1
|
Cloos AS, Pollet H, Stommen A, Maja M, Lingurski M, Brichard B, Lambert C, Henriet P, Pierreux C, Pyr dit Ruys S, Van Der Smissen P, Vikkula M, Gatto L, Martin M, Brouillard P, Vertommen D, Tyteca D. Splenectomy improves erythrocyte functionality in spherocytosis based on septin abundance, but not maturation defects. Blood Adv 2023; 7:4705-4720. [PMID: 36753606 PMCID: PMC10468371 DOI: 10.1182/bloodadvances.2022009114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Splenectomy improves the clinical parameters of patients with hereditary spherocytosis, but its potential benefit to red blood cell (RBC) functionality and the mechanism behind this benefit remain largely overlooked. Here, we compared 7 nonsplenectomized and 13 splenectomized patients with mutations in the β-spectrin or the ankyrin gene. We showed that hematological parameters, spherocyte abundance, osmotic fragility, intracellular calcium, and extracellular vesicle release were largely but not completely restored by splenectomy, whereas cryohemolysis was not. Affected RBCs exhibited decreases in β-spectrin and/or ankyrin contents and slight alterations in spectrin membrane distribution, depending on the mutation. These modifications were found in both splenectomized and nonsplenectomized patients and poorly correlated with RBC functionality alteration, suggesting additional impairments. Accordingly, we found an increased abundance of septins, small guanosine triphosphate-binding cytoskeletal proteins. Septins-2, -7, and -8 but not -11 were less abundant upon splenectomy and correlated with the disease severity. Septin-2 membrane association was confirmed by immunolabeling. Except for cryohemolysis, all parameters of RBC morphology and functionality correlated with septin abundance. The increased septin content might result from RBC maturation defects, as evidenced by (1) the decreased protein 4.2 and Rh-associated glycoprotein content in all patient RBCs, (2) increased endoplasmic reticulum remnants and endocytosis proteins in nonsplenectomized patients, and (3) increased lysosomal and mitochondrial remnants in splenectomized patients. Our study paves the way for a better understanding of the involvement of septins in RBC membrane biophysical properties. In addition, the lack of restoration of septin-independent cryohemolysis by splenectomy may call into question its recommendation in specific cases.
Collapse
Affiliation(s)
- Anne-Sophie Cloos
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Hélène Pollet
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Amaury Stommen
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Mauriane Maja
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Maxime Lingurski
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Bénédicte Brichard
- Pediatric Hematology & Oncology Unit, Saint-Luc Hospital, UCLouvain, Brussels, Belgium
| | | | - Patrick Henriet
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Christophe Pierreux
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Sébastien Pyr dit Ruys
- PHOS Unit & MASSPROT Proteomics Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | - Miikka Vikkula
- Human Molecular Genetics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Manon Martin
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Pascal Brouillard
- Human Molecular Genetics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Didier Vertommen
- PHOS Unit & MASSPROT Proteomics Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
2
|
Abstract
Asplenia (the congenital or acquired absence of the spleen) and hyposplenism (defective spleen function) are common causes of morbidity and mortality. The spleen is a secondary lymphoid organ that is responsible for the regulation of immune responses and blood filtration. Hence, asplenia or hyposplenism increases susceptibility to severe and invasive infections, especially those sustained by encapsulated bacteria (namely, Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae type b). Asplenia is predominantly due to splenectomy for either traumatic events or oncohaematological conditions. Hyposplenism can be caused by several conditions, including haematological, infectious, autoimmune and gastrointestinal disorders. Anatomical disruption of the spleen and depletion of immune cells, especially IgM memory B cells, seem to be predominantly responsible for the clinical manifestations. Early recognition of hyposplenism and proper management of asplenia are warranted to prevent overwhelming post-splenectomy infections through vaccination and antibiotic prophylaxis. Although recommendations are available, the implementation of vaccination strategies, including more effective and immunogenic vaccines, is needed. Additionally, screening programmes for early detection of hyposplenism in high-risk patients and improvement of patient education are warranted.
Collapse
|
3
|
Génevaux F, Bertsch A, Wiederer L, Eber S. [Congenital hemolytic anemias due to erythrocyte membrane and enzyme defects]. Dtsch Med Wochenschr 2022; 147:1266-1276. [PMID: 36126925 DOI: 10.1055/a-1767-8423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Erythrocyte membrane and enzyme defects are the most common cause of congenital hemolytic anemias in the Central European population. Diagnostics include erythrocyte morphology, special biochemical tests such as osmotic fragility (AGLT) and EMA. For enzymopenic hemolytic anemias, cost-effective biochemical analysis remains the gold standard, supplemented by molecular genetic diagnostics when appropriate. Therapeutically, near complete splenectomy reduces hemolysis significantly for spherocytosis. The residual spleen at least provides a considerable phagocytic function and better response to immunisation and by inference possibly better protection against severe post-splenectomy infection. For pyruvate kinase deficiency, which is not so rare, a new molecular therapy (Mitapivat) is currently being introduced. In G6PD deficiency, there are very few drugs that cause hemolytic crisis. Sudden onset of hemoglobinuria is an early important hallmark of severe hemolytic crisis in G6PD deficiency and these patients should be hospitalized. Aplastic crises in the setting of parvovirus B19 infection occur in all congenital hemolytic anemias. Transfusion is not preventable in most cases. Iron-excreting treatment is required in the rare patients in need of chronic transfusion.
Collapse
|
4
|
Casale M, Di Maio N, Verde V, Scianguetta S, Di Girolamo MG, Tomeo R, Roberti D, Misso S, Perrotta S. Response to Measles, Mumps and Rubella (MMR) Vaccine in Transfusion-Dependent Patients. Vaccines (Basel) 2021; 9:vaccines9060561. [PMID: 34072263 PMCID: PMC8227230 DOI: 10.3390/vaccines9060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Measles, mumps and rubella (MMR) still determine significant morbidity and mortality, although a highly effective vaccine is available. Postponing the MMR vaccination until 6 months after the last red blood cell (RBC) transfusion is recommended, but this delay is incompatible with chronic transfusions. The present study aimed at investigating the impact of blood transfusions on the immunogenicity of the MMR vaccine. In this observational study, a group of 45 transfusion- dependent (TD) patients was compared to 24 non-transfusion-dependent (NTD) patients. Immunity to measles was achieved in 35 (78%) TD and 21 (88%) NTD subjects (p = 0.7), to mumps in 36 (80%) TD and 21 (88%) NTD subjects (p = 0.99), and to rubella in 40 (89%) TD and 23 (96%) NTD subjects (p = 0.99). No significant difference was observed in the number of non-immune individuals or those with doubtful protection between the two groups (p > 0.05). The mean IgG value, assayed in 50 pre-storage leukoreduced RBC units, was 0.075 ± 0.064 mg/mL, ten times lower than the level assumed in blood units and considered detrimental to the immune response in TD patients. This work shows a favorable response to MMR vaccination in TD and NTDT patients and paves the way for further larger studies assessing the impact of chronic transfusions on vaccine response.
Collapse
Affiliation(s)
- Maddalena Casale
- Department of Women, Child and General and Specialized Surgery, University “Luigi Vanvitelli”, 80138 Naples, Italy; (N.D.M.); (V.V.); (S.S.); (D.R.); (S.P.)
- Correspondence: ; Tel.: +39-08-1566-5698
| | - Nicoletta Di Maio
- Department of Women, Child and General and Specialized Surgery, University “Luigi Vanvitelli”, 80138 Naples, Italy; (N.D.M.); (V.V.); (S.S.); (D.R.); (S.P.)
| | - Valentina Verde
- Department of Women, Child and General and Specialized Surgery, University “Luigi Vanvitelli”, 80138 Naples, Italy; (N.D.M.); (V.V.); (S.S.); (D.R.); (S.P.)
| | - Saverio Scianguetta
- Department of Women, Child and General and Specialized Surgery, University “Luigi Vanvitelli”, 80138 Naples, Italy; (N.D.M.); (V.V.); (S.S.); (D.R.); (S.P.)
| | | | - Rita Tomeo
- Immuno-Transfusion Service, ASL Caserta, 81031 Aversa, Italy; (M.G.D.G.); (R.T.); (S.M.)
| | - Domenico Roberti
- Department of Women, Child and General and Specialized Surgery, University “Luigi Vanvitelli”, 80138 Naples, Italy; (N.D.M.); (V.V.); (S.S.); (D.R.); (S.P.)
| | - Saverio Misso
- Immuno-Transfusion Service, ASL Caserta, 81031 Aversa, Italy; (M.G.D.G.); (R.T.); (S.M.)
| | - Silverio Perrotta
- Department of Women, Child and General and Specialized Surgery, University “Luigi Vanvitelli”, 80138 Naples, Italy; (N.D.M.); (V.V.); (S.S.); (D.R.); (S.P.)
| |
Collapse
|
5
|
Single-cell O 2 exchange imaging shows that cytoplasmic diffusion is a dominant barrier to efficient gas transport in red blood cells. Proc Natl Acad Sci U S A 2020; 117:10067-10078. [PMID: 32321831 PMCID: PMC7211990 DOI: 10.1073/pnas.1916641117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Blood is routinely tested for gas-carrying capacity (total hemoglobin), but this cannot determine the speed at which red blood cells (RBCs) exchange gases. Such information is critical for evaluating the physiological fitness of RBCs, which have very limited capillary transit times (<1 s) for turning over substantial volumes of gas. We developed a method to quantify gas exchange in individual RBCs and used it to show that restricted diffusion, imposed by hemoglobin crowding, is a major barrier to gas flows. Consequently, hematological disorders manifesting a change in cell shape or hemoglobin concentration have uncharted implications on gas exchange, which we illustrate using inherited anemias. With its single-cell resolution, the method can identify physiologically inferior subpopulations, providing a clinically useful appraisal of blood quality. Disorders of oxygen transport are commonly attributed to inadequate carrying capacity (anemia) but may also relate to inefficient gas exchange by red blood cells (RBCs), a process that is poorly characterized yet assumed to be rapid. Without direct measurements of gas exchange at the single-cell level, the barriers to O2 transport and their relationship with hematological disorders remain ill defined. We developed a method to track the flow of O2 in individual RBCs by combining ultrarapid solution switching (to manipulate gas tension) with single-cell O2 saturation fluorescence microscopy. O2 unloading from RBCs was considerably slower than previously estimated in acellular hemoglobin solutions, indicating the presence of diffusional barriers in intact cells. Rate-limiting diffusion across cytoplasm was demonstrated by osmotically induced changes to hemoglobin concentration (i.e., diffusive tortuosity) and cell size (i.e., diffusion pathlength) and by comparing wild-type cells with hemoglobin H (HbH) thalassemia (shorter pathlength and reduced tortuosity) and hereditary spherocytosis (HS; expanded pathlength). Analysis of the distribution of O2 unloading rates in HS RBCs identified a subpopulation of spherocytes with greatly impaired gas exchange. Tortuosity imposed by hemoglobin was verified by demonstrating restricted diffusivity of CO2, an acidic gas, from the dissipative spread of photolytically uncaged H+ ions across cytoplasm. Our findings indicate that cytoplasmic diffusion, determined by pathlength and tortuosity, is a major barrier to efficient gas handling by RBCs. Consequently, changes in RBC shape and hemoglobin concentration, which are common manifestations of hematological disorders, can have hitherto unrecognized and clinically significant implications on gas exchange.
Collapse
|
6
|
Casale M, Cozzolino F, Scianguetta S, Pucci P, Monaco V, Sanchez G, Santoro C, Rubino R, Cannata M, Perrotta S. Hb Vanvitelli: A new unstable α-globin chain variant causes undiagnosed chronic haemolytic anaemia when co-inherited with deletion − α3.7. Clin Biochem 2019; 74:80-85. [DOI: 10.1016/j.clinbiochem.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/26/2023]
|
7
|
Nobre CS, Silva JA, Jácomo RH, Nery LFA, Barra GB. Flow Cytometric Analysis of Erythrocytes Osmotic Fragility in Hereditary Spherocytosis: A Case-Controlled Study Evaluating the Best Anticoagulant, Sample Pre-Treatment and NaCl Concentration for Reliable Screening of this Red Blood Cell Membrane Disorder. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 94:910-917. [PMID: 30328264 DOI: 10.1002/cyto.b.21733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/22/2018] [Accepted: 07/15/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The cytometric flow osmotic fragility test (FC-OFT) was recently introduced. However, the test is still under development and some variables have not yet been fully tested. METHODS The osmotic fragility of hereditary spherocytosis (HS) cases and healthy controls were evaluated by FC-OFT using a series of tubes containing decreasing concentrations of NaCl. The analyses were executed in fresh and incubated (37°C for 24 h) blood samples anticoagulated with EDTA and heparin. The percentages of residual red blood cells were used to plot the osmotic fragility curves. The OF curves of each tested condition were compared using the median corpuscular fragility (MCF). ROC curve analyses identified the most accurate NaCl concentrations for differentiation between HS cases and healthy controls. RESULTS FC-OFT curves assumed a sigmoidal dose-response shape and the MCF of cases and controls were different in all instances. MCF comparisons revealed that incubation and anticoagulant have major and minor effects on the FC-OFT, respectively. One hundred percent of sensitivity and specificity was obtained from 5.5 to 6.0 g/L of NaCl in EDTA-treated fresh blood, from 6.0 to 8.0 g/L of NaCl in EDTA-treated incubated blood, and in none of the tested NaCl concentration in heparinized blood. CONCLUSIONS EDTA is the anticoagulant of choice for the assay. Incubation at 37°C for 24 h increased its diagnostic capability. The most reliable NaCl concentration for the discrimination of HS case from controls was 6.0 g/L of NaCL in fresh EDTA-treated blood, and was 7.5 g/L of NaCl in incubated EDTA-treated blood. © 2018 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Camila Santos Nobre
- Sabin Laboratory, Brasília, Federal District, Brazil.,Post-Graduation of Health Science, University of Brasília, Brasília, Brazil
| | | | | | | | - Gustavo Barcelos Barra
- Sabin Laboratory, Brasília, Federal District, Brazil.,Post-Graduation of Health Science, University of Brasília, Brasília, Brazil
| |
Collapse
|
8
|
Bonnet S, Guédon A, Ribeil JA, Suarez F, Tamburini J, Gaujoux S. Indications and outcome of splenectomy in hematologic disease. J Visc Surg 2017; 154:421-429. [PMID: 28757383 DOI: 10.1016/j.jviscsurg.2017.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Splenectomy is part of the therapeutic arsenal for benign or malignant hematological disorders that constitute the main indication for elective splenectomy. With the development of minimally invasive approaches, and in particular, laparoscopy, as well as the advent of monoclonal antibody therapy, the indications and the outcomes of splenectomy for hematologic disease have changed in recent years. Nonetheless, splenectomy has its place in hemoglobinopathies and hemolytic diseases, improves thrombocytopenia in refractory immune thrombocytopenic purpura, can reverse sequelae linked to voluminous splenomegaly secondary to myelofibrosis, or can be used for diagnostic purposes or for splenomegaly in lymphoproliferative syndromes.
Collapse
Affiliation(s)
- S Bonnet
- Service de chirurgie digestive, hépatobiliaire et endocrinienne, hôpital Cochin, université Paris Descartes, AP-HP, 75014 Paris, France
| | - A Guédon
- Service de chirurgie digestive, hépatobiliaire et endocrinienne, hôpital Cochin, université Paris Descartes, AP-HP, 75014 Paris, France
| | - J-A Ribeil
- Université Paris Descartes, 75005 Paris, France; Département de biothérapie, hôpital universitaire Necker-Enfants-Malades, AP-HP, 75015 Paris, France
| | - F Suarez
- Université Paris Descartes, 75005 Paris, France; Service d'hématologie adulte, hôpital universitaire Necker-Enfants-Malades, AP-HP, Paris, France
| | - J Tamburini
- Service d'hématologie clinique, hôpital Cochin, AP-HP, 75014 Paris, France; Université Paris Descartes, 75005 Paris, France
| | - S Gaujoux
- Service de chirurgie digestive, hépatobiliaire et endocrinienne, hôpital Cochin, université Paris Descartes, AP-HP, 75014 Paris, France; Université Paris Descartes, 75005 Paris, France.
| |
Collapse
|
9
|
Huang HM, Bauer DC, Lelliott PM, Greth A, McMorran BJ, Foote SJ, Burgio G. A novel ENU-induced ankyrin-1 mutation impairs parasite invasion and increases erythrocyte clearance during malaria infection in mice. Sci Rep 2016; 6:37197. [PMID: 27848995 PMCID: PMC5111128 DOI: 10.1038/srep37197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
Genetic defects in various red blood cell (RBC) cytoskeletal proteins have been long associated with changes in susceptibility towards malaria infection. In particular, while ankyrin (Ank-1) mutations account for approximately 50% of hereditary spherocytosis (HS) cases, an association with malaria is not well-established, and conflicting evidence has been reported. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced ankyrin mutation MRI61689 that gives rise to two different ankyrin transcripts: one with an introduced splice acceptor site resulting a frameshift, the other with a skipped exon. Ank-1(MRI61689/+) mice exhibit an HS-like phenotype including reduction in mean corpuscular volume (MCV), increased osmotic fragility and reduced RBC deformability. They were also found to be resistant to rodent malaria Plasmodium chabaudi infection. Parasites in Ank-1(MRI61689/+) erythrocytes grew normally, but red cells showed resistance to merozoite invasion. Uninfected Ank-1(MRI61689/+) erythrocytes were also more likely to be cleared from circulation during infection; the “bystander effect”. This increased clearance is a novel resistance mechanism which was not observed in previous ankyrin mouse models. We propose that this bystander effect is due to reduced deformability of Ank-1(MRI61689/+) erythrocytes. This paper highlights the complex roles ankyrin plays in mediating malaria resistance.
Collapse
Affiliation(s)
- Hong Ming Huang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, ACT, Australia
| | | | - Patrick M Lelliott
- IFReC Research Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Andreas Greth
- synaps studios GmbH, Rebmoosweg 73A, CH-5200 Brugg, Switzerland
| | - Brendan J McMorran
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, ACT, Australia
| | - Simon J Foote
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, ACT, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, ACT, Australia
| |
Collapse
|
10
|
Topological Structures and Membrane Nanostructures of Erythrocytes after Splenectomy in Hereditary Spherocytosis Patients via Atomic Force Microscopy. Cell Biochem Biophys 2016; 74:365-71. [PMID: 27557951 PMCID: PMC5009150 DOI: 10.1007/s12013-016-0755-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/14/2016] [Indexed: 01/22/2023]
Abstract
Hereditary spherocytosis is an inherited red blood cell membrane disorder resulting from mutations of genes encoding erythrocyte membrane and cytoskeletal proteins. Few equipments can observe the structural characteristics of hereditary spherocytosis directly expect for atomic force microscopy In our study, we proved atomic force microscopy is a powerful and sensitive instrument to describe the characteristics of hereditary spherocytosis. Erythrocytes from hereditary spherocytosis patients were small spheroidal, lacking a well-organized lattice on the cell membrane, with smaller cell surface particles and had reduced valley to peak distance and average cell membrane roughness vs. those from healthy individuals. These observations indicated defects in the certain cell membrane structural proteins such as α- and β-spectrin, ankyrin, etc. Until now, splenectomy is still the most effective treatment for symptoms relief for hereditary spherocytosis. In this study, we further solved the mysteries of membrane nanostructure changes of erythrocytes before and after splenectomy in hereditary spherocytosis by atomic force microscopy. After splenectomy, the cells were larger, but still spheroidal-shaped. The membrane ultrastructure was disorganized and characterized by a reduced surface particle size and lower than normal Ra values. These observations indicated that although splenectomy can effectively relieve the symptoms of hereditary spherocytosis, it has little effect on correction of cytoskeletal membrane defects of hereditary spherocytosis. We concluded that atomic force microscopy is a powerful tool to investigate the pathophysiological mechanisms of hereditary spherocytosis and to monitor treatment efficacy in clinical practices. To the best of our knowledge, this is the first report to study hereditary spherocytosis with atomic force microscopy and offers important mechanistic insight into the underlying role of splenectomy.
Collapse
|
11
|
Hargrave JM, Capdeville MJ, Duncan AE, Smith MM, Mauermann WJ, Gallagher PG. CASE 5—2016Complex Congenital Cardiac Surgery in an Adult Patient With Hereditary Spherocytosis: Avoidance of Massive Hemolysis Associated With Extracorporeal Circulation in the Presence of Red Blood Cell Fragility. J Cardiothorac Vasc Anesth 2016; 30:800-8. [DOI: 10.1053/j.jvca.2015.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 11/11/2022]
|
12
|
Jin S, Wu Y. A report of two cases of splenectomy in children younger than two years old with hereditary spherocytosis. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2015. [DOI: 10.1016/j.epsc.2014.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Alaarg A, Schiffelers RM, van Solinge WW, van Wijk R. Red blood cell vesiculation in hereditary hemolytic anemia. Front Physiol 2013; 4:365. [PMID: 24379786 PMCID: PMC3862113 DOI: 10.3389/fphys.2013.00365] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022] Open
Abstract
Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias.
Collapse
Affiliation(s)
- Amr Alaarg
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht Utrecht, Netherlands ; Department of Pharmaceutical Sciences, Utrecht University Utrecht, Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht Utrecht, Netherlands ; Department of Pharmaceutical Sciences, Utrecht University Utrecht, Netherlands
| | - Wouter W van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht Utrecht, Netherlands
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
14
|
Abstract
Primary abnormalities of the erythrocyte membrane are characterized by clinical, laboratory, and genetic heterogeneity. Among this group, hereditary spherocytosis patients are more likely to experience symptomatic anemia. Treatment of hereditary spherocytosis with splenectomy is curative in most patients. Growing recognition of the long-term risks of splenectomy has led to re-evaluation of the role of splenectomy. Management guidelines acknowledge these considerations and recommend discussion between health care providers, patient, and family. The hereditary elliptocytosis syndromes are the most common primary disorders of erythrocyte membrane proteins. However, most elliptocytosis patients are asymptomatic and do not require therapy.
Collapse
MESH Headings
- Anemia, Hemolytic, Congenital/blood
- Anemia, Hemolytic, Congenital/complications
- Anemia, Hemolytic, Congenital/surgery
- Elliptocytosis, Hereditary/blood
- Elliptocytosis, Hereditary/complications
- Elliptocytosis, Hereditary/surgery
- Erythrocyte Membrane/metabolism
- Erythrocytes
- Humans
- Spherocytosis, Hereditary/blood
- Spherocytosis, Hereditary/genetics
- Spherocytosis, Hereditary/surgery
- Splenectomy/adverse effects
- Splenectomy/methods
Collapse
Affiliation(s)
- Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, PO Box 208064, New Haven, CT 06520-8064, USA.
| |
Collapse
|
15
|
Laparoscopic splenectomy in patients with hereditary spherocytosis: report on 12 consecutive cases. Updates Surg 2013; 65:277-81. [DOI: 10.1007/s13304-013-0236-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|
16
|
Da Costa L, Galimand J, Fenneteau O, Mohandas N. Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. Blood Rev 2013; 27:167-78. [PMID: 23664421 DOI: 10.1016/j.blre.2013.04.003] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hereditary spherocytosis and elliptocytosis are the two most common inherited red cell membrane disorders resulting from mutations in genes encoding various red cell membrane and skeletal proteins. Red cell membrane, a composite structure composed of lipid bilayer linked to spectrin-based membrane skeleton is responsible for the unique features of flexibility and mechanical stability of the cell. Defects in various proteins involved in linking the lipid bilayer to membrane skeleton result in loss in membrane cohesion leading to surface area loss and hereditary spherocytosis while defects in proteins involved in lateral interactions of the spectrin-based skeleton lead to decreased mechanical stability, membrane fragmentation and hereditary elliptocytosis. The disease severity is primarily dependent on the extent of membrane surface area loss. Both these diseases can be readily diagnosed by various laboratory approaches that include red blood cell cytology, flow cytometry, ektacytometry, electrophoresis of the red cell membrane proteins, and mutational analysis of gene encoding red cell membrane proteins.
Collapse
Affiliation(s)
- Lydie Da Costa
- AP-HP, Service d'Hématologie Biologique, Hôpital R. Debré, Paris, F-75019, France.
| | | | | | | |
Collapse
|
17
|
Duan X, Imai T, Chou B, Tu L, Himeno K, Suzue K, Hirai M, Taniguchi T, Okada H, Shimokawa C, Hisaeda H. Resistance to malaria by enhanced phagocytosis of erythrocytes in LMP7-deficient mice. PLoS One 2013; 8:e59633. [PMID: 23527234 PMCID: PMC3602297 DOI: 10.1371/journal.pone.0059633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/15/2013] [Indexed: 12/18/2022] Open
Abstract
General cellular functions of proteasomes occur through protein degradation, whereas the specific function of immunoproteasomes is the optimization of antigen processing associated with MHC class I. We and others previously reported that deficiency in subunits of immunoproteasomes impaired the activation of antigen-specific CD8+ T cells, resulting in higher susceptibility to tumor and infections. We demonstrated that CD8+ T cells contributed to protection against malaria parasites. In this study, we evaluated the role of immunoproteasomes in the course of infection with rodent malaria parasites. Unexpectedly, Plasmodium yoelii infection of mice deficient in LMP7, a catalytic subunit of immunoproteasomes, showed lower parasite growth in the early phase of infection and lower lethality compared with control mice. The protective characteristics of LMP7-deficient mice were not associated with enhanced immune responses, as the mutant mice showed comparable or diminished activation of innate and acquired immunity. The remarkable difference was observed in erythrocytes instead of immune responses. Parasitized red blood cells (pRBCs) purified from LMP7-deficient mice were more susceptible to phagocytosis by macrophages compared with those from wild-type mice. The susceptibility of pRBC to phagocytosis appeared to correlate with deformity of the membrane structures that were only observed after infection. Our results suggest that RBCs of LMP7-deficient mice were more likely to deform in response to infection with malaria parasites, presumably resulting in higher susceptibility to phagocytosis and in the partial resistance to malaria.
Collapse
Affiliation(s)
- Xuefeng Duan
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Imai
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Bin Chou
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Liping Tu
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunisuke Himeno
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutomo Suzue
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Makoto Hirai
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Tomoyo Taniguchi
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroko Okada
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Chikako Shimokawa
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hajime Hisaeda
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, Japan
- * E-mail:
| |
Collapse
|