1
|
Xu W, Chen H, Xiao H. mTORC2: A neglected player in aging regulation. J Cell Physiol 2024:e31363. [PMID: 38982866 DOI: 10.1002/jcp.31363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in various biological processes, through integrating external and internal signals, facilitating gene transcription and protein translation, as well as by regulating mitochondria and autophagy functions. mTOR kinase operates within two distinct protein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which engage separate downstream signaling pathways impacting diverse cellular processes. Although mTORC1 has been extensively studied as a pro-proliferative factor and a pro-aging hub if activated aberrantly, mTORC2 received less attention, particularly regarding its implication in aging regulation. However, recent studies brought increasing evidence or clues for us, which implies the associations of mTORC2 with aging, as the genetic elimination of unique subunits of mTORC2, such as RICTOR, has been shown to alleviate aging progression in comparison to mTORC1 inhibition. In this review, we first summarized the basic characteristics of mTORC2, including its protein architecture and signaling network. We then focused on reviewing the molecular signaling regulation of mTORC2 in cellular senescence and organismal aging, and proposed the multifaceted regulatory characteristics under senescent and nonsenescent contexts. Next, we outlined the research progress of mTOR inhibitors in the field of antiaging and discussed future prospects and challenges. It is our pleasure if this review article could provide meaningful information for our readers and call forth more investigations working on this topic.
Collapse
Affiliation(s)
- Weitong Xu
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Xie PL, Zheng MY, Han R, Chen WX, Mao JH. Pharmacological mTOR inhibitors in ameliorating Alzheimer's disease: current review and perspectives. Front Pharmacol 2024; 15:1366061. [PMID: 38873415 PMCID: PMC11169825 DOI: 10.3389/fphar.2024.1366061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024] Open
Abstract
Traditionally, pharmacological mammalian/mechanistic targets of rapamycin (mTOR) kinase inhibitors have been used during transplantation and tumor treatment. Emerging pre-clinical evidence from the last decade displayed the surprising effectiveness of mTOR inhibitors in ameliorating Alzheimer's Disease (AD), a common neurodegenerative disorder characterized by progressive cognitive function decline and memory loss. Research shows mTOR activation as an early event in AD development, and inhibiting mTOR may promote the resolution of many hallmarks of Alzheimer's. Aberrant protein aggregation, including amyloid-beta (Aβ) deposition and tau filaments, and cognitive defects, are reversed upon mTOR inhibition. A closer inspection of the evidence highlighted a temporal dependence and a hallmark-specific nature of such beneficial effects. Time of administration relative to disease progression, and a maintenance of a functional lysosomal system, could modulate its effectiveness. Moreover, mTOR inhibition also exerts distinct effects between neurons, glial cells, and endothelial cells. Different pharmacological properties of the inhibitors also produce different effects based on different blood-brain barrier (BBB) entry capacities and mTOR inhibition sites. This questions the effectiveness of mTOR inhibition as a viable AD intervention strategy. In this review, we first summarize the different mTOR inhibitors available and their characteristics. We then comprehensively update and discuss the pre-clinical results of mTOR inhibition to resolve many of the hallmarks of AD. Key pathologies discussed include Aβ deposition, tauopathies, aberrant neuroinflammation, and neurovascular system breakdowns.
Collapse
Affiliation(s)
- Pei-Lun Xie
- University College London, London, United Kingdom
| | | | - Ran Han
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Xin Chen
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Hua Mao
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Wang L, Qiu Q, Yang D, Cao C, Lu Y, Zeng Y, Jiang W, Shen Y, Ye Y. Clinical research progress of ridaforolimus (AP23573, MK8668) over the past decade: a systemic review. Front Pharmacol 2024; 15:1173240. [PMID: 38584599 PMCID: PMC10995224 DOI: 10.3389/fphar.2024.1173240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/19/2024] [Indexed: 04/09/2024] Open
Abstract
Rapamycin, an established mTOR inhibitor in clinical practice, is widely recognized for its therapeutic efficacy. Ridaforolimus, a non-prodrug rapalog, offers improved aqueous solubility, stability, and affinity compared to rapamycin. In recent years, there has been a surge in clinical trials involving ridaforolimus. We searched PubMed for ridaforolimus over the past decade and selected clinical trials of ridaforolimus to make a summary of the research progress of ridaforolimus in clinical trials. The majority of these trials explored the application of ridaforolimus in treating various tumors, including endometrial cancer, ovarian cancer, prostate cancer, breast cancer, renal cell carcinoma, and other solid tumors. These trials employed diverse drug combinations, incorporating agents such as ponatinib, bicalutamide, dalotuzumab, MK-2206, MK-0752, and taxanes. The outcomes of these trials unveiled the diverse potential applications of ridaforolimus in disease treatment. Our review encompassed analyses of signaling pathways, ridaforolimus as a single therapeutic agent, its compatibility in combination with other drugs, and an assessment of adverse events (AEs). We conclude by recommending further research to advance our understanding of ridaforolimus's clinical applications.
Collapse
Affiliation(s)
- Lumin Wang
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
| | - Qining Qiu
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dawei Yang
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang Cao
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
| | - Yanqin Lu
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
| | - Yulan Zeng
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
| | - Weiwen Jiang
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shen
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanrong Ye
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. Overview of Research into mTOR Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165295. [PMID: 36014530 PMCID: PMC9413691 DOI: 10.3390/molecules27165295] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that belongs to the phosphoinositide 3-kinase (PI3K)-related kinase (PIKK) family. The kinase exists in the forms of two complexes, mTORC1 and mTORC2, and it participates in cell growth, proliferation, metabolism, and survival. The kinase activity is closely related to the occurrence and development of multiple human diseases. Inhibitors of mTOR block critical pathways to produce antiviral, anti-inflammatory, antiproliferative and other effects, and they have been applied to research in cancer, inflammation, central nervous system diseases and viral infections. Existing mTOR inhibitors are commonly divided into mTOR allosteric inhibitors, ATP-competitive inhibitors and dual binding site inhibitors, according to their sites of action. In addition, there exist several dual-target mTOR inhibitors that target PI3K, histone deacetylases (HDAC) or ataxia telangiectasia mutated and Rad-3 related (ATR) kinases. This review focuses on the structure of mTOR protein and related signaling pathways as well as the structure and characteristics of various mTOR inhibitors. Non-rapalog allosteric inhibitors will open new directions for the development of new therapeutics specifically targeting mTORC1. The applications of ATP-competitive inhibitors in central nervous system diseases, viral infections and inflammation have laid the foundation for expanding the indications of mTOR inhibitors. Both dual-binding site inhibitors and dual-target inhibitors are beneficial in overcoming mTOR inhibitor resistance.
Collapse
Affiliation(s)
- Beibei Mao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| | - Qi Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Dong-Sheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| |
Collapse
|
6
|
Li YX, Ding SS, Wen WJ, Han L, Wang HQ, Shi HY. Impact of the Activation Status of the Akt/mTOR Signalling Pathway on the Clinical Behaviour of Synovial Sarcoma: Retrospective Analysis of 174 Patients at a Single Institution. Cancer Manag Res 2020; 12:1759-1769. [PMID: 32210617 PMCID: PMC7074818 DOI: 10.2147/cmar.s228578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 02/08/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Phosphoinositide 3-kinase (PI3K) and the downstream Akt/mammalian target of rapamycin (mTOR) pathway are central to the control of cell proliferation and survival. Although abnormal activation of this pathway has been well established in a variety of tumours, limited studies are available on synovial sarcoma. The aim of this study was to investigate the expression of several key proteins of those pathways in synovial sarcomas and to correlate the expression of these proteins with clinicopathologic features and prognosis. PATIENTS AND METHODS A total of 174 patients with synovial sarcomas were recruited for this study. The phosphorylation status of Akt, mTOR, and eukaryotic translation initiation factor 4E binding protein (4E-BP1) was measured by immunohistochemistry assays in formalin-fixed, paraffin-embedded samples. Correlations between the expression levels of these proteins and clinicopathologic features and prognosis were analysed. RESULTS The positive rates of phosphorylated (p)Akt, pmTOR, p4E-BP1, and CyclinD1 were 62.7%, 55.6%, 47.1%, and 52.6%, respectively. The positive results of pmTOR, pAkt, and downstream p4E-BP1 were correlated with each other. The positive pAkt, pmTOR, p4E-BP1, and CyclinD1 results were more highly expressed in head and neck and visceral tumours, and positive p4E-BP1 results were correlated with larger size and larger areas of necrosis. In multivariate analysis of clinicopathologic factors, head and neck and visceral location, large tumour size, larger areas of necrosis and frequent mitosis were confirmed as risk factors for shorter overall survival. Positive pAkt, pmTOR and p4E-BP1 results were correlated significantly with shorter overall survival, and CyclinD1 was not in the univariate analysis. The positive pmTOR, pAkt, p4E-BP1, and CyclinD1 results were significantly poor prognostic factors for overall survival, and only positive p4E-BP1 results were significantly associated with shorter event-free survival in multivariate analysis. CONCLUSION This study demonstrated the high expression of pAkt, pmTOR, and p4E-BP1 associated with aggressive clinical behaviour in synovial sarcomas and provided evidence for prognostic evaluation and targeted therapy.
Collapse
Affiliation(s)
- Ying-Xue Li
- Department of Pathology, Medical School of Chinese People's Liberation Army, Beijing100853, People’s Republic of China
- Department of Pathology, Liaocheng People’s Hospital, Liaocheng252000, Shandong, People’s Republic of China
| | - Shan-Shan Ding
- Department of Pathology, PLA Rocket Force Characteristic Medical Center, Beijing100032, People’s Republic of China
| | - Wen-Juan Wen
- Department of Pathology, Liaocheng People’s Hospital, Liaocheng252000, Shandong, People’s Republic of China
| | - Lin Han
- Department of Pathology, Liaocheng People’s Hospital, Liaocheng252000, Shandong, People’s Republic of China
| | - Hong-Qun Wang
- Department of Pathology, Medical School of Chinese People's Liberation Army, Beijing100853, People’s Republic of China
| | - Huai-Yin Shi
- Department of Pathology, Medical School of Chinese People's Liberation Army, Beijing100853, People’s Republic of China
| |
Collapse
|
7
|
Estupiñan O, Santos L, Rodriguez A, Fernandez‐Nevado L, Costales P, Perez‐Escuredo J, Hermosilla MA, Oro P, Rey V, Tornin J, Allonca E, Fernandez‐Garcia MT, Alvarez‐Fernandez C, Braña A, Astudillo A, Menendez ST, Moris F, Rodriguez R. The multikinase inhibitor EC‐70124 synergistically increased the antitumor activity of doxorubicin in sarcomas. Int J Cancer 2019; 145:254-266. [DOI: 10.1002/ijc.32081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Oscar Estupiñan
- Hospital Universitario Central de Asturias ‐ Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
- Instituto Universitario de Oncología del Principado de Asturias Oviedo Spain
- CIBER en oncología (CIBERONC) Madrid Spain
| | - Laura Santos
- Hospital Universitario Central de Asturias ‐ Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
| | - Aida Rodriguez
- Hospital Universitario Central de Asturias ‐ Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
| | - Lucia Fernandez‐Nevado
- Hospital Universitario Central de Asturias ‐ Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
| | | | | | | | | | - Veronica Rey
- Hospital Universitario Central de Asturias ‐ Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
- Instituto Universitario de Oncología del Principado de Asturias Oviedo Spain
| | - Juan Tornin
- Hospital Universitario Central de Asturias ‐ Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
- Instituto Universitario de Oncología del Principado de Asturias Oviedo Spain
| | - Eva Allonca
- Hospital Universitario Central de Asturias ‐ Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
| | | | | | - Alejandro Braña
- Servicio de Traumatología of the Hospital Universitario Central de Asturias Oviedo Spain
| | - Aurora Astudillo
- Servicio de Anatomía Patológica of the Hospital Universitario Central de Asturias Oviedo Spain
| | - Sofia T Menendez
- Hospital Universitario Central de Asturias ‐ Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
- Instituto Universitario de Oncología del Principado de Asturias Oviedo Spain
- CIBER en oncología (CIBERONC) Madrid Spain
| | | | - Rene Rodriguez
- Hospital Universitario Central de Asturias ‐ Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
- Instituto Universitario de Oncología del Principado de Asturias Oviedo Spain
- CIBER en oncología (CIBERONC) Madrid Spain
| |
Collapse
|
8
|
Mullerian adenosarcomas of the uterine cervix with sarcomatous overgrowth. Curr Probl Cancer 2018; 43:371-376. [PMID: 30522776 DOI: 10.1016/j.currproblcancer.2018.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/13/2018] [Indexed: 12/31/2022]
Abstract
Mullerian adenosarcoma with sarcomatous overgrowth (MASO) of the uterine cervix is an extremely rare variant of adenosarcoma of the genital tract associated with aggressive clinical course. We searched the PubMed and Medline databases for MASO of the cervix and we identified and reviewed eleven cases published between years 2004 and 2017. The most common clinical picture includes abnormal vaginal bleeding, postcoital bleeding, pelvic pain and foul-smelling vaginal discharge. Therapeutic options for MASO are still undefined. Radical hysterectomy with sufficient tumour-free margins combined with adjuvant chemotherapy and radiotherapy should serve as an effective treatment tool with favourable outcome.
Collapse
|
9
|
Recent Advances and Challenges of mTOR Inhibitors Use in the Treatment of Patients with Tuberous Sclerosis Complex. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9820181. [PMID: 28386314 PMCID: PMC5366202 DOI: 10.1155/2017/9820181] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/11/2017] [Accepted: 02/21/2017] [Indexed: 11/18/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic condition characterized by the presence of benign, noninvasive, and tumor-like lesions called hamartomas that can affect multiple organ systems and are responsible for the clinical features of the disease. In the majority of cases, TSC results from mutations in the TSC1 and TSC2 genes, leading to the overactivation of the mammalian target of rapamycin (mTOR) signalling pathway, which controls several cell functions, including cell growth, proliferation, and survival. The establishment of a connection between TSC and mTOR led to the clinical use of drugs known as mTOR inhibitors (like rapamycin, also known as sirolimus and everolimus), which are becoming an increasingly interesting tool in the management of TSC-associated features, such as subependymal giant cell astrocytomas, renal angiomyolipomas, and also epilepsy. However, the intrinsic characteristics of these drugs and their systemic effects in such a heterogeneous condition pose many challenges in clinical practice, so that some questions remain unanswered. This article provides an overview of the pharmacological aspects of mTOR inhibitors about the clinical trials leading to their approval in TSC-related conditions and exposes current challenges and future directions associated with this promising therapeutic line.
Collapse
|
10
|
Yoon S, Kim JH, Kim SE, Kim C, Tran PT, Ann J, Koh Y, Jang J, Kim S, Moon HS, Kim WK, Lee S, Lee J, Kim S, Lee J. Discovery of Leucyladenylate Sulfamates as Novel Leucyl-tRNA Synthetase (LRS)-Targeted Mammalian Target of Rapamycin Complex 1 (mTORC1) Inhibitors. J Med Chem 2016; 59:10322-10328. [PMID: 27933890 DOI: 10.1021/acs.jmedchem.6b01190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies indicate that LRS may act as a leucine sensor for the mTORC1 pathway, potentially providing an alternative strategy to overcome rapamycin resistance in cancer treatments. In this study, we developed leucyladenylate sulfamate derivatives as LRS-targeted mTORC1 inhibitors. Compound 18 selectively inhibited LRS-mediated mTORC1 activation and exerted specific cytotoxicity against colon cancer cells with a hyperactive mTORC1, suggesting that 18 may offer a novel treatment option for human colorectal cancer.
Collapse
Affiliation(s)
- Suyoung Yoon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Jong Hyun Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Sung-Eun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Changhoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Phuong-Thao Tran
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Jihyae Ann
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Yura Koh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Jayun Jang
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Sungmin Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Hee-Sun Moon
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Won Kyung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Sangkook Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University , Seoul 142-732, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University , Seoul 151-742, Korea
| | - Jeewoo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| |
Collapse
|
11
|
Rivera-Valentin RK, Zhu L, Hughes DPM. Bone Sarcomas in Pediatrics: Progress in Our Understanding of Tumor Biology and Implications for Therapy. Paediatr Drugs 2015; 17:257-71. [PMID: 26002157 PMCID: PMC4516866 DOI: 10.1007/s40272-015-0134-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pediatric bone sarcomas osteosarcoma and Ewing sarcoma represent a tremendous challenge for the clinician. Though less common than acute lymphoblastic leukemia or brain tumors, these aggressive cancers account for a disproportionate amount of the cancer morbidity and mortality in children, and have seen few advances in survival in the past decade, despite many large, complicated, and expensive trials of various chemotherapy combinations. To improve the outcomes of children with bone sarcomas, a better understanding of the biology of these cancers is needed, together with informed use of targeted therapies that exploit the unique biology of each disease. Here we summarize the current state of knowledge regarding the contribution of receptor tyrosine kinases, intracellular signaling pathways, bone biology and physiology, the immune system, and the tumor microenvironment in promoting and maintaining the malignant phenotype. These observations are coupled with a review of the therapies that target each of these mechanisms, focusing on recent or ongoing clinical trials if such information is available. It is our hope that, by better understanding the biology of osteosarcoma and Ewing sarcoma, rational combination therapies can be designed and systematically tested, leading to improved outcomes for a group of children who desperately need them.
Collapse
Affiliation(s)
- Rocio K. Rivera-Valentin
- Department of Pediatrics-Research, The Children’s Cancer Hospital at MD Anderson Cancer Center, Unit 853, MOD 1.021d, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Limin Zhu
- Department of Pediatrics-Research, The Children’s Cancer Hospital at MD Anderson Cancer Center, Unit 853, MOD 1.021d, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Dennis P. M. Hughes
- Department of Pediatrics-Research, The Children’s Cancer Hospital at MD Anderson Cancer Center, Unit 853, MOD 1.021d, 1515 Holcombe Blvd, Houston, TX 77030 USA
| |
Collapse
|
12
|
Radaelli S, Stacchiotti S, Casali PG, Gronchi A. Emerging therapies for adult soft tissue sarcoma. Expert Rev Anticancer Ther 2014; 14:689-704. [DOI: 10.1586/14737140.2014.885840] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Bertoldo F, Silvestris F, Ibrahim T, Cognetti F, Generali D, Ripamonti CI, Amadori D, Colleoni MA, Conte P, Del Mastro L, De Placido S, Ortega C, Santini D. Targeting bone metastatic cancer: Role of the mTOR pathway. Biochim Biophys Acta Rev Cancer 2014; 1845:248-54. [PMID: 24508774 DOI: 10.1016/j.bbcan.2014.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 12/14/2022]
Abstract
One of the great challenges of cancer medicine is to develop effective treatments for bone metastatic cancer. Most patients with advanced solid tumors will develop bone metastasis and will suffer from skeletal related events associated with this disease. Although some therapies are available to manage symptoms derived from bone metastases, an effective treatment has not been developed yet. The mammalian target of rapamycin (mTOR) pathway regulates cell growth and survival. Alterations in mTOR signaling have been associated with pathological malignancies, including bone metastatic cancer. Inhibition of mTOR signaling might therefore be a promising alternative for bone metastatic cancer management. This review summarizes the current knowledge on mTOR pathway signaling in bone tissue and provides an overview on the known effects of mTOR inhibition in bone cancer, both in in vitro and in vivo models.
Collapse
Affiliation(s)
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, Section of Clinical Oncology, University of Bari 'A. Moro', Bari, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Daniele Generali
- UO Multidisciplinare di Patologia Mammaria, US Terapia Molecolare e Farmacogenomica, AZ. Istituti Ospitalieri di Cremona, Cremona, Italy
| | - Carla Ida Ripamonti
- Supportive Care in Cancer Unit, Department of Hematology and Pediatric Onco-Hematology, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Dino Amadori
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Pierfranco Conte
- Oncologia Medica 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Lucia Del Mastro
- UO Sviluppo Terapie Innovative, IRCCS AOU San Martino, IST, National Institute for Cancer Research, Genoa, Italy
| | - Sabino De Placido
- Department of Endocrinology and Molecular and Clinical Oncology, University of Naples Federico II, Naples, Italy
| | | | - Daniele Santini
- Department of Medical Oncology, University Campus Bio-Medico, Rome, Italy.
| |
Collapse
|