1
|
Ogunsuyi OB, Olagoke OC, Famutimi ME, Olatunde DM, Souza DOG, Oboh G, Barbosa NV, Rocha JBT. Neural acetylcholinesterase and monoamine oxidase deregulation during streptozotocin-induced behavioral, metabolic and redox modification in Nauphoeta cinerea. BMC Neurosci 2024; 25:42. [PMID: 39210265 PMCID: PMC11363635 DOI: 10.1186/s12868-024-00890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Genetic and environmental factors have been linked with neurodegeneration, especially in the elderly. Yet, efforts to impede neurodegenerative processes have at best addressed symptoms instead of underlying pathologies. The gap in the understanding of neuro-behavioral plasticity is consistent from insects to mammals, and cockroaches have been proven to be effective models for studying the toxicity mechanisms of various chemicals. We therefore used head injection of 74 and 740 nmol STZ in Nauphoeta cinerea to elucidate the mechanisms of chemical-induced neurotoxicity, as STZ is known to cross the blood-brain barrier. Neurolocomotor assessment was carried out in a new environment, while head homogenate was used to estimate metabolic, neurotransmitter and redox activities, followed by RT-qPCR validation of relevant cellular signaling. STZ treatment reduced the distance and maximum speed travelled by cockroaches, and increased glucose levels while reducing triglyceride levels in neural tissues. The activity of neurotransmitter regulators - AChE and MAO was exacerbated, with concurrent upregulation of glucose sensing and signaling, and increased mRNA levels of redox regulators and inflammation-related genes. Consequently, STZ neurotoxicity is conserved in insects, with possible implications for using N. cinerea to target the multi-faceted mechanisms of neurodegeneration and test potential anti-neurodegenerative agents.
Collapse
Affiliation(s)
- Opeyemi B Ogunsuyi
- Departamento de Bioquímica e Biologia Molecular, Programa de Pos-graduacao em Bioquimica Toxicologica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Olawande C Olagoke
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Division of Translational Research and Technology Innovation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Physiology, Kampala International University, Ishaka-Bushenyi, Uganda.
| | - Mayokun E Famutimi
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Damilola M Olatunde
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Diogo O G Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Ganiyu Oboh
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Programa de Pos-graduacao em Bioquimica Toxicologica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pos-graduacao em Bioquimica Toxicologica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
2
|
Merce AP, Ionică LN, Bînă AM, Popescu S, Lighezan R, Petrescu L, Borza C, Sturza A, Muntean DM, Creţu OM. Monoamine oxidase is a source of cardiac oxidative stress in obese rats: the beneficial role of metformin. Mol Cell Biochem 2023; 478:59-67. [PMID: 35723772 DOI: 10.1007/s11010-022-04490-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/31/2022] [Indexed: 01/17/2023]
Abstract
Diet-induced metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes (T2DM) are the global threatening epidemics that share cardiovascular oxidative stress as common denominator. Monoamine oxidase (MAO) has recently emerged as a constant source of reactive oxygen species (ROS) in DM. Metformin, the first-line drug in T2DM, elicits cardiovascular protection via pleiotropic effects. The present study was aimed to assess the contribution of MAO to the early cardiac oxidative stress in a rat model of high-calorie junk food (HCJF) diet-induced obesity and prediabetes and whether metformin can alleviate it. After 6 months of HCJF, rats developed obesity and hyperglycemia. Hearts were isolated and used for the evaluation of MAO expression and ROS production. Experiments were performed in the presence vs absence of metformin (10 µM) and MAO-A and B inhibitors (clorgyline and selegiline, 10 µM), respectively. Both MAO isoforms were overexpressed and led to increased ROS generation in cardiac samples harvested from the obese animals. Acute treatment with metformin and MAO inhibitors was able to mitigate oxidative stress. More important, metformin downregulated MAO expression in the diseased samples. In conclusion, MAO contributes to oxidative stress in experimental obesity and can be targeted with metformin.
Collapse
Affiliation(s)
- Adrian P Merce
- Department of Functional Sciences - Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.,Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, EftimieMurgu Sq. No. 2, 300041, Timişoara, Romania
| | - Loredana N Ionică
- Department of Functional Sciences - Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.,Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, EftimieMurgu Sq. No. 2, 300041, Timişoara, Romania
| | - Anca M Bînă
- Department of Functional Sciences - Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.,Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, EftimieMurgu Sq. No. 2, 300041, Timişoara, Romania
| | - Simona Popescu
- Department of Internal Medicine VII - Diabetes, Nutrition, Metabolic Diseases, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Rodica Lighezan
- Department of Infectious Diseases-Parasitology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Lucian Petrescu
- Department of Cardiology - Cardiology II, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania
| | - Claudia Borza
- Department of Functional Sciences - Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.,Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, EftimieMurgu Sq. No. 2, 300041, Timişoara, Romania
| | - Adrian Sturza
- Department of Functional Sciences - Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania. .,Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, EftimieMurgu Sq. No. 2, 300041, Timişoara, Romania. .,Department of Functional Sciences III - Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara , Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.
| | - Danina M Muntean
- Department of Functional Sciences - Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania. .,Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, EftimieMurgu Sq. No. 2, 300041, Timişoara, Romania. .,Department of Functional Sciences III - Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara , Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.
| | - Octavian M Creţu
- Department of Surgery - Surgical Semiotics, "Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania.,Center for Hepato‑Biliary and Pancreatic Surgery, "Victor Babeş" University of Medicine and Pharmacy Timişoara, Eftimie Murgu Sq. No. 2, 300041, Timişoara, Romania
| |
Collapse
|
3
|
Mitra S, Anjum J, Muni M, Das R, Rauf A, Islam F, Bin Emran T, Semwal P, Hemeg HA, Alhumaydhi FA, Wilairatana P. Exploring the journey of emodin as a potential neuroprotective agent: Novel therapeutic insights with molecular mechanism of action. Biomed Pharmacother 2022; 149:112877. [PMID: 35367766 DOI: 10.1016/j.biopha.2022.112877] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Emodin is an anthraquinone derivative found in the roots and bark of a variety of plants, molds, and lichens. Emodin has been used as a traditional medication for more than 2000 years and is still common in numerous herbal drugs. Emodin is plentiful in the three plant families, including Polygonaceae (Rheum, Rumex, and Polygonum spp.), Fabaceae (Cassia spp.), and Rhamnaceae (Rhamnus, Frangula, and Ventilago spp.). Emerging experimental evidences indicate that emodin confers a wide range of pharmacological activities; special focus was implemented toward neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, cerebral ischemia, anxiety and depression, schizophrenia, chronic hyperglycemic peripheral neuropathy, etc. Numerous preclinical evidences were established in support of the neuroprotection of emodin. However, this review highlighted the role of emodin as a potent neurotherapeutic agent; therefore, its evidence-based functionality on neurological disorders (NDs).
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Juhaer Anjum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maniza Muni
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Pakistan.
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Medinah Al-Monawara 41411, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical of Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Nwabufo CK, Aigbogun OP, Allen KJH, Owens MN, Lee JS, Phenix CP, Krol ES. Employing in vitro metabolism to guide design of F-labelled PET probes of novel α-synuclein binding bifunctional compounds. Xenobiotica 2021; 51:885-900. [PMID: 34187286 DOI: 10.1080/00498254.2021.1943566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A challenge in the development of novel 18F-labelled positron emission tomography (PET) imaging probes is identification of metabolically stable sites to incorporate the 18F radioisotope. Metabolic loss of 18F from PET probes in vivo can lead to misleading biodistribution data as displaced 18F can accumulate in various tissues.In this study we report on in vitro hepatic microsomal metabolism of novel caffeine containing bifunctional compounds (C8-6-I, C8-6-N, C8-6-C8) that can prevent in vitro aggregation of α-synuclein, which is associated with the pathophysiology of Parkinson's disease. The metabolic profile obtained guided us to synthesize stable isotope 19F-labelled analogues in which the fluorine was introduced at the metabolically stable N7 of the caffeine moiety.An in vitro hepatic microsomal metabolism study of the 19F-labelled analogues resulted in similar metabolites to the unlabelled compounds and demonstrated that the fluorine was metabolically stable, suggesting that these analogues are appropriate PET imaging probes. This straightforward in vitro strategy is valuable for avoiding costly stability failures when designing radiolabelled compounds for PET imaging.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | | | - Kevin J H Allen
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Madeline N Owens
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Jeremy S Lee
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | | | - Ed S Krol
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
5
|
Nestsiarovich A, Kerner B, Mazurie AJ, Cannon DC, Hurwitz NG, Zhu Y, Nelson SJ, Oprea TI, Unruh ML, Crisanti AS, Tohen M, Perkins DJ, Lambert CG. Comparison of 71 bipolar disorder pharmacotherapies for kidney disorder risk: The potential hazards of polypharmacy. J Affect Disord 2019; 252:201-211. [PMID: 30986735 DOI: 10.1016/j.jad.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 04/06/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND This study compared the largest set of bipolar disorder pharmacotherapies to date (71 drugs and drug combinations) for risk of kidney disorders (KDs). METHODS This retrospective observational study used the IBM MarketScan® database to analyze data on 591,052 adults with bipolar disorder without prior nephropathy, for onset of KDs (of "moderate" or "high" severity) following psychopharmacotherapy (lithium, mood stabilizing anticonvulsants [MSAs], antipsychotics, antidepressants), or "No drug". Cox regression models included fixed pre-treatment covariates and time-varying drug exposure covariates to estimate the hazard ratio (HR) of each treatment versus "No drug". RESULTS Newly observed KD occurred in 14,713 patients. No regimen had significantly lower risk of KDs than "No drug". The HR estimates ranged 0.86-2.66 for "all" KDs and 0.87-5.30 for "severe" KDs. As additional drugs were combined to compare more complex polypharmacies, higher HRs were consistently observed. Most regimens containing lithium, MSAs, or antipsychotics had a higher risk than "No drug" (p < 0.05). The risk for "all" and "severe" KDs was highest respectively on monoamine oxidase inhibitors (MAOIs) (HR = 2.66, p = 5.73 × 10-5), and a lithium-containing four-class combination (HR = 5.30, p = 2.46 × 10-9). The HR for lithium monotherapy was 1.82 (p = 4.73 × 10-17) for "severe" KDs. LIMITATIONS The limitations inherent for an observational study were non-randomized assignment of patients to treatment groups, non-standardization of diagnostic decisions, and non-uniform quality of data collection. No correction was made for medication dosage. CONCLUSIONS The findings support literature concerns about lithium nephrotoxicity and highlight the potential risks of MAOIs, MSAs, antipsychotics and psychotropic polypharmacy.
Collapse
Affiliation(s)
- Anastasiya Nestsiarovich
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Berit Kerner
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | - Yiliang Zhu
- Department of Internal Medicine, Division of Epidemiology, Biostatistics, and Preventive Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Stuart J Nelson
- University of New Mexico Health Sciences Library and Informatics Center, Albuquerque, NM, USA; Department of Internal Medicine, Division of Translational Informatics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tudor I Oprea
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Mark L Unruh
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Annette S Crisanti
- Department of Psychiatry & Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Mauricio Tohen
- Department of Psychiatry & Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Douglas J Perkins
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Christophe G Lambert
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Internal Medicine, Division of Translational Informatics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
6
|
Sadaoui N, Bec N, Barragan-Montero V, Kadri N, Cuisinier F, Larroque C, Arab K, Khettal B. The essential oil of Algerian Ammodaucus leucotrichus Coss. & Dur. and its effect on the cholinesterase and monoamine oxidase activities. Fitoterapia 2018; 130:1-5. [DOI: 10.1016/j.fitote.2018.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
|
7
|
Corbineau S, Breton M, Mialet-Perez J, Costemale-Lacoste JF. Major depression and heart failure: Interest of monoamine oxidase inhibitors. Int J Cardiol 2017; 247:1-6. [DOI: 10.1016/j.ijcard.2017.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 12/25/2022]
|
8
|
Hypothalamic dysfunction in heart failure: pathogenetic mechanisms and therapeutic implications. Heart Fail Rev 2017; 23:55-61. [DOI: 10.1007/s10741-017-9659-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Nishimura Y, Tagawa M, Ito H, Tsuruma K, Hara H. Overcoming Obstacles to Drug Repositioning in Japan. Front Pharmacol 2017; 8:729. [PMID: 29075191 PMCID: PMC5641581 DOI: 10.3389/fphar.2017.00729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022] Open
Abstract
Drug repositioning (DR) is the process of identifying new indications for existing drugs. DR usually focuses on drugs that have cleared phase-I safety trials but has yet to show efficacy for the intended indication. Therefore, DR can probably skip the preclinical and phase-I study, which can reduce the cost throughout drug development. However, the expensive phase-II/III trials are required to establish efficacy. The obstacles to DR include identification of new indications with a high success rate in clinical studies, obtaining funding for clinical studies, patent protection, and approval systems. To tackle these obstacles, various approaches have been applied to DR worldwide. In this perspective, we provide representative examples of DR and discuss the ongoing efforts to overcome obstacles to DR in Japan.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaaki Tagawa
- Medical Affairs, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, Japan
| | - Hideki Ito
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
10
|
Monoamine Oxidase Is Overactivated in Left and Right Ventricles from Ischemic Hearts: An Intriguing Therapeutic Target. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4375418. [PMID: 28044091 PMCID: PMC5156804 DOI: 10.1155/2016/4375418] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/19/2016] [Accepted: 10/09/2016] [Indexed: 12/21/2022]
Abstract
Growing evidence indicates that reactive oxygen species (ROS) may play a key role in human heart failure (HF). Monoamine oxidase (MAO) is emerging as a major ROS source in several cardiomyopathies. However, little is known about MAO activity in human failing heart and its relationship with redox imbalance. Therefore, we measured MAO activity in the left (LV) and in the right (RV) ventricle of human nonfailing (NF) and in end-stage ischemic (IHD) and nonischemic failing hearts. We found that both MAO isoforms (MAO-A/B) significantly increased in terms of activity and expression levels only in IHD ventricles. Catalase and aldehyde dehydrogenase-2 activities (ALDH-2), both implicated in MAO-catalyzed catecholamine catabolism, were significantly elevated in the failing LV, whereas, in the RV, statistical significance was observed only for ALDH-2. Oxidative stress markers levels were significantly increased only in the failing RV. Actin oxidation was significantly elevated in both failing ventricles and related to MAO-A activity and to functional parameters. These data suggest a close association between MAO-A-dependent ROS generation, actin oxidation, and ventricular dysfunction. This latter finding points to a possible pathogenic role of MAO-A in human myocardial failure supporting the idea that MAO-A could be a new therapeutic target in HF.
Collapse
|
11
|
Electroacupuncture Restores 5-HT System Deficit in Chronic Mild Stress-Induced Depressed Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7950635. [PMID: 27994633 PMCID: PMC5141535 DOI: 10.1155/2016/7950635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/21/2016] [Accepted: 09/14/2016] [Indexed: 01/08/2023]
Abstract
Objective. The current study is designed to investigate the antidepressant efficacy of electroacupuncture (EA) treatment by evaluating its effect on the synthesis, metabolism, reuptake, and receptors of 5-hydroxytryptamine (5-HT), so as to clarify the molecular mechanisms of EA for antidepression. Materials and Methods. Solitary combined with the chronic unpredictable mild stress (CUMS) was used to establish the rat model with depression. The depressed rats were supplied with EA treatment for 4 weeks, and the behavior change and the following indices including 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), monoamine oxidase A (MAO-A), tryptophan hydroxylase (TPH), 5-HT transporter (SERT), 5-HT1A, and 5-HT2A in hippocampus and prefrontal cortex were examined. Results. EA treatment significantly improved the behavior of rats and increased 5-HT level in hippocampus of depressed rats. Similarly, EA treatment could significantly increase protein and mRNA expression of TPH and 5-HT1A during 5-HT synthesis process in hippocampus of depressed rats. However, EA treatment had no effect on the activity of MAO-A and the expression of SERT protein and mRNA. Conclusion. Antidepressant efficacy of EA treatment can be accomplished through enhancing 5-HT synthesis, upregulating 5-HT1A level, and improving 5-HT content in brain and synaptic gaps.
Collapse
|
12
|
Poutiainen P, Jaronen M, Quintana FJ, Brownell AL. Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes. Front Mol Neurosci 2016; 9:85. [PMID: 27695400 PMCID: PMC5023680 DOI: 10.3389/fnmol.2016.00085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022] Open
Abstract
Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both monitoring of neuronal network and therapeutic outcome as well as the tools to discover novel therapeutic targets. Diverse imaging modalities provide reliable diagnostic and prognostic platforms to better achieve precision medicine. Traditionally, magnetic resonance imaging (MRI) has been considered the golden standard in MS research and diagnosis. However, positron emission tomography (PET) imaging can provide functional information of molecular biology in detail even prior to anatomic changes, allowing close follow up of disease progression and treatment response. The recent findings support three major neuroinflammation components in MS: astrogliosis, cytokine elevation, and significant changes in specific proteins, which offer a great variety of specific targets for imaging purposes. Regardless of the fact that imaging of astrocyte function is still a young field and in need for development of suitable imaging ligands, recent studies have shown that inflammation and astrocyte activation are related to progression of MS. MS is a complex disease, which requires understanding of disease mechanisms for successful treatment. PET is a precise non-invasive imaging method for biochemical functions and has potential to enhance early and accurate diagnosis for precision therapy of MS. In this review we focus on modulation of different receptor systems and inflammatory aspect of MS, especially on activation of glial cells, and summarize the recent findings of PET imaging in MS and present the most potent targets for new biomarkers with the main focus on experimental MS research.
Collapse
Affiliation(s)
- Pekka Poutiainen
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| | - Merja Jaronen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Francisco J. Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Anna-Liisa Brownell
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| |
Collapse
|
13
|
Ramsay RR. Molecular aspects of monoamine oxidase B. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:81-9. [PMID: 26891670 DOI: 10.1016/j.pnpbp.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/06/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
Monoamine oxidases (MAO) influence the monoamine levels in brain by virtue of their role in neurotransmitter breakdown. MAO B is the predominant form in glial cells and in platelets. MAO B structure, function and kinetics are described as a background for the effect of alterations in its activity on behavior. The need to inhibit MAO B to combat decreased brain amines continues to drive the search for new drugs. Reversible and irreversible inhibitors are now designed using data-mining, computational screening, docking and molecular dynamics. Multi-target ligands designed to combat the elevated activity of MAO B in Alzheimer's and Parkinson's Diseases incorporate MAO inhibition (usually irreversible) as well as iron chelation, antioxidant or neuroprotective properties. The main focus of drug design is the catalytic activity of MAO, but the imidazoline I2 site in the entrance cavity of MAO B is also a pharmacological target. Endogenous regulation of MAO B expression is discussed briefly in light of new studies measuring mRNA, protein, or activity in healthy and degenerative samples, including the effect of DNA methylation on the expression. Overall, this review focuses on examples of recent research on the molecular aspects of the expression, activity, and inhibition of MAO B.
Collapse
Affiliation(s)
- Rona R Ramsay
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom.
| |
Collapse
|
14
|
Zhang H, Tong R, Bai L, Shi J, Ouyang L. Emerging targets and new small molecule therapies in Parkinson’s disease treatment. Bioorg Med Chem 2016; 24:1419-30. [DOI: 10.1016/j.bmc.2016.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/11/2023]
|
15
|
Mostert S, Petzer A, Petzer JP. Inhibition of monoamine oxidase by benzoxathiolone analogues. Bioorg Med Chem Lett 2016; 26:1200-4. [DOI: 10.1016/j.bmcl.2016.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 02/05/2023]
|
16
|
Sharma H, Santra S, Dutta A. Triple reuptake inhibitors as potential next-generation antidepressants: a new hope? Future Med Chem 2015; 7:2385-406. [PMID: 26619226 PMCID: PMC4976848 DOI: 10.4155/fmc.15.134] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The current therapy for depression is less than ideal with remission rates of only 25-35% and a slow onset of action with other associated side effects. The persistence of anhedonia originating from depressed dopaminergic activity is one of the most treatment-resistant symptoms of depression. Therefore, it has been hypothesized that triple reuptake inhibitors (TRIs) with potency to block dopamine reuptake in addition to serotonin and norepinephrine transporters should produce higher efficacy. The current review comprehensively describes the development of TRIs and discusses the importance of evaluation of in vivo transporter occupancy of TRIs, which should correlate with efficacy in humans.
Collapse
Affiliation(s)
- Horrick Sharma
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Soumava Santra
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Aloke Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
17
|
Gunia-Krzyżak A, Pańczyk K, Waszkielewicz AM, Marona H. Cinnamamide Derivatives for Central and Peripheral Nervous System Disorders--A Review of Structure-Activity Relationships. ChemMedChem 2015; 10:1302-25. [PMID: 26083325 DOI: 10.1002/cmdc.201500153] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 12/17/2022]
Abstract
The cinnamamide scaffold has been incorporated in to the structure of numerous organic compounds with therapeutic potential. The scaffold enables multiple interactions, such as hydrophobic, dipolar, and hydrogen bonding, with important molecular targets. Additionally, the scaffold has multiple substitution options providing the opportunity to optimize and modify the pharmacological activity of the derivatives. In particular, cinnamamide derivatives have exhibited therapeutic potential in animal models of both central and peripheral nervous system disorders. Some have undergone clinical trials and were introduced on to the pharmaceutical market. The diverse activities observed in the nervous system included anticonvulsant, antidepressant, neuroprotective, analgesic, anti-inflammatory, muscle relaxant, and sedative properties. Over the last decade, research has focused on the molecular mechanisms of action of these derivatives, and the data reported in the literature include targeting the γ-aminobutyric acid type A (GABAA ) receptors, N-methyl-D-aspartate (NMDA) receptors, transient receptor potential (TRP) cation channels, voltage-gated potassium channels, histone deacetylases (HDACs), prostanoid receptors, opioid receptors, and histamine H3 receptors. Here, the literature data from reports evaluating cinnamic acid amide derivatives for activity in target-based or phenotypic assays, both in vivo and in vitro, relevant to disorders of the central and peripheral nervous systems are analyzed and structure-activity relationships discussed.
Collapse
Affiliation(s)
- Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow (Poland).
| | - Katarzyna Pańczyk
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow (Poland)
| | - Anna M Waszkielewicz
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow (Poland)
| | - Henryk Marona
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow (Poland)
| |
Collapse
|
18
|
Mostert S, Petzer A, Petzer JP. Indanones As High-Potency Reversible Inhibitors of Monoamine Oxidase. ChemMedChem 2015; 10:862-73. [DOI: 10.1002/cmdc.201500059] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/30/2022]
|
19
|
Carradori S, Petzer JP. Novel monoamine oxidase inhibitors: a patent review (2012 - 2014). Expert Opin Ther Pat 2014; 25:91-110. [PMID: 25399762 DOI: 10.1517/13543776.2014.982535] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Monoamine oxidase (MAO) inhibitors, despite the initial pharmacological interest, are used in clinic for their antidepressant effect and in the management of Parkinson symptoms, due to the established neuroprotective action. Efficacy and tolerability emerged from large-scale and randomized clinical trials. AREAS COVERED Thirty-six patents range from April 2012 to September 2014. The number of chemotypes with inhibitory effects on MAO is truly high (40 synthetic compounds, 22 natural products and 6 plant extracts reported and licensed), and the present review is comprehensive of all compounds, which have been patented for their relevance to clinical medicine in this period range (27 patents). Moreover, some of the collected patents deal with new formulations of compounds endowed with MAO inhibitory properties (two patents) and new therapeutic options/drug associations for already known MAO inhibitors (seven patents). EXPERT OPINION The patents reported in this review showed that the interest in this field is constant and mainly devoted to the study of selective MAO-B inhibitors, used as drugs for the treatment of neurological disorders. The development of novel human MAO inhibitors took advantage of the discovery of new therapeutic targets (cancer, hair loss, muscle dystrophies, cocaine addiction and inflammation), the recognized role of MAOs as molecular biomarkers and their activity in other tissues.
Collapse
Affiliation(s)
- Simone Carradori
- Sapienza University of Rome, Department of Drug Chemistry and Technologies , P.le A. Moro 5, 00185, Rome , Italy +39 06 49913149 ; +39 06 49913923 ;
| | | |
Collapse
|
20
|
Monoamine oxidase A and B substrates: probing the pathway for drug development. Future Med Chem 2014; 6:697-717. [DOI: 10.4155/fmc.14.23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drug-discovery and -development efforts focused on the MAOs have increased at an accelerated rate over the past decade. Since the first crystal structure of human MAO-B was solved in 2002, over 40 additional structures have been reported and have helped define new, or confirm speculative, binding modes of inhibitors. The detailed mechanism of the MAO-catalyzed oxidation of amine substrates has not been fully elucidated, but its significance is central in the development of new mechanism-based inactivators. Novel fungal MAO-N variants derived from directed evolution strategies are enabling the production of new chiral amine products. Robust assays have been established for measuring MAO status in tissue and cells, while improved MAO radioligands are being deployed for PET imaging studies. This review will attempt to highlight the more recent and salient aspects of MAO research in drug discovery and development, with emphasis on substrates 'probing the pathway'.
Collapse
|
21
|
Bartl J, Müller T, Grünblatt E, Gerlach M, Riederer P. Chronic monoamine oxidase-B inhibitor treatment blocks monoamine oxidase-A enzyme activity. J Neural Transm (Vienna) 2013; 121:379-83. [PMID: 24272680 DOI: 10.1007/s00702-013-1120-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022]
Abstract
Patients with Parkinson's disease receive selective irreversible monoamine oxidase (MAO)-B inhibitors, but their effects on MAO-A activity are not known during long-term application. We determined MAO-A inhibition in plasma samples from patients with MAO-B inhibitor intake or without MAO-B inhibitor treatment and from healthy controls. We detected a 70 % reduction of MAO-A activity in patients with MAO-B inhibitor therapy in comparison to the other groups. Our results suggest that treatment with MAO-B inhibitor may also influence MAO-A activity in vivo, when administered daily.
Collapse
Affiliation(s)
- Jasmin Bartl
- Hospital of Child and Adolescent Psychiatry, University of Zurich, Winterthurerstr. 180, Room L84/86, 8057, Zurich, Switzerland,
| | | | | | | | | |
Collapse
|
22
|
Manni ME, Zazzeri M, Musilli C, Bigagli E, Lodovici M, Raimondi L. Exposure of cardiomyocytes to angiotensin II induces over-activation of monoamine oxidase type A: implications in heart failure. Eur J Pharmacol 2013; 718:271-6. [PMID: 24012905 DOI: 10.1016/j.ejphar.2013.08.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/24/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022]
Abstract
Several evidences indicate that increased cardiac mitochondrial monoamine oxidase type A (MAO-A) activity associates with a failing phenotype. Till now, the mechanism underlying such relation is largely unknown. We explored the hypothesis that exposure of cardiomyocytes to AT-II caused activation of MAO-A and also of catalase and aldehyde dehydrogenase activities, enzymes involved in degrading MAO's end products. Left ventricular cardiomyocytes were isolated from normoglycemic (N) and streptozotocin-injected (50 mg/kg) rats (D) treated or not treated with losartan (20 mg/kg/day in drinking water; DLos and NLos, respectively), a type 1 receptor (AT1) antagonist, for 3 weeks. In each group of cells, MAO, catalase and aldehyde dehydrogenase activities were measured radiochemically and spectrophotometrically. The same enzymes were also measured in HL-1 immortalized cardiomyocytes not exposed and exposed to AT-II (100 nM for 18 h) in the absence and in the presence of irbesartan (1 μM), an AT1 antagonist. MAO-A catalase and aldehyde dehydrogenase activities were found significantly higher in D, than in N cells. MAO-A positively correlated with catalase activity in D cells. MAO-A and aldehyde dehydrogenase but not catalase over-activation, were prevented in DLos cells. Similarly, MAO-A activity, but not catalase and aldehyde dehydrogenase increased significantly in HL-1 cells acutely exposed to AT-II and this increase was prevented when irbesartan, an AT1 antagonist was present. Over-activation of cardiomyocyte MAO-A activity is among acute (18 h) and short-term (2-weeks of diabetes) cardiac effects of AT-II and a novel target of AT1 antagonists, first line treatments of diabetic cardiomyopathy.
Collapse
|