication, the protein profiles of the SARS-CoV replicon cells and parental BHK21 cells were compared using a quantitative proteomic strategy termed "stable-isotope labeling by amino acids in cell culture-mass spectrometry" (SILAC-MS). Our results revealed that, among the 1,081 host proteins quantified in both forward and reverse SILAC measurements, 74 had significantly altered levels of expression. Of these, significantly upregulated BCL2-associated athanogene 3 (BAG3) was selected for further functional studies. BAG3 is involved in a wide variety of cellular processes, including cell survival, cellular stress response, proliferation, migration, and apoptosis. Our results show that inhibition of BAG3 expression by RNA interference led to significant suppression of SARS-CoV replication, suggesting the possibility that upregulation of BAG3 may be part of the machinery that SARS-CoV relies on for replication. By correlating the proteomic data with these functional studies, the findings of this study provide important information for understanding SARS-CoV replication.
Collapse
|
26
|
Zhang X, Zhou J, Wu Y, Zheng X, Ma G, Wang Z, Jin Y, He J, Yan Y. Differential proteome analysis of host cells infected with porcine circovirus type 2. J Proteome Res 2010; 8:5111-9. [PMID: 19708719 DOI: 10.1021/pr900488q] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome, which is an emerging swine immunosuppressive disease. To uncover cellular protein responses in PCV2-infected PK-15 cells, the comprehensive proteome profiles were analyzed utilizing two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF identification. Multiple comparisons of 2-DE revealed that the majority of changes in protein expression occurred at 48-96 h after PCV2 infection. A total of 34 host-encoded proteins, including 15 up-regulated and 19 down-regulated proteins, were identified by MALDI-TOF/TOF analysis. According to cellular function, the differential expression proteins could be sorted into several groups: cytoskeleton proteins, stress response, macromolecular biosynthesis, energy metabolism, ubiquitin-proteasome pathway, signal transduction, gene regulation. Western blot analysis demonstrated the changes of alpha tubulin, beta actin, and cytokeratin 8 during infection. Colocalization and coimmunoprecipitation analyses confirmed that the cellular alpha tubulin interacts with the Cap protein of PCV2 in the infected PK-15 cells. These identified cellular constituents have important implications for understanding the host interactions with PCV2 and brings us a step closer to defining the cellular requirements for the underlying mechanism of PCV2 replication and pathogenesis.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Animal Epidemic Etiology & Immunological Prevention of Ministry of Agriculture, Zhejiang University, Hangzhou 310029, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bailer SM, Haas J. Connecting viral with cellular interactomes. Curr Opin Microbiol 2009; 12:453-9. [PMID: 19632888 PMCID: PMC7108267 DOI: 10.1016/j.mib.2009.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 06/04/2009] [Indexed: 12/12/2022]
Abstract
Genome-scale screens for intraviral and virus–host protein interactions and the analysis of literature-curated datasets are able to provide a novel, comprehensive perspective of viruses, and virus-infected cells. Until now, large-scale interaction screens were predominantly performed with the yeast-two-hybrid (Y2H) system; however, alternative high-throughput technologies detecting binary protein interactions or protein complexes have been developed. Although many of the previous studies suffer from a rather poor validation of the results and few biological implications, these technologies potentially lead to a plethora of novel hypotheses. Here, we will give an overview of current approaches and their technical limitations, present recent examples and novel developments.
Collapse
Affiliation(s)
- S M Bailer
- Max-von-Pettenkofer Institut, Ludwig-Maximilians-Universität München, Muenchen, Germany.
| | | |
Collapse
|
28
|
Abstract
By providing a global and integrated view of the host response to infection, functional genomic and systems-biology approaches are contributing to our understanding of RNA virus–host interactions. One area in which these approaches are being put to particularly good use is in shedding new light on the components of innate antiviral defence mechanisms and the viral strategies used to regulate or overcome them. Genomic analyses have helped to reveal virus-specific differences in the way that viral recognition through pathogen-recognition receptors (PRRs) initiates intracellular signalling cascades. Whereas influenza virus appears to signal primarily through retinoic-acid-inducible gene I (RIG-I), West Nile virus signals through both RIG-I and melanoma differentiation-associated gene 5 (MDA5). Both viruses induce the expression of interferon (IFN)-regulatory factor 3 (IRF3) target genes and IFN-stimulated genes (ISGs). Genomic analyses have provided a comprehensive view of the transcriptional programmes that are induced by Toll-like receptor (TLR) activation. One transcriptional profile is universally activated by all TLRs and a second profile is specific to TLR3 and TLR4. Nuclear factor-κB (NF-κB) is the key regulator of the universal response, which occurs early after TLR stimulation, and the IFN-stimulated response element (ISRE) is the key component of the TLR3/TLR4 response, which is induced after the NF-κB response. Some highly virulent viruses, such as Ebola virus and rabies virus, are successful at inhibiting ISG expression, resulting in the marked suppression of genes in key innate antiviral pathways, including those mediated by IRF3. There seems to be a correlation between the antagonism of the IFN response and virulence. Genomic analyses of the host response to the reconstructed 1918 pandemic influenza virus have revealed similarities and differences to contemporary influenza virus infection. Contemporary and 1918 influenza viruses each trigger an innate immune response that includes the expression of NF-κB and IRF3 target genes, and both viruses trigger a robust cytokine response that attracts immune-cell infiltration to infected tissues. Unlike contemporary virus strains, in which the early response to infection is resolved, the innate immune response triggered by the 1918 influenza virus is characterized by a strong and sustained induction that is associated with massive tissue damage and death. Global gene-expression profiling has revealed that many effective, attenuated live-virus vaccines transiently induce a stronger type I IFN response than the cognate pathogen, and therefore implicates modulation of this response as an important strategy in rational vaccine design.
By providing a global view of the host response to infection, functional genomic approaches are proving useful in deciphering complex virus–host interactions. Here, the authors reveal how such approaches are being used to better understand viral triggering and regulation of host innate immune responses. Although often encoding fewer than a dozen genes, RNA viruses can overcome host antiviral responses and wreak havoc on the cells they infect. Some manage to evade host antiviral defences, whereas others elicit an aberrant or disproportional immune response. Both scenarios can result in the disruption of intracellular signalling pathways and significant pathology in the host. Systems-biology approaches are increasingly being used to study the processes of viral triggering and regulation of host immune responses. By providing a global and integrated view of cellular events, these approaches are beginning to unravel some of the complexities of virus–host interactions and provide new insights into how RNA viruses cause disease.
Collapse
|
29
|
Comprehensive characterization of extracellular herpes simplex virus type 1 virions. J Virol 2008; 82:8605-18. [PMID: 18596102 DOI: 10.1128/jvi.00904-08] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) genome is contained in a capsid wrapped by a complex tegument layer and an external envelope. The poorly defined tegument plays a critical role throughout the viral life cycle, including delivery of capsids to the nucleus, viral gene expression, capsid egress, and acquisition of the viral envelope. Current data suggest tegumentation is a dynamic and sequential process that starts in the nucleus and continues in the cytoplasm. Over two dozen proteins are assumed to be or are known to ultimately be added to virions as tegument, but its precise composition is currently unknown. Moreover, a comprehensive analysis of all proteins found in HSV-1 virions is still lacking. To better understand the implication of the tegument and host proteins incorporated into the virions, highly purified mature extracellular viruses were analyzed by mass spectrometry. The method proved accurate (95%) and sensitive and hinted at 8 different viral capsid proteins, 13 viral glycoproteins, and 23 potential viral teguments. Interestingly, four novel virion components were identified (U(L)7, U(L)23, U(L)50, and U(L)55), and two teguments were confirmed (ICP0 and ICP4). In contrast, U(L)4, U(L)24, the U(L)31/U(L)34 complex, and the viral U(L)15/U(L)28/U(L)33 terminase were undetected, as was most of the viral replication machinery, with the notable exception of U(L)23. Surprisingly, the viral glycoproteins gJ, gK, gN, and U(L)43 were absent. Analyses of virions produced by two unrelated cell lines suggest their protein compositions are largely cell type independent. Finally, but not least, up to 49 distinct host proteins were identified in the virions.
Collapse
|
30
|
Pisabarro AG, Perez G, Lavin JL, Ramirez L. Genetic networks for the functional study of genomes. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:249-63. [DOI: 10.1093/bfgp/eln026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|