1
|
Muhammad AM, Ismail A, Chong PP, Yap WH, Muhamad A, Alitheen NB, Kam A, Loo S, Lee KW. Skin-penetrating peptides (SKPs): Enhancing skin permeation for transdermal delivery of pharmaceuticals and cosmetic compounds. Int J Pharm 2025; 672:125339. [PMID: 39947363 DOI: 10.1016/j.ijpharm.2025.125339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Skin-penetrating peptides (SKPs) are emerging as a promising class of permeation enhancers that can facilitate macromolecule delivery across the skin. Although their pharmaceutical applications are under extensive study, SKPs are crucial for enhancing skin permeability, enabling larger molecules to penetrate the stratum corneum. This review explores the transformative role of SKPs in non-invasive transdermal drug delivery. Drawing from an extensive collection of literature, it provides insights into the current usage and application of SKPs as tools to enhance skin permeability and facilitate the delivery of larger molecules. Additionally, it highlights the opportunities, challenges, and future directions for SKP applications in transdermal drug delivery.
Collapse
Affiliation(s)
- Ameerah Montree Muhammad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Alif Ismail
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia; Food Security and Nutrition Impact Lab, Taylor's University, Subang Jaya 47500 Selangor, Malaysia
| | - Azira Muhamad
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia Kajang Selangor Malaysia
| | - Noorjahan Banu Alitheen
- Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Antony Kam
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Shining Loo
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Khai Wooi Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
2
|
Brighenti MS, Montanheri LRS, Duque MD, Andreo-Filho N, Lopes PS, Garcia MTJ, Mackenzie L, Leite-Silva VR. In Vitro Drug Release and Ex Vivo Dermal Drug Permeation Studies of Selected Commercial Benzoyl Peroxide Topical Formulations: Correlation Between Human and Porcine Skin Models. Mol Pharm 2025; 22:1365-1372. [PMID: 39899465 PMCID: PMC11881039 DOI: 10.1021/acs.molpharmaceut.4c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 02/05/2025]
Abstract
In vitro release testing (IVRT) serves as a crucial tool to assess the quality, physicochemical behavior, and performance of semisolid formulations already available on the market. In vitro skin permeation studies (IVPT) are widely used to evaluate the safety and efficacy profiles of topical drugs, utilizing biological membranes prepared from ex vivo human and porcine skin tissues. This study aimed to develop and validate a discriminative IVRT method to evaluate various marketed topical benzoyl peroxide formulations. Additionally, IVPT was employed to assess skin permeation and retention profiles of these formulations, comparing porcine skin results with those obtained by using ex vivo human skin tissues. Physicochemical differences among the evaluated benzoyl peroxide formulations were identified, with the poloxamer-based formulation exhibiting a higher release rate. IVPT using both porcine and human skin differentiated retention and skin permeation profiles, with the poloxamer-based formulation demonstrating greater skin retention capacity compared to the other formulations evaluated. Similar conclusions on benzoyl peroxide retention and cutaneous permeation were drawn from both porcine and human skin IVPT tests, confirming the correlation between the two models.
Collapse
Affiliation(s)
- Murilo
de Souza Brighenti
- Departamento
de Ciências Farmacêuticas, Instituto de Ciências
Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP, Diadema 09913-030, Brazil
| | - Lilian Rosário
da Silva Montanheri
- Departamento
de Ciências Farmacêuticas, Instituto de Ciências
Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP, Diadema 09913-030, Brazil
| | - Marcelo Dutra Duque
- Departamento
de Ciências Farmacêuticas, Instituto de Ciências
Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP, Diadema 09913-030, Brazil
| | - Newton Andreo-Filho
- Departamento
de Ciências Farmacêuticas, Instituto de Ciências
Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP, Diadema 09913-030, Brazil
| | - Patricia Santos Lopes
- Departamento
de Ciências Farmacêuticas, Instituto de Ciências
Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP, Diadema 09913-030, Brazil
| | - Maria Teresa Junqueira Garcia
- Departamento
de Ciências Farmacêuticas, Instituto de Ciências
Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP, Diadema 09913-030, Brazil
| | - Lorraine Mackenzie
- Clinical
Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Vânia Rodrigues Leite-Silva
- Departamento
de Ciências Farmacêuticas, Instituto de Ciências
Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP, Diadema 09913-030, Brazil
- Therapeutics
Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane QLD 4102, Australia
| |
Collapse
|
3
|
Barthe M, Clerbaux LA, Thénot JP, Braud VM, Osman-Ponchet H. Systematic characterization of the barrier function of diverse ex vivo models of damaged human skin. Front Med (Lausanne) 2024; 11:1481645. [PMID: 39717176 PMCID: PMC11664247 DOI: 10.3389/fmed.2024.1481645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
Background The skin barrier plays a crucial role in protecting our body against external agents. Disruption of this barrier's function leads to increased susceptibility to infections and dermatological diseases. Damaged skin can be due to the use of detergents, sunburn or excessive scratching. In the context of the COVID-19 pandemic the recommended hygiene measures to prevent the spread of SARS-CoV-2, such as wearing masks, frequent handwashing, and the use of sanitizers, can also potentially alter the skin barrier. Objectives The purpose of the study was to characterize the barrier function of ex vivo models of damaged human skin. Methods Skin barrier damage was induced through different chemical and mechanical treatments, representative of the potential factors damaging human skin. The skin barrier function was evaluated in terms of permeability, dermal absorption capacity, stratum corneum thickness and gene expression of barrier markers. As inflammation is linked to skin barrier integrity, inflammatory markers were also analyzed. Results and discussion The different treatments applied to ex vivo skin models allow the simulation of diverse degrees of skin damage, making these models valuable for assessing the efficacy of topical products targeted at skin repair and for studying the effects of compromised skin barrier on viral penetration.
Collapse
Affiliation(s)
- Manon Barthe
- Laboratoires PKDERM, Grasse, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, INSERM U1323, Valbonne, France
| | - Laure-Alix Clerbaux
- Institut de Recherche Expérimentale et Clinique, UC Louvain, Brussels, Belgium
| | | | - Véronique M. Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, INSERM U1323, Valbonne, France
| | | |
Collapse
|
4
|
Fitri AMN, Mahfufah U, Aziz SBA, Sultan NAF, Mahfud MAS, Saputra MD, Elim D, Bakri NF, Arjuna A, Sari YW, Domínguez-Robles J, Pamornpathomkul B, Mir M, Permana AD. Enhancement of skin localization of β-carotene from red fruit (Pandanus conoideus Lam.) using solid dispersion-thermoresponsive gel delivered via polymeric solid microneedles. Int J Pharm 2024; 660:124307. [PMID: 38852748 DOI: 10.1016/j.ijpharm.2024.124307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Red fruit (Pandanus conoideus Lam.) boasts high β-carotene (BC) content, often consumed orally. However, absorption issues and low bioavailability due to food matrix interaction have led to transdermal delivery exploration. Nevertheless, BC has a short skin retention time. To address these limitations, this study formulates a β-carotene solid dispersion (SD-BC) loaded thermoresponsive gel combined with polymeric solid microneedles (PSM) to enhance in vivo skin bioavailability. Characterization of SD-BC includes saturation solubility, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and in vitro release. Characterization of SD-BC thermoresponsive gel includes gelation temperature, viscosity, rheological behaviour, pH, bio-adhesiveness, spreadability, and extrudability. PSM's mechanical properties and insertion capability were assessed. Ex vivo and in vivo dermato-pharmacokinetic studies, drug content, hemolysis, and skin irritation assessments were conducted to evaluate overall performance. Results confirm amorphous SD-BC formation, enhancing solubility. Both SD-BC thermoresponsive gel and PSM exhibit favourable characteristics, including rheological properties and mechanical strength. In vitro release studies showed a seven-fold increase in BC release compared to plain hydrogel. SD-BC thermoresponsive gel combined with PSM achieves superior ex vivo permeation (Cmax = 305.43 ± 32.07 µg.mL-1) and enhances in vivo dermato-pharmacokinetic parameters by 200-400 %. Drug content, hemolysis, and skin irritation studies confirmed its safety and non-toxicity.
Collapse
Affiliation(s)
| | - Ulfah Mahfufah
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | | | | | - Diany Elim
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Nur Fadillah Bakri
- Department of Pharmacy, Cendrawasih University, Jayapura 99224, Indonesia
| | - Andi Arjuna
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Yessie Widya Sari
- Faculty of Mathematics and Natural Science, IPB University, Bogor 16680, Indonesia
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | | | - Maria Mir
- Department of Pharmacy, Iqra University Islamabad Campus, Islamabad, Pakistan
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
5
|
Duman G, Gucu E, Utku FS, Uner B, Macit M, Sarialtin S, Ozilgen M. Kinetic assessment of iontophoretic delivery efficiency of niosomal tetracycline hydrochloride incorporated in electroconductive gel. Drug Deliv Transl Res 2024; 14:1206-1217. [PMID: 37867180 DOI: 10.1007/s13346-023-01452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
The purpose of this study was to conduct the kinetic assessment of iontophoretic delivery of niosomal tetracycline-HCl formulated in an electroconductive gel. Tween-80 and Span-80 were used to obtain tetracycline-HCl niosomes with an average diameter of 101.9 ± 3.3 nm, a polydispersity index of 0.247 ± 0.004, a zeta potential of - 34.1 mV, and an entrapment efficiency of 70.08 ± 0.16%. Four different gel preparations, two of which contained niosomal tetracycline-HCl, were transdermally delivered using Franz diffusion cells under the trigger effect of iontophoresis, applied at 0.2, 0.5, and 1 mA/cm2 current density. The control group was the passive diffusion results of the preparation made using a tetracycline-HCl-based drug marketed in Turkey. The control group was compared with the groups that contained (a) tetracycline-HCl in an electroconductive gel, (b) the niosomal tetracycline-HCl formulation in water, and (c) the niosomal tetracycline-HCl formulation in the electroconductive gel. The group with the niosomal formulation in the electroconductive gel displayed the highest increase in iontophoretic transdermal delivery relative to the control group, displaying a 2-, 2.1-, and 2.2-fold increase, respectively, by current density. The experimental results of transdermal delivery using the synergistic effect of niosomal formulation in electroconductive gel and the trigger effect of iontophoresis appeared to divert slightly from zero-order kinetics, demonstrating a statistically significant increase in the rate of controlled transdermal drug delivery. Considering that about 20% of the formulation is transdermally delivered in the first half-hour, the iontophoretic transdermal delivery of niosomal tetracycline-HCl can be efficiently used in local iontophoretic therapy.
Collapse
Affiliation(s)
- Gulengul Duman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ecem Gucu
- Department of Biomedical Engineering, Yeditepe University, Istanbul, Turkey
| | - Feride Sermin Utku
- Department of Biomedical Engineering, Yeditepe University, Istanbul, Turkey
| | - Burcu Uner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey.
- Department of Pharmaceutical and Administrative Sciences, Faculty of Pharmacy, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA.
| | - Meltem Macit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Sevval Sarialtin
- Department of Biomedical Engineering, Yeditepe University, Istanbul, Turkey
| | - Mustafa Ozilgen
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
6
|
Patel M, Patel A, Desai J, Patel S. Cutaneous Pharmacokinetics of Topically Applied Novel Dermatological Formulations. AAPS PharmSciTech 2024; 25:46. [PMID: 38413430 DOI: 10.1208/s12249-024-02763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Novel formulations are developed for dermatological applications to address a wide range of patient needs and therapeutic challenges. By pushing the limits of pharmaceutical technology, these formulations strive to provide safer, more effective, and patient-friendly solutions for dermatological concerns, ultimately improving the overall quality of dermatological care. The article explores the different types of novel dermatological formulations, including nanocarriers, transdermal patches, microsponges, and microneedles, and the techniques involved in the cutaneous pharmacokinetics of these innovative formulations. Furthermore, the significance of knowing cutaneous pharmacokinetics and the difficulties faced during pharmacokinetic assessment have been emphasized. The article examines all the methods employed for the pharmacokinetic evaluation of novel dermatological formulations. In addition to a concise overview of earlier techniques, discussions on novel methodologies, including tape stripping, in vitro permeation testing, cutaneous microdialysis, confocal Raman microscopy, and matrix-assisted laser desorption/ionization mass spectrometry have been conducted. Emerging technologies like the use of microfluidic devices for skin absorption studies and computational models for predicting drug pharmacokinetics have also been discussed. This article serves as a valuable resource for researchers, scientists, and pharmaceutical professionals determined to enhance the development and understanding of novel dermatological drug products and the complex dynamics of cutaneous pharmacokinetics.
Collapse
Affiliation(s)
- Meenakshi Patel
- Department of Pharmaceutics, School of Pharmacy, Faculty of Pharmacy, and Research & Development Cell, Parul University, Waghodia, Vadodara, 391760, Gujarat, India.
| | - Ashwini Patel
- Department of Pharmaceutics, Krishna School of Pharmacy & Research, Drs. Kiran and Pallavi Patel Global University, Vadodara, 391243, Gujarat, India
| | - Jagruti Desai
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388 421, Gujarat, India
| | - Swayamprakash Patel
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388 421, Gujarat, India
| |
Collapse
|
7
|
Singh R, Singh A, Srivastava D, Fatima Z, Prasad R. Crisaborole-Enthused Glycerosomal Gel for an Augmented Skin Permeation. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:120-130. [PMID: 38659269 DOI: 10.2174/0126673878283299240418112318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Crisaborole (CB), a boron-based compound, is the first topical PDE4 inhibitor to be approved by the US Food and Drug Administration (2016) for the treatment of Atopic Dermatitis. It is marketed as a 2% ointment (Eucrisa, Pfizer). However, CB is insoluble in water; therfore, CB glycersomes were formulated to enhance its permeation flux across the skin. OBJECTIVE We developed a glycerosomal gel of CB and compared its in vitro release and permeation flux with the 2% conventional ointment. METHODS Glycerosomes were prepared using thin film hydration method employing CB, soya phosphatidylcholine, and cholesterol. The formed film was further hydrated employing a mixture of phosphate buffer pH 7.4 /glycerin solution containing varying percentages (20,30, 40, and 50 %) of glycerol. The glycerosomes obtained were characterized by their size, polydispersity index (PDI), and Zeta potential. The entrapment efficiency of the optimized formulation (F1) was determined. The in vitro release of F1 was compared with its 2% conventional ointment. F1 was further incorporated into carbopol 934 P gel. The gel was characterized by pH, viscosity, spreadability, and drug content. The permeability flux of the glycerosomal gel was compared with its 2% conventional ointment. RESULTS The optimized CB glycerosomes had a vesicle size of 137.5 ± 50.58 nm, PDI 0.342, and zeta potential -65.4 ± 6.75 mV. CB glycerosomal gel demonstrated a 2.13-fold enhancement in the permeation flux. CONCLUSION It can thereby be concluded that glycerosomes can be an effective delivery system to enhance the penetration of CB across the skin.
Collapse
Affiliation(s)
- Ragini Singh
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Anshu Singh
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Dipti Srivastava
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Sector 125, Noida, 201313, India
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Zeeshan Fatima
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Rammani Prasad
- Central Instrumentation Facility, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
8
|
Ariaei A, Ramezani F. The promising impact of Bemcentinib and Repotrectinib on sleep impairment in Alzheimer's disease. J Biomol Struct Dyn 2023; 42:13538-13554. [PMID: 37909502 DOI: 10.1080/07391102.2023.2276876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disease, demands effective medication to alleviate symptoms. This study focused on sleep impairment as an overt clinical symptom and tauopathy as a prominent molecular symptom of this disease. Multiple compounds from three biomolecule libraries (719 compounds; ChemDiv:366 - ChEMBL:180 - PubChem:173) were evaluated for potential binding affinity and safety using AutoDock Vina and pkCSM, respectively, resulting in the selection of four candidate compounds (Lestaurtinib, Repotrectinib, Bemcentinib, and Zotiraciclib). Due to the similarity of Repotrectinib and Bemcentinib binding sites to ATP, 300 ns Martini 3 coarse-grained molecular dynamics (MD) was performed on these two molecules and ATP by NAMD. The stability of tau protein in the presence of drugs was assessed using a 200 ns Martini 3 MD simulation. Binding site analysis discloses Bemcentinib and Repotrectinib as two inhibitors occupying most amino acids in binding with ATP. The RMSD and RMS average correlation results revealed protein containing Bemcentinib and Repotrectinib to have a more stable state compared to ATP in the first 220 ns simulation. There was only a single detachment of Bemcentinib, while Repotrictinib detached twice at the end of the simulation. Eventually, adding Bemcentinib and Repotrectinib to the enzyme-tau complex significantly increased the number of tau detachments during the 200 ns simulation. We report Bemcentinib and Repotrectinib, formerly prescribed for cancer, as potential inhibitors of the CK1 δ. Besides their high binding affinity compared to ATP, they can inhibit all ATP-binding sites and alter the tau binding stability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Armin Ariaei
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Dul M, Alali M, Ameri M, Burke MD, Craig CM, Creelman BP, Dick L, Donnelly RF, Eakins MN, Frivold C, Forster AH, Gilbert PA, Henke S, Henry S, Hunt D, Lewis H, Maibach HI, Mistilis JJ, Park JH, Prausnitz MR, Robinson DK, Hernandez CAR, Ross C, Shin J, Speaker TJ, Taylor KM, Zehrung D, Birchall JC, Jarrahian C, Coulman SA. Assessing the risk of a clinically significant infection from a Microneedle Array Patch (MAP) product. J Control Release 2023; 361:236-245. [PMID: 37437849 DOI: 10.1016/j.jconrel.2023.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Microneedle Array Patches (MAPs) are an emerging dosage form that creates transient micron-sized disruptions in the outermost physical skin barrier, the stratum corneum, to facilitate delivery of active pharmaceutical ingredients to the underlying tissue. Numerous MAP products are proposed and there is significant clinical potential in priority areas such as vaccination. However, since their inception scientists have hypothesized about the risk of a clinically significant MAP-induced infection. Safety data from two major Phase 3 clinical trials involving hundreds of participants, who in total received tens of thousands of MAP applications, does not identify any clinically significant infections. However, the incumbent data set is not extensive enough to make definitive generalizable conclusions. A comprehensive assessment of the infection risk is therefore advised for MAP products, and this should be informed by clinical and pre-clinical data, theoretical analysis and informed opinions. In this article, a group of key stakeholders identify some of the key product- and patient-specific factors that may contribute to the risk of infection from a MAP product and provide expert opinions in the context of guidance from regulatory authorities. Considerations that are particularly pertinent to the MAP dosage form include the specifications of the finished product (e.g. microbial specification), it's design features, the setting for administration, the skill of the administrator, the anatomical application site, the target population and the clinical context. These factors, and others discussed in this article, provide a platform for the development of MAP risk assessments and a stimulus for early and open dialogue between developers, regulatory authorities and other key stakeholders, to expedite and promote development of safe and effective MAP products.
Collapse
Affiliation(s)
- Maria Dul
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Howard I Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | | | - Jung-Hwan Park
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | - Kevin Michael Taylor
- University College London School of Pharmacy, British Pharmacopoeia Commission, UK
| | | | - James C Birchall
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Sion A Coulman
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
10
|
Goel A, Tsikritsis D, Belsey NA, Pendlington R, Glavin S, Chen T. Measurement of chemical penetration in skin using Stimulated Raman scattering microscopy and multivariate curve resolution - alternating least squares. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122639. [PMID: 36989692 DOI: 10.1016/j.saa.2023.122639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The mechanistic understanding of skin penetration underpins the design, efficacy and risk assessment of many high-value products including functional personal care products, topical and transdermal drugs. Stimulated Raman scattering (SRS) microscopy, a label free chemical imaging tool, combines molecular spectroscopy with submicron spatial information to map the distribution of chemicals as they penetrate the skin. However, the quantification of penetration is hampered by significant interference from Raman signals of skin constituents. This study reports a method for disentangling exogeneous contributions and measuring their permeation profile through human skin combining SRS measurements with chemometrics. We investigated the spectral decomposition capability of multivariate curve resolution - alternating least squares (MCR-ALS) using hyperspectral SRS images of skin dosed with 4-cyanophenol. By performing MCR-ALS on the fingerprint region spectral data, the distribution of 4-cyanophenol in skin was estimated in an attempt to quantify the amount permeated at different depths. The reconstructed distribution was compared with the experimental mapping of CN, a strong vibrational peak in 4-cyanophenol where the skin is spectroscopically silent. The similarity between MCR-ALS resolved and experimental distribution in skin dosed for 4 h was 0.79 which improved to 0.91 for skin dosed for 1 h. The correlation was observed to be lower for deeper layers of skin where SRS signal intensity is low which is an indication of low sensitivity of SRS. This work is the first demonstration, to the best of our knowledge, of combining SRS imaging technique with spectral unmixing methods for direct observation and mapping of the chemical penetration and distribution in biological tissues.
Collapse
Affiliation(s)
- Anukrati Goel
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Dimitrios Tsikritsis
- Chemical & Biological Sciences Department, National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Natalie A Belsey
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK; Chemical & Biological Sciences Department, National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Ruth Pendlington
- Unilever Safety & Environmental Assurance Centre, Colworth Science Park, Bedford, MK44 1LQ, UK
| | - Stephen Glavin
- Unilever Safety & Environmental Assurance Centre, Colworth Science Park, Bedford, MK44 1LQ, UK
| | - Tao Chen
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
11
|
Enhancing Intradermal Delivery of Lidocaine by Dissolving Microneedles: Comparison between Hyaluronic Acid and Poly(Vinyl Pyrrolidone) Backbone Polymers. Pharmaceutics 2023; 15:pharmaceutics15010289. [PMID: 36678916 PMCID: PMC9864429 DOI: 10.3390/pharmaceutics15010289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Lidocaine hydrochloride (LiH), an amide-type local anesthetic agent, is commonly used in dermatological procedures. LiH is categorized as a BCS (biopharmaceutics classification system) class III group, which has high solubility and poor permeability. It should be noted that, in this context, LiH is intended as a local anesthetic, so the level of LiH in systemic circulation should be minimized to avoid toxicity and unwanted side effects such as hypotension and bradycardia. This study aimed to formulate and evaluate LiH-loaded dissolving microneedles (DMNs) with different polymer bases. Moreover, an in vitro permeation study using Franz diffusion cells and in vivo study were also performed. LiH-loaded DMNs were prepared using polymer groups of poly(vinyl pyrrolidone) (PVP-K30) and hyaluronic acid (HA). DMNs were created using the micro-molding method with centrifugation. The formulations selected based on the evaluation were F3 (HA 10%) and F5 (PVP-K30 25%). Based on the in vitro permeation study, the amount of drug permeated and deposited in the skin at F3 (HA 10%) was 247.1 ± 41.85 and 98.35 ± 12.86 μg, respectively. On the other hand, the amount of drug permeated and deposited in the skin at F5 (PVP-K30 25%) was 277.7 ± 55.88 and 59.46 ± 9.25 μg, respectively. Our in vivo drug-permeation study showed that only one rat from the PVP-K30 polymer group-with a concentration of 150.32 ng/mL-was detected on rat plasma. Therefore, LiH can be formulated into a DMN and can be deposited in the skin with a safe concentration of the drug permeating into systemic circulation.
Collapse
|
12
|
Jefferson A, Borges C. Evaluation of the safety, tolerability and plasma vitamin D response to long-term use of patented transdermal vitamin D patches in healthy adults: a randomised parallel pilot study. BMJ Nutr Prev Health 2022; 5:217-226. [PMID: 36619342 PMCID: PMC9813629 DOI: 10.1136/bmjnph-2022-000471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/15/2022] [Indexed: 01/11/2023] Open
Abstract
Background Vitamin D delivered transdermally may suppress hyperactivity in nociceptor pain receptors and alter pain intensity, offering a useful addition to localised pain management in varying clinical settings. Currently, little is known about long-term usage of continuous-release vitamin D patches. Method We conducted a randomised parallel pilot trial to evaluate safety and tolerability of daily application of patented (US8821921B2) transdermal vitamin D patches over 8 weeks and assess time-level profile of serum vitamin D. Compliance, tolerance and sun exposure were monitored daily, serum 25(OH)D measured 2-weekly and dietary intake and safety markers 4-weekly. Results Thirty healthy adults were randomised to two treatment groups: big patch and small patch. mean age was 36 years (20-68 years) with a 63% female to 37% male split. Patches differed in size but contained identical ingredients including 30 000 IU cholecalciferol. Physical and blood safety markers remained stable, within normal clinical parameters, and with no clinically meaningful changes throughout. Five big patch participants experienced skin irritation, which was mild and occasional for three, but continuous for two leading to patch withdrawal. There were no skin reactions in small patch group. average, serum 25(OH)D levels increased by +14 nmol/L (SD 11.63, range, -4 to 40 nmol/L) between baseline and week 8, with no significant differences between patch sizes. There was a shift in overall vitamin D status between baseline and week 8 (23% deficient (<30 nmol/L) decreasing to 0%, and normal (>50 nmol/L) increasing from 37% to 70% at week 8). Conclusion Based on these results, long-term (8 weeks) application of patented transdermal vitamin D patches was found to be safe. There may be minor skin tolerance issues with big patches for some, which appears to relate to patch size. Larger trials are warranted to explore the increase in vitamin D levels beyond 8 weeks. Trial registration number NCT04851990.
Collapse
|
13
|
Compartmental modeling of skin absorption and desorption kinetics: Donor solvent evaporation, variable diffusion/partition coefficients, and slow equilibration process within stratum corneum. Int J Pharm 2022; 623:121902. [PMID: 35691525 DOI: 10.1016/j.ijpharm.2022.121902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022]
Abstract
This work expands the recently developed compartmental model for skin transport to model variable diffusion and/or partition coefficients, and the presence of slow equilibration/slow binding kinetics within stratum corneum. The model was validated by comparing it with the diffusion model which was solved numerically using the finite element method. It was found that the new compartmental model predictions agreed well with that of the diffusion model, providing a sufficient number of compartments was used. The compartmental model was applied to two previously published experimental data sets: water penetration and desorption data and the finite dose dermal penetration of testosterone. Significant improvement of the fitting quality for all these data sets was achieved using the compartmental model.
Collapse
|
14
|
Hummer J, Birngruber T, Sinner F, Page L, Toner F, Roper CS, Moore DJ, Baker MB, Boncheva Bettex M. Optimization of topical formulations using a combination of in vitro methods to quantify the transdermal passive diffusion of drugs. Int J Pharm 2022; 620:121737. [PMID: 35413396 DOI: 10.1016/j.ijpharm.2022.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
This paper describes a new approach to the early-stage optimization of topical products and selection of lead formulation candidates. It demonstrates the application of open flow microperfusion in vitro in conjunction with the Franz diffusion cell to compare time-resolved, 24-hour profiles of diclofenac passive diffusion through all skin layers (including the skin barrier, dermis, and subcutis) resulting from nine topical formulations of different composition. The technique was successfully validated for in vitro sampling of diclofenac in interstitial fluid. A multi-compartmental model integrating the two datasets was analyzed and revealed that the passive diffusion of diclofenac through the dermis and subcutis does not correlate with its diffusion through the skin barrier and cannot be predicted using Franz diffusion cell data alone. The combined application of the two techniques provides a new, convenient tool for product development and selection enabling the comparison of topical formulation candidates and their impact on drug delivery through all skin layers. This approach can also generate the experimental data required to improve the robustness of mechanistic PBPK models, and when combined with clinical sampling via open flow microperfusion - for the development of better in vivo-in vitro correlative models.
Collapse
Affiliation(s)
- Joanna Hummer
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Thomas Birngruber
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Frank Sinner
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Leanne Page
- Charles River Laboratories, Tranent, Edinburgh, EH33 2NE, UK
| | - Frank Toner
- Charles River Laboratories, Tranent, Edinburgh, EH33 2NE, UK
| | - Clive S Roper
- Roper Toxicology Consulting Limited, 6 St Colme Street, Edinburgh, EH3 6AD, UK
| | - David J Moore
- GSK Consumer Healthcare, 184 Liberty Corner Rd, Warren, NJ 07059, USA
| | - Mark B Baker
- GSK Consumer Healthcare SARL, Route de l'Etraz 2, Case postale 1279, 1260 Nyon 1, Switzerland
| | - Mila Boncheva Bettex
- GSK Consumer Healthcare SARL, Route de l'Etraz 2, Case postale 1279, 1260 Nyon 1, Switzerland.
| |
Collapse
|
15
|
Kalil CLPV, Reinehr CPH, Bakos RM. Short-Term Follow-Up of a Randomized Controlled Trial of 0.5% and 5% 5-Fluorouracil After Microneedling for Treatment of Facial Actinic Keratoses. Dermatol Surg 2022; 48:293-298. [PMID: 35125436 DOI: 10.1097/dss.0000000000003301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Topical 5-fluorouracil (5-FU) is used to treat actinic keratosis, although side effects limit treatment. Microneedling might be a tool for reducing treatment duration. OBJECTIVE To evaluate microneedling to promote 5-FU delivery at different concentrations (0.5% and 5%) for actinic keratoses (AKs) treatment. METHODS Forty-four patients with facial AKs subjected to 1.0 mm microneedling on 1 side of the face were randomized into 5% 5-FU or 0.5% 5-FU groups. Evaluations of efficacy and safety were conducted on days 21 and 111. RESULTS Forty-four patients aged 47 to 85 years were enrolled. Complete clearance of AKs was similar within groups for the side of the face treated with microneedling and 5-FU and the side treated with 5-FU alone in both the 5% and 0.5% 5-FU groups. Microneedling and 5% 5-FU was superior to microneedling and 0.5% 5-FU to reduce AKs (p = .025). Microneedling and 5% 5-FU resulted in fewer adverse effects than 5% 5-FU alone (p = .011). CONCLUSION Topical 5% and 0.5% 5-FU delivery for 3 days after microneedling was effective for treating facial AKs and equivalent to 5% and 0.5% 5-FU alone for 15 days after 3 months of follow-up. Microneedling may potentiate 5-FU treatment, reducing treatment time without losing efficacy.
Collapse
Affiliation(s)
- Célia Luiza Petersen Vitello Kalil
- All authors are affiliated with the Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
16
|
Vlaia L, Olariu I, Muţ AM, Coneac G, Vlaia V, Anghel DF, Maxim ME, Stângă G, Dobrescu A, Suciu M, Szabadai Z, Lupuleasa D. New, Biocompatible, Chitosan-Gelled Microemulsions Based on Essential Oils and Sucrose Esters as Nanocarriers for Topical Delivery of Fluconazole. Pharmaceutics 2021; 14:75. [PMID: 35056971 PMCID: PMC8778122 DOI: 10.3390/pharmaceutics14010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023] Open
Abstract
Biocompatible gel microemulsions containing natural origin excipients are promising nanocarrier systems for the safe and effective topical application of hydrophobic drugs, including antifungals. Recently, to improve fluconazole skin permeation, tolerability and therapeutic efficacy, we developed topical biocompatible microemulsions based on cinnamon, oregano or clove essential oil (CIN, ORG or CLV) as the oil phase and sucrose laurate (D1216) or sucrose palmitate (D1616) as surfactants, excipients also possessing intrinsic antifungal activity. To follow up this research, this study aimed to improve the adhesiveness of respective fluconazole microemulsions using chitosan (a biopolymer with intrinsic antifungal activity) as gellator and to evaluate the formulation variables' effect (composition and concentration of essential oil, sucrose ester structure) on the gel microemulsions' (MEGELs) properties. All MEGELs were evaluated for drug content, pH, rheological behavior, viscosity, spreadability, in vitro drug release and skin permeation and antifungal activity. The results showed that formulation variables determined distinctive changes in the MEGELs' properties, which were nevertheless in accordance with official requirements for semisolid preparations. The highest flux and release rate values and large diameters of the fungal growth inhibition zone were produced by formulations MEGEL-FZ-D1616-CIN 10%, MEGEL-FZ-D1216-CIN 10% and MEGEL-FZ-D1616-ORG 10%. In conclusion, these MEGELs were demonstrated to be effective platforms for fluconazole topical delivery.
Collapse
Affiliation(s)
- Lavinia Vlaia
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.V.); (I.O.); (A.M.M.); (G.C.)
| | - Ioana Olariu
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.V.); (I.O.); (A.M.M.); (G.C.)
| | - Ana Maria Muţ
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.V.); (I.O.); (A.M.M.); (G.C.)
| | - Georgeta Coneac
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (L.V.); (I.O.); (A.M.M.); (G.C.)
| | - Vicenţiu Vlaia
- Department I—Organic Chemistry, Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Dan Florin Anghel
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Laboratory of Colloid Chemistry, 060021 Bucharest, Romania; (D.F.A.); (M.E.M.); (G.S.)
| | - Monica Elisabeta Maxim
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Laboratory of Colloid Chemistry, 060021 Bucharest, Romania; (D.F.A.); (M.E.M.); (G.S.)
| | - Gabriela Stângă
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Laboratory of Colloid Chemistry, 060021 Bucharest, Romania; (D.F.A.); (M.E.M.); (G.S.)
| | - Amadeus Dobrescu
- Department X Surgery 2–Surgery 2, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Maria Suciu
- Department II—Pharmacology and Pharmacotherapy, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Zoltan Szabadai
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timişoara, Romania;
| | - Dumitru Lupuleasa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| |
Collapse
|
17
|
A Promising Cutaneous Leishmaniasis Treatment with a Nanoemulsion-Based Cream with a Generic Pentavalent Antimony (Ulamina) as the Active Ingredient. COSMETICS 2021. [DOI: 10.3390/cosmetics8040115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Leishmania parasites are the etiological agents of Leishmaniasis, a tropical disease that affects around 15 million people in about 90 countries. The chosen therapy for this disease is based on antimony V compounds, such as meglumine antimoniate. It can be administered as a parenteral, subcutaneous or perilesional form as successive infiltrations with pre-established doses localized in the border of the granuloma that characterizes the wound of Cutaneous Leishmaniasis (CL). Herein, a topical pharmaceutical recipe, such as an emulsion, is proposed to eliminate the trauma caused by administering the medicine in parenteral form to the face or other difficult access zones. The evaluation of this vehicle was performed by analyzing parameters such as pH, viscosity, homogeneity and droplet size distribution. Furthermore, the effectiveness of the emulsion was proved by in vitro experiments using Strat-M synthetic membranes, showing that the transdermal passage of the antimonial complex is guaranteed. Moreover, complete healing of the wound has been attained in patients with CL, as shown with two clinical cases in this article.
Collapse
|
18
|
de Oliveira RS, Fantaus SS, Guillot AJ, Melero A, Beck RCR. 3D-Printed Products for Topical Skin Applications: From Personalized Dressings to Drug Delivery. Pharmaceutics 2021; 13:1946. [PMID: 34834360 PMCID: PMC8625283 DOI: 10.3390/pharmaceutics13111946] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 01/05/2023] Open
Abstract
3D printing has been widely used for the personalization of therapies and on-demand production of complex pharmaceutical forms. Recently, 3D printing has been explored as a tool for the development of topical dosage forms and wound dressings. Thus, this review aims to present advances related to the use of 3D printing for the development of pharmaceutical and biomedical products for topical skin applications, covering plain dressing and products for the delivery of active ingredients to the skin. Based on the data acquired, the important growth in the number of publications over the last years confirms its interest. The semisolid extrusion technique has been the most reported one, probably because it allows the use of a broad range of polymers, creating the most diverse therapeutic approaches. 3D printing has been an excellent field for customizing dressings, according to individual needs. Studies discussed here imply the use of metals, nanoparticles, drugs, natural compounds and proteins and peptides for the treatment of wound healing, acne, pain relief, and anti-wrinkle, among others. The confluence of 3D printing and topical applications has undeniable advantages, and we would like to encourage the research groups to explore this field to improve the patient's life quality, adherence and treatment efficacy.
Collapse
Affiliation(s)
- Rafaela Santos de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| | - Stephani Silva Fantaus
- Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estelles SN, 46100 Burjassot, Spain;
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estelles SN, 46100 Burjassot, Spain;
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
- Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| |
Collapse
|
19
|
Caldas AR, Faria MJ, Ribeiro A, Machado R, Gonçalves H, Gomes AC, Soares GM, Lopes CM, Lúcio M. Avobenzone-loaded and omega-3-enriched lipid formulations for production of UV blocking sunscreen gels and textiles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
El-Domyati M, Anbar TS, Yehia M, Abdel-Aziz RTA. The use of intralesional corticosteroid combined with narrowband ultraviolet B in vitiligo treatment: clinical, histopathologic, and histometric evaluation. Int J Dermatol 2021; 61:582-590. [PMID: 34643271 DOI: 10.1111/ijd.15940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Treatment of vitiligo with intralesional steroid (ILS) injections has shown to be successful in quite a few studies. It is a simple and safe treatment when used with caution with a better response in localized lesions. OBJECTIVES The aim of the present study is to explore the efficacy and safety of using different concentrations of intralesional corticosteroid combined with NB-UVB phototherapy in the treatment of non-segmental vitiligo (NSV) patients. METHODOLOGY Twenty patients with non-segmental vitiligo were subjected to different concentrations of ILS injections (triamcinolone acetonide); that was carried out monthly for six sessions. All patients were also subjected to twice-weekly sessions of NB-UVB for 6 months. Punch biopsy was taken from each patch before and at the end of treatment sessions. Each biopsy was stained with hematoxylin and eosin (H&E), Orcein, and Masson's trichrome stains. RESULTS There was a significant difference between all groups in their repigmentation response (P = 0.017). After treatment, the epidermal thickness (histometry) was decreased (epidermal atrophy), especially with concentrations of 2.5 and 5 mg/ml of intralesional triamcinolone acetonide injection with decreased and disorganized collagen fibers. CONCLUSION Intralesional corticosteroid injections combined with NB-UVB showed a good and well-tolerated therapeutic option for vitiligo. The concentrations of 0.625 and 1.25 mg/ml of triamcinolone acetonide were the safest with fewer side effects and complications. However, higher concentrations of 2.5 and 5 mg/ml were more effective but with more side effects.
Collapse
Affiliation(s)
- Moetaz El-Domyati
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Tag S Anbar
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Maysa Yehia
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Rasha T A Abdel-Aziz
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| |
Collapse
|
21
|
Gorantla S, Dabholkar N, Sharma S, Rapalli VK, Alexander A, Singhvi G. Chitosan-based microneedles as a potential platform for drug delivery through the skin: Trends and regulatory aspects. Int J Biol Macromol 2021; 184:438-453. [PMID: 34126145 DOI: 10.1016/j.ijbiomac.2021.06.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
Microneedles (MNs) fabrication using chitosan has gained significant interest due to its ability of film-forming, biodegradability, and biocompatibility, making it suitable for topical and transdermal drug delivery. The presence of amine and hydroxyl functional groups on chitosan permits the modification with tunable properties and functionalities. In this regard, chitosan is the preferred material for fabrication of MNs because it does not produce an immune response in the body and can be tailored as per required strength and functionalities. Therefore, many researchers have attempted to use chitosan as a drug delivery vehicle for hydrophilic drugs, peptides, and hormones. In 2020, the FDA has issued "Regulatory Considerations for Microneedling Products". This official guidance is a sign for future opportunities in the development of MNs. The present review focuses on properties, and modifications of chitosan used in the fabrication of MNs. The therapeutic and diagnostic applications of different types of chitosan-based MNs have been discussed. Further, the regulatory aspects of MN-based devices, and patents related to chitosan-based MNs are discussed.
Collapse
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Neha Dabholkar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Sudhanshu Sharma
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India.
| |
Collapse
|
22
|
Täubel J, Mazzetti A, Ferber G, Burch W, Fernandes S, Patel A, Spencer CS, Freier A, Graff C, Kanters JK, Camm J. A Phase 1 Study to Investigate the Effects of Cortexolone 17α-Propionate, Also Known as Clascoterone, on the QT Interval Using the Meal Effect to Demonstrate ECG Assay Sensitivity. Clin Pharmacol Drug Dev 2021; 10:572-581. [PMID: 33942574 PMCID: PMC8251570 DOI: 10.1002/cpdd.935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/17/2021] [Indexed: 11/12/2022]
Abstract
Cortexolone 17α‐propionate, also known as clascoterone, is a potent androgen receptor inhibitor intended for the topical treatment of skin diseases associated with androgenic pathway alterations. In nonclinical studies, cortexolone 17α‐propionate was found to have a weak inhibitory effect on human Ether‐à‐go‐go‐Related Gene (hERG) potassium channels, which are vital for normal electrical activity in the heart. When used in a cream formulation, little cortexolone 17α‐propionate is absorbed. However, the solution formulation developed for the treatment of androgenetic alopecia leads to a measurable systemic concentration and accumulation of the antiandrogen. This phase 1 study assessed the effect of cortexolone 17α‐propionate on the QTc interval using concentration‐effect analysis and the effect of a meal on QTc to confirm assay sensitivity. Thirty‐two volunteers were randomly assigned to receive the active drug or a matching vehicle as placebo. Participants were dosed twice daily on days 1 to 3 (225 mg applied topically as a 7.5% solution 12 hours apart) and once on day 4. Pharmacokinetic and electrocardiogram assessments were performed after supratherapeutic doses. Assay sensitivity was successfully confirmed by using the food effect on the QTc interval. The results of this concentration‐QTc analysis demonstrate that cortexolone 17α‐propionate and its metabolite/degradation product had no effect on the QTc interval in the concentration range tested.
Collapse
Affiliation(s)
- Jörg Täubel
- Richmond Pharmacology Ltd, London, United Kingdom.,St George's, University of London, London, United Kingdom
| | | | - Georg Ferber
- Statistik Georg Ferber GmbH, Riehen, Switzerland
| | | | | | - Avani Patel
- Richmond Pharmacology Ltd, London, United Kingdom
| | | | - Anne Freier
- Richmond Research Institute, St George's University, London, United Kingdom
| | - Claus Graff
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jørgen K Kanters
- Department of Biomedical Sciences, Kobenhavns Universitet, Copenhagen, Denmark
| | - John Camm
- St George's, University of London, London, United Kingdom
| |
Collapse
|
23
|
QbD-driven formulation development and evaluation of topical hydrogel containing ketoconazole loaded cubosomes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111548. [DOI: 10.1016/j.msec.2020.111548] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/13/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
|
24
|
Zhang B, Lai RC, Sim WK, Choo ABH, Lane EB, Lim SK. Topical Application of Mesenchymal Stem Cell Exosomes Alleviates the Imiquimod Induced Psoriasis-Like Inflammation. Int J Mol Sci 2021; 22:ijms22020720. [PMID: 33450859 PMCID: PMC7828312 DOI: 10.3390/ijms22020720] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Severe psoriasis, a chronic inflammatory skin disease is increasingly being effectively managed by targeted immunotherapy but long-term immunotherapy poses health risk and loss of response. Therefore, there is a need for alternative therapy strategies. Mesenchymal stem/stromal cell (MSC) exosomes are widely known for their potent immunomodulatory properties. Here we investigated if topically applied MSC exosomes could alleviate psoriasis-associated inflammation. Topically applied fluorescent exosomes on human skin explants were confined primarily to the stratum corneum with <1% input fluorescence exiting the explant over a 24-h period. Nevertheless, topically applied MSC exosomes in a mouse model of imiquimod (IMQ) psoriasis significantly reduced IL-17 and terminal complement activation complex C5b-9 in the mouse skin. MSC exosomes were previously shown to inhibit complement activation, specifically C5b-9 complex formation through CD59. Infiltration of neutrophils into the stratum corneum is characteristic of psoriasis and neutrophils are a major cellular source of IL-17 in psoriasis through the release of neutrophil extracellular traps (NETs). We propose that topically applied MSC exosomes inhibit complement activation in the stratum corneum and this alleviates IL-17 release by NETS from neutrophils that accumulate in and beneath the stratum corneum.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Molecular and Cell Biology (IMCB)—A*STAR, 8A Biomedical Grove, #05-39 Immunos, Singapore 138648, Singapore; (B.Z.); (R.C.L.); (W.K.S.)
| | - Ruenn Chai Lai
- Institute of Molecular and Cell Biology (IMCB)—A*STAR, 8A Biomedical Grove, #05-39 Immunos, Singapore 138648, Singapore; (B.Z.); (R.C.L.); (W.K.S.)
| | - Wei Kian Sim
- Institute of Molecular and Cell Biology (IMCB)—A*STAR, 8A Biomedical Grove, #05-39 Immunos, Singapore 138648, Singapore; (B.Z.); (R.C.L.); (W.K.S.)
| | - Andre Boon Hwa Choo
- Bioprocessing Technology Institute (BTI)—A*STAR, 20 Biopolis Way, Singapore 138668, Singapore;
| | - Ellen Birgit Lane
- Skin Research Institute of Singapore (SRIS)—A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore;
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)—A*STAR, 8A Biomedical Grove, #05-39 Immunos, Singapore 138648, Singapore; (B.Z.); (R.C.L.); (W.K.S.)
- Department of Surgery, YLL School of Medicine, National University of Singapore c/o NUHS Tower Block, Level 8. IE Kent Ridge Road, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6407-0161 or +65-6407-0150
| |
Collapse
|
25
|
Supe S, Takudage P. Methods for evaluating penetration of drug into the skin: A review. Skin Res Technol 2020; 27:299-308. [PMID: 33095948 DOI: 10.1111/srt.12968] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/20/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Skin being the largest organ of the human body plays a very important role in the permeation and penetration of the drug. In addition, the transdermal drug delivery system (TDDS) plays a major role in managing dermal infections and attaining sustained plasma drug concentration. Thus, evaluation of percutaneous penetration of the drug through the skin is important in developing TDDS for human use. MATERIAL AND METHODS Various techniques are used for getting the desired drug penetration, permeation, and absorption through the skin in managing these dermal disorders. The development of novel pharmaceutical dosage forms for dermal use is much explored in the current era. However, it is very important to evaluate these methods to determine the bioequivalence and risk of these topically applied drugs, which ultimately penetrate and are absorbed through the skin. RESULTS Currently, numerous skin permeation models are being developed and persuasively used in studying dermatopharmacokinetic (DPK) profile and various models have been developed, to evaluate the TDD which include ex vivo human skin, ex vivo animal skin, and artificial or reconstructed skin models. CONCLUSION This review discusses the general physiology of the skin, the physiochemical characteristics affecting particle penetration, understand the models used for human skin permeation studies and understanding their advantages, and disadvantages.
Collapse
Affiliation(s)
- Shibani Supe
- Department of Pharmaceutics, Institute of Chemical technology, Mumbai, India
| | | |
Collapse
|
26
|
Cheruvu HS, Liu X, Grice JE, Roberts MS. Modeling percutaneous absorption for successful drug discovery and development. Expert Opin Drug Discov 2020; 15:1181-1198. [DOI: 10.1080/17460441.2020.1781085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hanumanth Srikanth Cheruvu
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - Xin Liu
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - Jeffrey E. Grice
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - Michael S. Roberts
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
- University of South Australia School of Pharmacy and Medical Sciences, The Queen Elizabeth Hospital, Adelaide, Australia
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, Australia
| |
Collapse
|
27
|
An Q, Ni X, Liu D, Zhang Y, Cao Y. Preparation and evaluation of polymer-encapsulated UV filter nanocapsules with miniemulsion polymerization. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1775635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Qing An
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Xinjiong Ni
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Dong Liu
- Greenleaf Sci & Tech Group, Suzhou, China
| | - Yun Zhang
- Greenleaf Sci & Tech Group, Suzhou, China
| | - Yuhua Cao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
28
|
Modulation of Epidermal Growth Factor Release by Biopolymer-Coated Liposomes. J Pharm Sci 2020; 109:2294-2301. [PMID: 32311369 DOI: 10.1016/j.xphs.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/23/2023]
Abstract
This work describes the development of polysaccharide-coated liposomes to modulate the delivery of epidermal growth factor (EGF), with the aim to produce different EGF release profiles depending on the milieu of infected wounds. For this purpose, cationic liposomes were coated with one layer of sodium alginate (ALG) followed by one layer of chitosan (CHI) using the layer-by-layer (LbL) technique. The coated liposomes exhibited apparent hydrodynamic diameters of 278 ± 36 and 216 ± 96 nm for Lip-ALG and Lip-ALG-CHI, respectively. Thus, it appears that adding the CHI layer compacted the Lip-ALG one. The incorporation efficiency of EGF was a maximum of 55% for liposomes with a polymeric coating. In vitro release experiments showed that Lip-ALG-CHI exhibits a higher release rate constant under acidic pH conditions, resembling those of infected tissue. Using an ex vivo model of EGF release in porcine ear skin, these liposomes were found to accumulate in the epidermis. Thus, coated liposomes could represent a local EGF delivery mechanism to promote healing.
Collapse
|
29
|
Ahmadi-Ashtiani HR, Bishe P, Baldisserotto A, Buso P, Manfredini S, Vertuani S. Stem Cells as a Target for the Delivery of Active Molecules to Skin by Topical Administration. Int J Mol Sci 2020; 21:ijms21062251. [PMID: 32213974 PMCID: PMC7139485 DOI: 10.3390/ijms21062251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cutaneous stem cells, gained great attention in the field of regenerative medicine as a potential therapeutic target for the treatment of skin and hair disorders and various types of skin cancers. Cutaneous stem cells play a key role in several processes like the renovation of skin structures in the condition of homeostasis and after injuries, the hair follicle growth and the reconstruction and production of melanocytes. Thus, gaining effective access to skin stem cells for therapeutic interventions that often involve active molecules with non-favorable characteristics for skin absorption is a valuable achievement. The topical route with high patient compliance and several other benefits is gaining increasing importance in basic and applied research. However, the major obstacle for topical drug delivery is the effective barrier provided by skin against penetration of the vast majority of exogenous molecules. The research in this field is focusing more and more on new strategies to circumvent and pass this barrier effectively. In this article the existing approaches are discussed considering physical and chemical methods along with utilization of novel drug delivery systems to enhance penetration of drugs to the skin. In particular, attention has been paid to studies finalized to the delivery of molecules to cutaneous stem cells with the aim of transferring signals, modulating their metabolic program, inducing physiological modifications and stem cell gene therapy.
Collapse
Affiliation(s)
- Hamid-Reza Ahmadi-Ashtiani
- Department of Basic Sciences, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 194193311, Iran;
- Cosmetic, Hygienic and Detergent Sciences and Technology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 19419311, Iran
- Correspondence: (H.-R.A.-A.); (A.B.); Tel.: +39-21-226400515 (H.-R.A.-A.); +39-0532-455258 (A.B.)
| | - Parisa Bishe
- Department of Basic Sciences, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 194193311, Iran;
- Cosmetic, Hygienic and Detergent Sciences and Technology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 19419311, Iran
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (P.B.); (S.M.); (S.V.)
- Correspondence: (H.-R.A.-A.); (A.B.); Tel.: +39-21-226400515 (H.-R.A.-A.); +39-0532-455258 (A.B.)
| | - Piergiacomo Buso
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (P.B.); (S.M.); (S.V.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (P.B.); (S.M.); (S.V.)
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (P.B.); (S.M.); (S.V.)
| |
Collapse
|
30
|
Tungadi R, Wicita P. Formulation, optimization, and characterization of snakehead fish (Ophiocephalus Striatus) powder nanoemulgel. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000417337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
31
|
Zohdy HAEW, Hussein MS. Intradermal injection of Fluorouracil versus triamcinolone in localized vitiligo treatment. J Cosmet Dermatol 2019; 18:1430-1434. [PMID: 30444065 DOI: 10.1111/jocd.12820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/20/2018] [Accepted: 10/19/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Vitiligo is an autoimmune disease with a prevalence of 1.22% in Egypt. Intralesional steroids use in localized vitiligo treatment still a matter of debate. Fluorouracil was tried in vitiligo treatment after lesion dermabrasion, ablative laser, or micro-needling. The study aimed to compare the efficacy of intradermal fluorouracil and triamcinolone acetonide without any adjuvant therapy in localized vitiligo treatment. PATIENTS AND METHODS Sixty patients with localized non-segmental stable vitiligo were assigned randomly and equally into groups. Patients subjected to intradermal injection of either fluorouracil (50 mg/mL), triamcinolone acetonide (3 mg/mL) or an equal mixture of both drugs. All patients had four treatment sessions every 2 weeks were followed up for 6 months. RESULTS Intradermal fluorouracil showed the best overall improvement (median 52.27, IQR 36.25-68.18) when compared with triamcinolone (median 13.86, IQR 3.83-33.32) and the drug mixture (median 17.15, IQR 7.48-41.67). During follow-up, the vitiliginous patches continued to repigment for 6 months in fluorouracil and the drug mixture groups. The improvement stopped 1 month after the last session in the triamcinolone group. CONCLUSION The intradermal fluorouracil injection is an effective treatment of localized vitiligo. The intradermal steroid has a short-acting therapeutic effect, but the mixture of drugs added no therapeutic effect.
Collapse
|
32
|
He X, Sun J, Zhuang J, Xu H, Liu Y, Wu D. Microneedle System for Transdermal Drug and Vaccine Delivery: Devices, Safety, and Prospects. Dose Response 2019; 17:1559325819878585. [PMID: 31662709 PMCID: PMC6794664 DOI: 10.1177/1559325819878585] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
Microneedle (MN) delivery system has been greatly developed to deliver drugs into the skin painlessly, noninvasively, and safety. In the past several decades, various types of MNs have been developed by the newer producing techniques. Briefly, as for the morphologically, MNs can be classified into solid, coated, dissolved, and hollow MN, based on the transdermal drug delivery methods of "poke and patch," "coat and poke," "poke and release," and "poke and flow," respectively. Microneedles also have other characteristics based on the materials and structures. In addition, various manufacturing techniques have been well-developed based on the materials. In this review, the materials, structures, morphologies, and fabricating methods of MNs are summarized. A separate part of the review is used to illustrate the application of MNs to deliver vaccine, insulin, lidocaine, aspirin, and other drugs. Finally, the review ends up with a perspective on the challenges in research and development of MNs, envisioning the future development of MNs as the next generation of drug delivery system.
Collapse
Affiliation(s)
- Xiaoxiang He
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Jian Zhuang
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Hong Xu
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Ying Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing
University of Chemical Technology, Beijing, China
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing
University of Chemical Technology, Beijing, China
| |
Collapse
|
33
|
Binder L, Mazál J, Petz R, Klang V, Valenta C. The role of viscosity on skin penetration from cellulose ether-based hydrogels. Skin Res Technol 2019; 25:725-734. [PMID: 31062432 PMCID: PMC6850716 DOI: 10.1111/srt.12709] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/18/2019] [Accepted: 04/14/2019] [Indexed: 12/31/2022]
Abstract
Background The rheological properties of dermal drug delivery systems are of importance when designing new formulations. Viscosity not only affects features such as spreadability and skin feel, but may also affect the skin penetration of incorporated actives. Data on the latter aspect are controversial. Our objective was to elucidate the relation between viscosity and drug delivery performance of different model hydrogels assuming that enhanced microviscosity might delay drug release and penetration. Materials and Methods Hydrogels covering a broad viscosity range were prepared by adding either HPMC or HEC as gelling agents in different concentrations. To investigate the ability of the gels to deliver a model drug into the skin, sulphadiazine sodium was incorporated and its in vitro skin penetration was monitored using tape stripping/HPLC analysis and non‐invasive confocal Raman spectroscopy. Results The trends observed with the two different experimental setups were comparable. Drug penetration depths decreased slightly with increasing viscosity, suggesting slower drug release due to the increasingly dense gel networks. However, the total penetrated drug amounts were independent of the exact formulation viscosity. Conclusion Drug penetration was largely unaffected by hydrogel viscosity. Moderately enhanced viscosity is advisable when designing cellulose ether hydrogels to allow for convenient application.
Collapse
Affiliation(s)
- Lisa Binder
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Julia Mazál
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Romana Petz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Victoria Klang
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.,Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', University of Vienna, Vienna, Austria
| | - Claudia Valenta
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.,Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Colombo S, Harmankaya N, Water JJ, Bohr A. Exploring the potential for rosacea therapeutics of siRNA dispersion in topical emulsions. Exp Dermatol 2019; 28:261-269. [DOI: 10.1111/exd.13881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/10/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Affiliation(s)
| | - Necati Harmankaya
- Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | | | - Adam Bohr
- Umbed Pharmaceuticals; Frederiksberg Denmark
- Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
35
|
Development of Pranoprofen Loaded Nanostructured Lipid Carriers to Improve Its Release and Therapeutic Efficacy in Skin Inflammatory Disorders. NANOMATERIALS 2018; 8:nano8121022. [PMID: 30544628 PMCID: PMC6316124 DOI: 10.3390/nano8121022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/24/2018] [Accepted: 12/01/2018] [Indexed: 12/27/2022]
Abstract
Pranoprofen (PF)-loaded nanostructured lipid carriers (NLCs), prepared using a high-pressure homogenization method, have been optimized and characterized to improve the biopharmaceutical profile of the drug. The optimized PF-NLCs exhibited physicochemical characteristics and morphological properties that were suitable for dermal application. Stability assays revealed good physical stability, and the release behavior of PF from these NLCs showed a sustained release pattern. Cell viability results revealed no toxicity. Ex vivo human skin permeation studies in Franz diffusion cells were performed to determine the influence of different skin penetration enhancers (pyrrolidone, decanol, octanoic acid, nonane, menthone, squalene, linoleic acid, and cineol) on skin penetration and retention of PF, being the highest dermal retention in the presence of linoleic acid. The selected formulations of NLCs exhibited a high retained amount of PF in the skin and no systemic effects. In vivo mice anti-inflammatory efficacy studies showed a significant reduction in dermal oedema. NLCs containing linoleic acid presented better anti-inflammatory efficacy by decreasing the production of interleukins in keratinocytes and monocytes. The biomechanical properties of skin revealed an occlusive effect and no hydration power. No signs of skin irritancy in vivo were detected. According to these results, dermal PF-NLCs could be an effective system for the delivery and controlled release of PF, improving its dermal retention, with reduced dermal oedema as a possible effect of this drug.
Collapse
|
36
|
Imaging the distribution of skin lipids and topically applied compounds in human skin using mass spectrometry. Sci Rep 2018; 8:16683. [PMID: 30420715 PMCID: PMC6232133 DOI: 10.1038/s41598-018-34286-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
The barrier functions of skin against water loss, microbial invasion and penetration of xenobiotics rely, in part, on the spatial distribution of the biomolecular constituents in the skin structure, particularly its horny layer (stratum corneum). However, all skin layers are important to describe normal and dysfunctional skin conditions, and to develop adapted therapies or skin care products. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) combined with scanning electron microscopy (SEM) was used to image the spatial distribution of a variety of molecular species, from stratum corneum down to dermis, in cross-section samples of human abdominal skin. The results demonstrate the expected localization of ceramide and saturated long-chain fatty acids in stratum corneum (SC) and cholesterol sulfate in the upper part of the viable epidermis. The localization of exogenous compounds is demonstrated by the detection and imaging of carvacrol (a constituent of oregano or thyme essential oil) and ceramide, after topical application onto ex vivo human skin. Carvacrol showed pronounced accumulation to triglyceride-containing structures in the deeper parts of dermis. In contrast, the exogenous ceramide was found to be localized in SC. Furthermore, the complementary character of this approach with classical ex vivo skin absorption analysis methods is demonstrated.
Collapse
|
37
|
D’Angelo Costa GM, Sales de Oliveira Pinto CA, Rodrigues Leite-Silva V, Rolim Baby A, Robles Velasco MV. Is Vitamin D 3 Transdermal Formulation Feasible? An Ex Vivo Skin Retention and Permeation. AAPS PharmSciTech 2018; 19:2418-2425. [PMID: 29869312 DOI: 10.1208/s12249-018-1065-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/11/2018] [Indexed: 12/27/2022] Open
Abstract
Vitamin D3 supplementation is important to prevent and treat hypovitaminosis that is a worldwide public health issue. Most types of supplementation are by oral route or fortification foods. The alternative route must be investigated, as transdermal route, for people with fat malabsorption or other diseases that impair the absorption of vitamin D3. This study focused on verifying the feasibleness of vitamin D3 skin retention and permeation with the presence of chemical penetration enhancers (soybean lecithin, isopropyl palmitate, propylene glycol, ethoxydiglycol, and cereal alcohol) at different pharmaceutical forms (gel and cream) through a human skin. The integrity of skin was evaluated by transepidermal water loss (TEWL) during the skin retention and permeation test. The combination of chemical penetration enhancers presented in cream did not compromise the skin, different from the gel that association of cereal alcohol and propylene glycol compromised the skin in 24 h. Gel formulation showed vitamin D3 detection at stratum corneum in 4 h and at epidermis and dermis in 24 h. Vitamin D3 demonstrated an affinity with the vehicle in the cream formulation and was detected at the skin surface. No active was found at receptor fluid for both formulations. In conclusion, the vitamin D3 did not indicate feasibleness for transdermal use probably due to its physical-chemical characteristics such as high lipophilicity since it was not permeated through a human skin. Nevertheless, the transdermal route should be continuously investigated with less lipophilic derivates of vitamin D3 and with different combination of penetration enhancers.
Collapse
|
38
|
Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130:90-112. [PMID: 30149885 PMCID: PMC6588191 DOI: 10.1016/j.addr.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyal N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Bonnel D, Legouffe R, Eriksson AH, Mortensen RW, Pamelard F, Stauber J, Nielsen KT. MALDI imaging facilitates new topical drug development process by determining quantitative skin distribution profiles. Anal Bioanal Chem 2018; 410:2815-2828. [PMID: 29546543 DOI: 10.1007/s00216-018-0964-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 01/10/2023]
Abstract
Generation of skin distribution profiles and reliable determination of drug molecule concentration in the target region are crucial during the development process of topical products for treatment of skin diseases like psoriasis and atopic dermatitis. Imaging techniques like mass spectrometric imaging (MSI) offer sufficient spatial resolution to generate meaningful distribution profiles of a drug molecule across a skin section. In this study, we use matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to generate quantitative skin distribution profiles based on tissue extinction coefficient (TEC) determinations of four different molecules in cross sections of human skin explants after topical administration. The four drug molecules: roflumilast, tofacitinib, ruxolitinib, and LEO 29102 have different physicochemical properties. In addition, tofacitinib was administrated in two different formulations. The study reveals that with MALDI-MSI, we were able to observe differences in penetration profiles for both the four drug molecules and the two formulations and thereby demonstrate its applicability as a screening tool when developing a topical drug product. Furthermore, the study reveals that the sensitivity of the MALDI-MSI techniques appears to be inversely correlated to the drug molecules' ability to bind to the surrounding tissues, which can be estimated by their Log D values. Graphical abstract.
Collapse
Affiliation(s)
- David Bonnel
- ImaBiotech SAS, Parc Eurasanté, 885 Avenue Eugène Avinée, 59120, Loos, France
| | - Raphaël Legouffe
- ImaBiotech SAS, Parc Eurasanté, 885 Avenue Eugène Avinée, 59120, Loos, France
| | | | | | - Fabien Pamelard
- ImaBiotech SAS, Parc Eurasanté, 885 Avenue Eugène Avinée, 59120, Loos, France
| | - Jonathan Stauber
- ImaBiotech SAS, Parc Eurasanté, 885 Avenue Eugène Avinée, 59120, Loos, France.,ImaBiotech Corp, 44 Manning Road Unit 3, Billerica, MA, 01821, USA
| | - Kim T Nielsen
- LEO Pharma A/S, Industriparken 55, 2750, Ballerup, Denmark.
| |
Collapse
|
40
|
Čuříková BA, Procházková K, Filková B, Diblíková P, Svoboda J, Kováčik A, Vávrová K, Zbytovská J. Simplified stratum corneum model membranes for studying the effects of permeation enhancers. Int J Pharm 2017; 534:287-296. [PMID: 29061325 DOI: 10.1016/j.ijpharm.2017.10.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 01/10/2023]
Abstract
The activity of transdermal permeation enhancers is usually evaluated in vitro on human or animal skin, but skin samples can be hard to source and highly variable. To provide a more consistent basis for evaluating the activity of permeation enhancers, we prepared relatively simple and inexpensive artificial membranes that imitate the stratum corneum (SC) lipid matrix. Our membranes were composed of stearic acid, cholesterol, cholesterol sulfate and a ceramide (CER) component consisting of N-2-hydroxystearoyl phytosphingosine (CER[AP]) and/or N-stearoyl phytosphingosine (CER[NP]). First, the permeation of theophylline (TH) and indomethacin (IND) through these membranes was compared with their permeation through porcine skin. Because the mixed CER[AP]/[NP] membrane gave the closest results to skin, this membrane was then used to test the effects of two permeation enhancers: N-dodecyl azepan-2-one (Azone) and (S)-N-acetylproline dodecyl ester (L-Pro2). Both enhancers significantly increased the flux of TH and IND through the skin and, even more markedly, through the lipid membrane, L-Pro2 having a stronger effect than Azone. Thus, our simplified model of the SC lipid membrane based on phytosphingosine CERs appears to be suitable for mimicking skin permeation.
Collapse
Affiliation(s)
- Barbora Amélie Čuříková
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Kamila Procházková
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Barbora Filková
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Petra Diblíková
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Jan Svoboda
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Andrej Kováčik
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jarmila Zbytovská
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Technická 5, 166 28, Prague, Czech Republic; Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
41
|
Combination of MALDI-MSI and cassette dosing for evaluation of drug distribution in human skin explant. Anal Bioanal Chem 2017; 409:4993-5005. [DOI: 10.1007/s00216-017-0443-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 12/30/2022]
|
42
|
Andréo MA, Rufino IM, Ubaldo DCODO, Herbst EB, Silva HDTD, Oliveira PGD, Ferrari M, Rosa PCP, Lopes PS, Leite-Silva VR. Performance evaluation of Cryo Laser Phoresis technique as biophysical method to promote diclofenac sodium cutaneous perfusion. BRAZ J PHARM SCI 2016. [DOI: 10.1590/s1984-82502016000100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Aiming to alter and/or improve permeation of active compounds in the skin, many strategies have been developed, including biophysical methods. One of the physical absorption techniques, currently known as Cryo Laser Phoresis (CLP), consists of an apparatus that emits radiation on polar or nonpolar molecules of the active substance, resulting in faster penetration when in comparison to the standard topical application. The goal of this work was to evaluate the efficacy of a method that proposes to increase cutaneous permeation of diclofenac sodium by using CLP technique. The influence on permeation was evaluated ex vivo, using Franz cell and human skin obtained from cosmetic surgery. The results were evaluated using statistical methods and data exploratory analysis: clusters, k-means and Principal Component Analysis. The results showed a larger increase in the concentration of diclofenac sodium in the dermis with the use of laser. In all samples (with or without laser application) it was observed that skin surface showed an amount of diclofenac sodium and that there was no active passage to the receptor liquid, suggesting that diclofenac sodium was not absorbed. These results indicate that CLP, when used under the conditions described in this study, is able to increase diclofenac sodium penetration and its retention into deeper layers.
Collapse
|
43
|
Laszlo JA, Evans KO, Compton DL. Stability of a liposomal formulation containing lipoyl or dihydrolipoyl acylglycerides. J Liposome Res 2014; 24:304-12. [PMID: 24646435 DOI: 10.3109/08982104.2014.899367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT The acylglycerides of lipoic and dihydrolipoic acids may serve as slow-release sources for cutaneous delivery of these antioxidants when formulated in a liposomal vehicle. OBJECTIVE Testing was conducted to determine the storage stability of lipoyl glycerides in phospholipid-based liposomes. MATERIALS AND METHODS Lipoyl glycerides prepared by transesterification of lipoic acid with high oleic sunflower oil were incorporated into unilamellar liposomes comprised of soy phosphatidylcholine (soyPC) or dioleoylphosphatidylcholine (DOPC). RESULTS Lipoyl glycerides were stable in soyPC at 4 °C (90% remaining after five weeks) and decayed with a half-life (t(½)) of 14 d at 40 °C. In contrast, lipoyl glycerides embedded in DOPC were completely stable for four weeks at 40 °C. Dihydrolipoyl glycerides in soyPC converted to lipoyl glycerides at 4 °C (t(½) = 14 d) over four weeks, and much more rapidly so at 40 °C (t(½) = 1 d). A hydroperoxide accumulation analysis indicated that lipoyl glycerides and dihydrolipoyl glycerides were modified or degraded while suppressing autoxidation of the polyunsaturated fatty acids present in soyPC. Dynamic light scattering measurements found that liposomes containing lipoyl glycerides or dihydrolipoyl glycerides did not undergo significant size changes for at least 48 d, indicating that inclusion of the lipoic acid derivatives did not induce vesicle aggregation. DISCUSSION/CONCLUSION Substitution of the soyPC with DOPC, which is not readily subject to autoxidation, provided a much more stable storage environment for lipoyl glycerides. These findings confirm the expectation that phospholipid liposomes need to be oxidatively stable vehicles for dermal delivery of lipoic acid derivatives.
Collapse
Affiliation(s)
- Joseph A Laszlo
- Renewable Product Technology, USDA-Agricultural Research Service, National Center for Agricultural Utilization Research , Peoria, IL , USA
| | | | | |
Collapse
|
44
|
Sjövall P, Greve TM, Clausen SK, Moller K, Eirefelt S, Johansson B, Nielsen KT. Imaging of distribution of topically applied drug molecules in mouse skin by combination of time-of-flight secondary ion mass spectrometry and scanning electron microscopy. Anal Chem 2014; 86:3443-52. [PMID: 24568123 DOI: 10.1021/ac403924w] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the development of topical drugs intended for local effects in the skin, one of the major challenges is to achieve drug penetration through the external barrier of the skin, stratum corneum, and secure exposure to the viable skin layers. Mass spectrometric imaging offers an opportunity to study drug penetration in a variety of skin models by mapping the spatial distribution in different skin layers after topical application of the drug. In this study, we used time-of-flight secondary ion mass spectrometry (TOF-SIMS) and scanning electron microscopy (SEM) to image the distribution of three drug molecules in skin tissue cross sections of inflamed mouse ear. The three compounds, roflumilast, tofacitinib, and ruxolitinib, were topically administered to the mouse ears, which were subsequently cryosectioned and thawed for the analyses. The results reveal that the combination of TOF-SIMS and SEM was beneficial for interpretation of drug distribution. SEM identified the different skin layers, while spatial distributions of all three compounds could be visualized by TOF-SIMS, showing that the drug was primarily distributed into, or on the top of, the stratum corneum. Imaging of endogenous skin components like cholesterol, phospholipids, ceramides, and free fatty acids showed distributions in good agreement with the literature. One limitation of the TOF-SIMS method is sensitivity, typically allowing for analysis in the millimolar range rather than the pharmacologically relevant micromolar range. However, the data presented demonstrate the potential of the technique for studying the penetration of drugs with different physicochemical properties in skin.
Collapse
Affiliation(s)
- Peter Sjövall
- SP Technical Research Institute of Sweden , Post Office Box 857, SE-50115 Borås, Sweden
| | | | | | | | | | | | | |
Collapse
|