1
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Xu Z, Li W, Dong X, Chen Y, Zhang D, Wang J, Zhou L, He G. Precision medicine in colorectal cancer: Leveraging multi-omics, spatial omics, and artificial intelligence. Clin Chim Acta 2024; 559:119686. [PMID: 38663471 DOI: 10.1016/j.cca.2024.119686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths. Recent advancements in genomic technologies and analytical approaches have revolutionized CRC research, enabling precision medicine. This review highlights the integration of multi-omics, spatial omics, and artificial intelligence (AI) in advancing precision medicine for CRC. Multi-omics approaches have uncovered molecular mechanisms driving CRC progression, while spatial omics have provided insights into the spatial heterogeneity of gene expression in CRC tissues. AI techniques have been utilized to analyze complex datasets, identify new treatment targets, and enhance diagnosis and prognosis. Despite the tumor's heterogeneity and genetic and epigenetic complexity, the fusion of multi-omics, spatial omics, and AI shows the potential to overcome these challenges and advance precision medicine in CRC. The future lies in integrating these technologies to provide deeper insights and enable personalized therapies for CRC patients.
Collapse
Affiliation(s)
- Zishan Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Wei Li
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453000, China
| | - Xiangyang Dong
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Yingying Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
| | - Dan Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Jingnan Wang
- Xinxiang Medical University SanQuan Medical College, Xinxiang 453003, China
| | - Lin Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Guoyang He
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China.
| |
Collapse
|
3
|
Lindhorst PH, Hummon AB. Proteomics of Colorectal Cancer: Tumors, Organoids, and Cell Cultures-A Minireview. Front Mol Biosci 2020; 7:604492. [PMID: 33363210 PMCID: PMC7758474 DOI: 10.3389/fmolb.2020.604492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Proteomics, the study of the complete protein composition of a sample, is an important field for cancer research. Changes in the proteome can serve as a biomarker of cancer or lead to the development of a targeted therapy. This minireview will focus on mass spectrometry-based proteomics studies applied specifically to colorectal cancer, particularly the variety of cancer model systems used, including tumor samples, two-dimensional (2D) and three-dimensional (3D) cell cultures such as spheroids and organoids. A thorough discussion of the application of these systems will accompany the review of the literature, as each provides distinct advantages and disadvantages for colorectal cancer research. Finally, we provide conclusions and future perspectives for the application of these model systems to cancer research as a whole.
Collapse
Affiliation(s)
- Philip H Lindhorst
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States.,The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Effects of SpoIVA on the formation of spores and crystal protein in Bacillus thuringiensis. Microbiol Res 2020; 239:126523. [PMID: 32575022 DOI: 10.1016/j.micres.2020.126523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 11/20/2022]
Abstract
In addition to forming spores, Bacillus thuringiensis (Bt) 4.0718 can produce toxins, insecticidal crystal protein (ICP) and vegetative insecticidal protein (Vip). The Bt spoIVA was successfully knocked out by gene recombination and was shown to inhibit sporulation. The mutant strain also exhibited significantly decreased growth and crystal formation, which inhibited spore formation and partially reduced the rate of crystal synthesis. The 50 % lethal concentrations (LC50) values of Bt 4.0718, replacement, complementation and multi-copy mutant strains against the fourth larval stage of H. armigera was determined as 5.422, 6.776, 6.223 and 5.018 μg/mL, respectively. A total of 1814 proteins were identified through isobaric tags for relative and absolute protein (iTRAQ), with 41 and 54 up and downregulated proteins observed. Gene ontology enrichment analysis showed that differentially expressed proteins were primarily involved in the biological process and molecular function. Quantitative real-time PCR analysis confirmed that 9 differential expressed genes exhibited a positive correlation between changes at transcriptional and translational levels. The results of this study provide a basis for further studies of the metabolic regulatory network of spores and crystal protein formation. Moreover, they can be used to ecologically safe insecticide of farmland production because the constructed Bt spoIVA mutants did not produce spores.Provides new ideas for the targeted improvement and application of environmentally friendly spore-free strains.
Collapse
|
5
|
Jans C, Boleij A. The Road to Infection: Host-Microbe Interactions Defining the Pathogenicity of Streptococcus bovis/Streptococcus equinus Complex Members. Front Microbiol 2018; 9:603. [PMID: 29692760 PMCID: PMC5902542 DOI: 10.3389/fmicb.2018.00603] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises several species inhabiting the animal and human gastrointestinal tract (GIT). They match the pathobiont description, are potential zoonotic agents and technological organisms in fermented foods. SBSEC members are associated with multiple diseases in humans and animals including ruminal acidosis, infective endocarditis (IE) and colorectal cancer (CRC). Therefore, this review aims to re-evaluate adhesion and colonization abilities of SBSEC members of animal, human and food origin paired with genomic and functional host-microbe interaction data on their road from colonization to infection. SBSEC seem to be a marginal population during GIT symbiosis that can proliferate as opportunistic pathogens. Risk factors for human colonization are considered living in rural areas and animal-feces contact. Niche adaptation plays a pivotal role where Streptococcus gallolyticus subsp. gallolyticus (SGG) retained the ability to proliferate in various environments. Other SBSEC members have undergone genome reduction and niche-specific gene gain to yield important commensal, pathobiont and technological species. Selective colonization of CRC tissue is suggested for SGG, possibly related to increased adhesion to cancerous cell types featuring enhanced collagen IV accessibility. SGG can colonize, proliferate and may shape the tumor microenvironment to their benefit by tumor promotion upon initial neoplasia development. Bacteria cell surface structures including lipotheichoic acids, capsular polysaccharides and pilus loci (pil1, pil2, and pil3) govern adhesion. Only human blood-derived SGG contain complete pilus loci and other disease-associated surface proteins. Rumen or feces-derived SGG and other SBSEC members lack or harbor mutated pili. Pili also contribute to binding to fibrinogen upon invasion and translocation of cells from the GIT into the blood system, subsequent immune evasion, human contact system activation and collagen-I-binding on damaged heart valves. Only SGG carrying complete pilus loci seem to have highest IE potential in humans with significant links between SGG bacteremia/IE and underlying diseases including CRC. Other SBSEC host-microbe combinations might rely on currently unknown mechanisms. Comparative genome data of blood, commensal and food isolates are limited but required to elucidate the role of pili and other virulence factors, understand pathogenicity mechanisms, host specificity and estimate health risks for animals, humans and food alike.
Collapse
Affiliation(s)
- Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Annemarie Boleij
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
6
|
Waidely E, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Alpha-l-Fucosidase Immunoassay for Early Detection of Hepatocellular Carcinoma. Anal Chem 2017; 89:9459-9466. [DOI: 10.1021/acs.analchem.7b02284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Eric Waidely
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| | - Abdulrahman O. Al-Youbi
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | - Abdulaziz S. Bashammakh
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammad S. El-Shahawi
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | - Roger M. Leblanc
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| |
Collapse
|
7
|
Waidely E, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Study of the Alpha-l-Fucosidase Langmuir Monolayer at the Air–Water Interface. J Phys Chem B 2016; 120:12843-12849. [DOI: 10.1021/acs.jpcb.6b09094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric Waidely
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| | - Abdulrahman O. Al-Youbi
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | - Abdulaziz S. Bashammakh
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammad S. El-Shahawi
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | - Roger M. Leblanc
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| |
Collapse
|
8
|
Waidely E, Al-Yuobi ARO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Serum protein biomarkers relevant to hepatocellular carcinoma and their detection. Analyst 2015; 141:36-44. [PMID: 26606739 DOI: 10.1039/c5an01884f] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most recurrent and lethal cancers worldwide. The low survival rate of this particular strain of carcinoma is largely due to the late stages at which it is diagnosed. Tumorigenesis of hepatocellular carcinoma is most frequently detected through ultrasonography, magnetic resonance imaging and computerized tomography scans, however, these methods are poor for detection of early tumor development. This review presents alternative hepatocellular carcinoma detection techniques through the use of protein and enzyme/isozyme biomarkers. The detection methods used to determine the serum levels of α-fetoprotein (AFP), glypican-3 (GPC3), Golgi protein 73 (GP73), α-L-fucosidase (AFU), des-γ-carboxyprothrombin (DCP), γ-glutamyl transferase (GGT) and squamous cell carcinoma antigen (SCCA) are presented and each marker's respective validity in the diagnosis of hepatocellular carcinoma is evaluated.
Collapse
Affiliation(s)
- Eric Waidely
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL 33146, USA.
| | | | | | | | | |
Collapse
|
9
|
Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles. Int J Pharm 2014; 473:286-95. [DOI: 10.1016/j.ijpharm.2014.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023]
|
10
|
Shin J, Kim HJ, Kim G, Song M, Woo SJ, Lee ST, Kim H, Lee C. Discovery of melanotransferrin as a serological marker of colorectal cancer by secretome analysis and quantitative proteomics. J Proteome Res 2014; 13:4919-31. [PMID: 25216327 DOI: 10.1021/pr500790f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To discover serological colorectal cancer (CRC) markers, we analyzed cell line secretome to gather proteins of higher potential to be secreted from tissues into circulation. A total of 898 human proteins were identified, of which 62.2% were predicted to be released or shed from cells. The identified proteins were compared with tissue proteomes to find candidate proteins whose expressions were elevated in tumor tissues compared with normal tissues as revealed by (i) quantitative proteomic analysis based on cICAT and mTRAQ or (ii) data mining of immunohistochemical images piled in Human Protein Atlas database. By applying various stringent criteria, 11 candidate proteins were selected. Among these, we validated an significant increase (p = 0.0018) of melanotransferrin (TRFM) at the plasma level of CRC patients through Western blotting, using 130 plasma samples containing 30 healthy controls, 80 CRC patients, and 20 patients of other diseases. Finally, we measured the expression level of TRFM in 325 plasma samples containing 77 healthy controls and 228 CRC patients (34.6 ± 4.2 ng/mL and 67.0 ± 6.4 ng/mL, p < 0.0001) through ELISA and demonstrated the area under the receiver operating characteristic curve of 0.723 (p < 0.0001) with a 92.5% specificity, 48.2% sensitivity, and 95.7% positive predictive value. Furthermore, unlike CEA and PAI-1, up-regulation of TRFM in pathological stages I & II groups compared with stages III & IV groups lead us to expect the use TRFM for early-stage diagnosis of CRC. In this study, we suggest TRFM as a potential serological marker for CRC and expect our discovery strategy to help identify highly cancer-specific and body-fluid-accessible biomarkers.
Collapse
Affiliation(s)
- Jihye Shin
- Center for Theragnosis, Korea Institute of Science and Technology , Hwarangno 14-gil 5, Seongbuk, Seoul 136-791, Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Discovery and validation of new potential biomarkers for early detection of colon cancer. PLoS One 2014; 9:e106748. [PMID: 25215506 PMCID: PMC4162553 DOI: 10.1371/journal.pone.0106748] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Accurate detection of characteristic proteins secreted by colon cancer tumor cells in biological fluids could serve as a biomarker for the disease. The aim of the present study was to identify and validate new serum biomarkers and demonstrate their potential usefulness for early diagnosis of colon cancer. METHODS The study was organized in three sequential phases: 1) biomarker discovery, 2) technical and biological validation, and 3) proof of concept to test the potential clinical use of selected biomarkers. A prioritized subset of the differentially-expressed genes between tissue types (50 colon mucosa from cancer-free individuals and 100 normal-tumor pairs from colon cancer patients) was validated and further tested in a series of serum samples from 80 colon cancer cases, 23 patients with adenoma and 77 cancer-free controls. RESULTS In the discovery phase, 505 unique candidate biomarkers were identified, with highly significant results and high capacity to discriminate between the different tissue types. After a subsequent prioritization, all tested genes (N = 23) were successfully validated in tissue, and one of them, COL10A1, showed relevant differences in serum protein levels between controls, patients with adenoma (p = 0.0083) and colon cancer cases (p = 3.2e-6). CONCLUSION We present a sequential process for the identification and further validation of biomarkers for early detection of colon cancer that identifies COL10A1 protein levels in serum as a potential diagnostic candidate to detect both adenoma lesions and tumor. IMPACT The use of a cheap serum test for colon cancer screening should improve its participation rates and contribute to decrease the burden of this disease.
Collapse
|
12
|
Wang K, Huang C, Nice EC. Proteomics, genomics and transcriptomics: their emerging roles in the discovery and validation of colorectal cancer biomarkers. Expert Rev Proteomics 2014; 11:179-205. [PMID: 24611605 DOI: 10.1586/14789450.2014.894466] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is the second most common cancer in females and the third in males. Since CRC is often diagnosed at an advanced stage when prognosis is poor, identification of biomarkers for early diagnosis is urgently required. Recent advances in proteomics, genomics and transcriptomics have facilitated high-throughput profiling of data generated from CRC-related genes and proteins, providing a window of information for biomarker discovery and validation. However, transfer of candidate biomarkers from bench to bedside remains a dilemma. In this review, we will discuss emerging proteomic technologies and highlight various sample types utilized for proteomics-based identification of CRC biomarkers. Moreover, recent breakthroughs in genomics and transcriptomics for the identification of CRC biomarkers, with particular emphasis on the merits of emerging methylomic and miRNAomic strategies, will be discussed. Integration of proteomics, genomics and transcriptomics will facilitate the discovery and validation of CRC biomarkers leading to the emergence of personalized medicine.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, 610041 , P.R. China
| | | | | |
Collapse
|
13
|
Cavia-Saiz M, Muñiz Rodríguez P, Llorente Ayala B, García-González M, Coma-Del Corral MJ, García Girón C. The role of plasma IDO activity as a diagnostic marker of patients with colorectal cancer. Mol Biol Rep 2014; 41:2275-9. [PMID: 24435977 DOI: 10.1007/s11033-014-3080-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 01/04/2014] [Indexed: 12/23/2022]
Abstract
High levels of indoleamine 2,3-dioxygenase (IDO) are involved in tumour escape mechanisms. The aim of this study is the evaluation of L-kynurenine of plasma as marker of diagnostic and prognostic in patients with colorectal cancer. The study included 78 patients with colorectal cancer, of whom 15 % were in stage I/II, 30 % in stage III, and 55 % in stage IV, and was compared with a control group of 70 healthy subjects. The receiver operating characteristic (ROC) curve analysis showed an area under the curve of 0.917, with a specificity of 100 % and with a sensitivity to detect cancer of the colon of 85.2 %, taking 1.83 μM as a cut-off point. The overall survival analysis also indicated that patients with low levels of L-kynurenine in plasma increased survival rate after 45 months of follow-up (P = 0.032). These results show that the plasma levels of L-kynurenine could be a good biomarker to differentiate individuals with colorectal cancer from healthy individuals.
Collapse
Affiliation(s)
- M Cavia-Saiz
- Research Unit, University Hospital of Burgos, Burgos, Spain,
| | | | | | | | | | | |
Collapse
|
14
|
Hudler P, Kocevar N, Komel R. Proteomic approaches in biomarker discovery: new perspectives in cancer diagnostics. ScientificWorldJournal 2014; 2014:260348. [PMID: 24550697 PMCID: PMC3914447 DOI: 10.1155/2014/260348] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/08/2013] [Indexed: 12/14/2022] Open
Abstract
Despite remarkable progress in proteomic methods, including improved detection limits and sensitivity, these methods have not yet been established in routine clinical practice. The main limitations, which prevent their integration into clinics, are high cost of equipment, the need for highly trained personnel, and last, but not least, the establishment of reliable and accurate protein biomarkers or panels of protein biomarkers for detection of neoplasms. Furthermore, the complexity and heterogeneity of most solid tumours present obstacles in the discovery of specific protein signatures, which could be used for early detection of cancers, for prediction of disease outcome, and for determining the response to specific therapies. However, cancer proteome, as the end-point of pathological processes that underlie cancer development and progression, could represent an important source for the discovery of new biomarkers and molecular targets for tailored therapies.
Collapse
Affiliation(s)
- Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Nina Kocevar
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Giri B, Dutta D. Improvement in the sensitivity of microfluidic ELISA through field amplified stacking of the enzyme reaction product. Anal Chim Acta 2013; 810:32-8. [PMID: 24439502 DOI: 10.1016/j.aca.2013.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 11/19/2022]
Abstract
In this article, we demonstrate a novel approach to enhancing the sensitivity of enzyme-linked immunosorbent assays (ELISA) through pre-concentration of the enzyme reaction product (resorufin/4-methylumbelliferone) in free solution. The reported pre-concentration was accomplished by transporting the resorufin/4-methylumbelliferone molecules produced in the ELISA process towards a high ionic-strength buffer stream in a microfluidic channel while applying a voltage drop across this merging region. A sharp change in the electric field around the junction of the two liquid streams was observed to abruptly slow down the negatively charged resorufin/4-methylumbelliferone species leading to the reported pre-concentration effect based on the field amplified stacking (FAS) technique. It has been shown that the resulting enhancement in the detectability of the enzyme reaction product significantly improves the signal-to-noise ratio in the system thereby reducing the smallest detectable analyte concentration in the ELISA method. Applying the above-described approach, we were able to detect mouse anti-BSA and human TNF-α at concentrations nearly 60-fold smaller than that possible on commercial microwell plates. For the human TNF-α sample, this improvement in assay sensitivity corresponded to a limit of detection (LOD) of 0.102pg mL(-1) using the FAS based microfluidic ELISA method as compared to 7.03pg mL(-1) obtained with the traditional microwell plate based approach. Moreover, because our ELISAs were performed in micrometer sized channels, they required sample volumes about two orders of magnitude smaller than that consumed in the latter case (1μL versus 100μL).
Collapse
Affiliation(s)
- Basant Giri
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA
| | - Debashis Dutta
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
16
|
Sethi MK, Thaysen-Andersen M, Smith JT, Baker MS, Packer NH, Hancock WS, Fanayan S. Comparative N-Glycan Profiling of Colorectal Cancer Cell Lines Reveals Unique Bisecting GlcNAc and α-2,3-Linked Sialic Acid Determinants Are Associated with Membrane Proteins of the More Metastatic/Aggressive Cell Lines. J Proteome Res 2013; 13:277-88. [DOI: 10.1021/pr400861m] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Manveen K. Sethi
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Joshua T. Smith
- Barnett
Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mark S. Baker
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nicolle H. Packer
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - William S. Hancock
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Barnett
Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Susan Fanayan
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
17
|
Zou X, Feng B, Dong T, Yan G, Tan B, Shen H, Huang A, Zhang X, Zhang M, Yang P, Zheng M, Zhang Y. Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis. J Proteomics 2013; 94:473-85. [DOI: 10.1016/j.jprot.2013.10.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/29/2013] [Accepted: 10/15/2013] [Indexed: 01/23/2023]
|
18
|
Hammoudi A, Song F, Reed KR, Jenkins RE, Meniel VS, Watson AJM, Pritchard DM, Clarke AR, Jenkins JR. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC). Biochem Biophys Res Commun 2013; 440:364-70. [PMID: 23998936 DOI: 10.1016/j.bbrc.2013.08.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/23/2013] [Indexed: 01/06/2023]
Abstract
Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC.
Collapse
Affiliation(s)
- Abeer Hammoudi
- Department of Gastroenterology, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3GE, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Choi JW, Liu H, Shin DH, Yu GI, Hwang JS, Kim ES, Yun JW. Proteomic and cytokine plasma biomarkers for predicting progression from colorectal adenoma to carcinoma in human patients. Proteomics 2013; 13:2361-74. [PMID: 23606366 DOI: 10.1002/pmic.201200550] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/28/2013] [Accepted: 03/30/2013] [Indexed: 12/12/2022]
Abstract
In the present study, we screened proteomic and cytokine biomarkers between patients with adenomatous polyps and colorectal cancer (CRC) in order to improve our understanding of the molecular mechanisms behind turmorigenesis and tumor progression in CRC. To this end, we performed comparative proteomic analysis of plasma proteins using a combination of 2DE and MS as well as profiled differentially regulated cytokines and chemokines by multiplex bead analysis. Proteomic analysis identified 11 upregulated and 13 downregulated plasma proteins showing significantly different regulation patterns with diagnostic potential for predicting progression from adenoma to carcinoma. Some of these proteins have not previously been implicated in CRC, including upregulated leucine-rich α-2-glycoprotein, hemoglobin subunit β, Ig α-2 chain C region, and complement factor B as well as downregulated afamin, zinc-α-2-glycoprotein, vitronectin, and α-1-antichymotrypsin. In addition, plasma levels of three cytokines/chemokines, including interleukin-8, interferon gamma-induced protein 10, and tumor necrosis factor α, were remarkably elevated in patients with CRC compared to those with adenomatous polyps. Although further clinical validation is required, these proteins and cytokines can be established as novel biomarkers for CRC and/or its progression from colon adenoma.
Collapse
Affiliation(s)
- Jung-Won Choi
- Department of Biotechnology, Daegu University, Kyungsan, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Recent advances in metabolomics in neurological disease, and future perspectives. Anal Bioanal Chem 2013; 405:8143-50. [DOI: 10.1007/s00216-013-7061-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/04/2013] [Accepted: 05/10/2013] [Indexed: 12/14/2022]
|
21
|
Fanayan S, Smith JT, Lee LY, Yan F, Snyder M, Hancock WS, Nice E. Proteogenomic analysis of human colon carcinoma cell lines LIM1215, LIM1899, and LIM2405. J Proteome Res 2013; 12:1732-42. [PMID: 23458625 DOI: 10.1021/pr3010869] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As part of the genome-wide and chromosome-centric human proteomic project (C-HPP), we have integrated shotgun proteomics approach and a genome-wide transcriptomic approach (RNA-Seq) of a set of human colon cancer cell lines (LIM1215, LIM1899 and LIM2405) that were selected to represent a wide range of pathological states of colorectal cancer. The combination of a standard proteomics approach (1D-gel electrophoresis coupled to LC/ion trap mass spectrometry) and RNA-Seq allowed us to exploit the greater depth of the transcriptomics measurement (∼ 9800 transcripts per cell line) versus the protein observations (∼ 1900 protein identifications per cell line). Conversely, the proteomics data were helpful in identifying both cancer associated proteins with differential expression patterns as well as protein networks and pathways which appear to be deregulated in these cell lines. Examples of potential markers include mortalin, nucleophosmin, ezrin, LASP1, alpha and beta forms of spectrin, exportin, the carcinoembryonic antigen family, EGFR and MET. Interaction analyses identified the large intermediate filament family, the protein folding network and adapter proteins in focal adhesion networks, which included the CDC42 and RHOA signaling pathways that may have potential for identifying phenotypic states representing poorly and moderately differentiated states of CRC, with or without metastases.
Collapse
Affiliation(s)
- Susan Fanayan
- Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW 2109, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Rodríguez-Suárez E, Whetton AD. The application of quantification techniques in proteomics for biomedical research. MASS SPECTROMETRY REVIEWS 2013; 32:1-26. [PMID: 22847841 DOI: 10.1002/mas.21347] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 06/01/2023]
Abstract
The systematic analysis of biological processes requires an understanding of the quantitative expression patterns of proteins, their interacting partners and their subcellular localization. This information was formerly difficult to accrue as the relative quantification of proteins relied on antibody-based methods and other approaches with low throughput. The advent of soft ionization techniques in mass spectrometry plus advances in separation technologies has aligned protein systems biology with messenger RNA, DNA, and microarray technologies to provide data on systems as opposed to singular protein entities. Another aspect of quantitative proteomics that increases its importance for the coming few years is the significant technical developments underway both for high pressure liquid chromatography and mass spectrum devices. Hence, robustness, reproducibility and mass accuracy are still improving with every new generation of instruments. Nonetheless, the methods employed require validation and comparison to design fit for purpose experiments in advanced protein analyses. This review considers the newly developed systematic protein investigation methods and their value from the standpoint that relative or absolute protein quantification is required de rigueur in biomedical research.
Collapse
|
23
|
Abstract
A newcomer to the -omics era, proteomics, is a broad instrument-intensive research area that has advanced rapidly since its inception less than 20 years ago. Although the 'wet-bench' aspects of proteomics have undergone a renaissance with the improvement in protein and peptide separation techniques, including various improvements in two-dimensional gel electrophoresis and gel-free or off-gel protein focusing, it has been the seminal advances in MS that have led to the ascension of this field. Recent improvements in sensitivity, mass accuracy and fragmentation have led to achievements previously only dreamed of, including whole-proteome identification, and quantification and extensive mapping of specific PTMs (post-translational modifications). With such capabilities at present, one might conclude that proteomics has already reached its zenith; however, 'capability' indicates that the envisioned goals have not yet been achieved. In the present review we focus on what we perceive as the areas requiring more attention to achieve the improvements in workflow and instrumentation that will bridge the gap between capability and achievement for at least most proteomes and PTMs. Additionally, it is essential that we extend our ability to understand protein structures, interactions and localizations. Towards these ends, we briefly focus on selected methods and research areas where we anticipate the next wave of proteomic advances.
Collapse
|
24
|
A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 2012; 10:575-82. [PMID: 22728587 DOI: 10.1038/nrmicro2819] [Citation(s) in RCA: 607] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer has long been considered a genetic disease. However, accumulating evidence supports the involvement of infectious agents in the development of cancer, especially in those organs that are continuously exposed to microorganisms, such as the large intestine. Recent next-generation sequencing studies of the intestinal microbiota now offer an unprecedented view of the aetiology of sporadic colorectal cancer and have revealed that the microbiota associated with colorectal cancer contains bacterial species that differ in their temporal associations with developing tumours. Here, we propose a bacterial driver-passenger model for microbial involvement in the development of colorectal cancer and suggest that this model be incorporated into the genetic paradigm of cancer progression.
Collapse
|
25
|
Abstract
Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues.
Collapse
Affiliation(s)
- Xin Xu
- Interdisciplinary Microsystems Group, Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
| | - Ke Liu
- Interdisciplinary Microsystems Group, Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
| | - Z. Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA
| |
Collapse
|
26
|
Coghlin C, Murray GI. Following the protein biomarker trail to colorectal cancer. COLORECTAL CANCER 2012. [DOI: 10.2217/crc.12.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Caroline Coghlin
- Department of Pathology, Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, UK
| | - Graeme I Murray
- Pathology, Division of Applied Medicine, School of Medicine & Dentistry, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
27
|
Boleij A, Tjalsma H. Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biol Rev Camb Philos Soc 2012; 87:701-30. [PMID: 22296522 DOI: 10.1111/j.1469-185x.2012.00218.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A healthy human body contains at least tenfold more bacterial cells than human cells and the most abundant and diverse microbial community resides in the intestinal tract. Intestinal health is not only maintained by the human intestine itself and by dietary factors, but is also largely supported by this resident microbial community. Conversely, however, a large body of evidence supports a relationship between bacteria, bacterial activities and human colorectal cancer. Symbiosis in this multifaceted organ is thus crucial to maintain a healthy balance within the host-diet-microbiota triangle and accordingly, changes in any of these three factors may drive a healthy situation into a state of disease. In this review, the factors that sustain health or drive this complex intestinal system into dysbiosis are discussed. Emphasis is on the role of the intestinal microbiota and related mechanisms that can drive the initiation and progression of sporadic colorectal cancer (CRC). These mechanisms comprise the induction of pro-inflammatory and pro-carcinogenic pathways in epithelial cells as well as the production of (geno)toxins and the conversion of pro-carcinogenic dietary factors into carcinogens. A thorough understanding of these processes will provide leads for future research and may ultimately aid in development of new strategies for CRC diagnosis and prevention.
Collapse
Affiliation(s)
- Annemarie Boleij
- Department of Laboratory Medicine, Nijmegen Institute for Infection, Inflammation and Immunity (N4i) & Radboud University Centre for Oncology (RUCO) of the Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | | |
Collapse
|
28
|
Pawa N, Arulampalam T, Norton JD. Screening for colorectal cancer: established and emerging modalities. Nat Rev Gastroenterol Hepatol 2011; 8:711-22. [PMID: 22045159 DOI: 10.1038/nrgastro.2011.205] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been estimated that >95% of cases of colorectal cancer (CRC) would benefit from curative surgery if diagnosis was made at an early or premalignant polyp stage of disease. Over the past 10 years, most developed nation states have implemented mass population screening programs, which are typically targeted at the older (at-risk) age group (>50-60 years old). Conventional screening largely relies on periodic patient-centric investigation, particularly involving colonoscopy and flexible sigmoidoscopy, or else on the fecal occult blood test. These methods are compromised by either low cost-effectiveness or limited diagnostic accuracy. Advances in the development of diagnostic molecular markers for CRC have yielded an expanding list of potential new screening modalities based on investigations of patient stool (for colonocyte DNA mutations, epigenetic changes or microRNA expression) or blood specimens (for plasma DNA mutations, epigenetic changes, heteroplasmic mitochondrial DNA mutations, leukocyte transcriptome profile, plasma microRNA expression or protein and autoantibody expression). In this Review, we present a critical evaluation of the performance data and relative merits of these various new potential methods. None of these molecular diagnostic methods have yet been evaluated beyond the proof-of-principle and pilot-scale study stage and it could be some years before they replace existing methods for population screening in CRC.
Collapse
Affiliation(s)
- Nikhil Pawa
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | | | | |
Collapse
|
29
|
Boleij A, Roelofs R, Danne C, Bellais S, Dramsi S, Kato I, Tjalsma H. Selective antibody response to Streptococcus gallolyticus pilus proteins in colorectal cancer patients. Cancer Prev Res (Phila) 2011; 5:260-5. [PMID: 22012878 DOI: 10.1158/1940-6207.capr-11-0321] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Streptococcus gallolyticus subsp. gallolyticus (previously called Streptococcus bovis biotype I) infections have long been associated with colorectal cancer (CRC). This work aimed to investigate the CRC-associated humoral immune response to four pilus proteins of this bacterium by newly developed ELISAs. Pilus proteins are interesting diagnostic targets as they are the building blocks of pilin-like structures that mediate bacterial virulence and are readily exposed to the host immune system upon infection. The presence of serum antibodies against these pilus proteins was evaluated in Dutch and American populations. These analyses showed that an immune response to these antigens was specific for clinical S. gallolyticus subsp. gallolyticus infections, but that increased serum antibody titers to multiple pilus proteins in single individuals were rarely observed. However, a multiplex approach based on antibody titers against any of these four antigens resulted in assay sensitivities between 16% and 43% for the detection of early-stage CRC. Together these findings underscore the potential of a multi-antigen approach to complement diagnosis of S. gallolyticus subsp. gallolyticus-associated CRC.
Collapse
Affiliation(s)
- Annemarie Boleij
- Department of Laboratory Medicine, Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Nijmegen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhang J, Song MQ, Zhu JS, Zhou Z, Xu ZP, Chen WX, Chen NW. Identification of Differentially-Expressed Proteins between Early Submucosal Non-Invasive and Invasive Colorectal Cancer Using 2D-DIGE and Mass Spectrometry. Int J Immunopathol Pharmacol 2011; 24:849-59. [PMID: 22230392 DOI: 10.1177/039463201102400404] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Early detection and diagnosis of colorectal cancer (CRC) are closely related to a better therapeutic outcome, and the five-year survival rate of early CRC is over 90%. Though endoscopic minimally invasive treatment has become a quick and effective therapy for early CRC, endoscopic biopsies are usually not deep enough to obtain tissues from the submucosal layer and it is difficult to determine whether early CRC has infiltrated into the submucosa. Therefore, in the present study, we constructed tumor models of early submucosal non-invasive CRC (SNICRC) and submucosal invasive CRC (SICRC) in Fischer-344 rats induced by N-methyl-N-nitrosourea (MNU). The differentially-expressed proteins were analyzed and identified in SNICRC, SICRC and normal control (NC) tissues using highly sensitive two-dimensional differential gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS). Proteomic data revealed 132 protein spots between SNICRC and SICRC, 162 protein spots between SICRC and NC and 154 protein spots between SNICRC and NC which were found differentially expressed. These differential spots were picked, in-gel digested and peptide mass fingerprints were obtained by MALDI-TOF-MS/MS. Finally, five differentially-expressed proteins in SNICRC, SICRC and NC were identified, and increases in Transgelin, peptidylprolyl isomerase A (PPIA) and tropomyosin alpha isoform d were observed, while decreases in carbonic anhydrase 2 (CAII) and an unnamed protein were detected in SICRC compared with SNICRC and NC. Furthermore, Fluorescence-based quantitative polymerase chain reaction (FQ-PCR), Western blotting and immunohistochemistry assays also revealed significant upregulation of Transgelin expression and down-regulation of CAII expression in SICRC tissues. In conclusion, 2D-DIGE is confirmed to be an efficient strategy that enables us to identify differentially-expressed proteins between early SNICRC and SICRC. The potential biomarkers such as Transgelin and CAII may be used for the detection of early SICRC
Collapse
Affiliation(s)
- J Zhang
- Department of Gastroenterology, Shanghai Jiaotong University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Cordero OJ, Imbernon M, Chiara LD, Martinez-Zorzano VS, Ayude D, de la Cadena MP, Rodriguez-Berrocal FJ. Potential of soluble CD26 as a serum marker for colorectal cancer detection. World J Clin Oncol 2011; 2:245-61. [PMID: 21773075 PMCID: PMC3139035 DOI: 10.5306/wjco.v2.i6.245] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/28/2011] [Accepted: 04/05/2011] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is characterized by a low survival rate even though the basis for colon cancer development, which involves the evolution of adenomas to carcinoma, is known. Moreover, the mortality rates continue to rise in economically transitioning countries although there is the opportunity to intervene in the natural history of the adenoma–cancer sequence through risk factors, screening, and treatment. Screening in particular accounted for most of the decline in colorectal cancer mortality achieved in the USA during the period 1975-2000. Patients show a better prognosis when the neoplasm is diagnosed early. Among the variety of screening strategies, the methods range from invasive and costly procedures such as colonoscopy to more low-cost and non-invasive tests such as the fecal occult blood test (guaiac and immunochemical). As a non-invasive biological serum marker would be of great benefit because of the performance of the test, several biomarkers, including cytologic assays, DNA and mRNA, and soluble proteins, have been studied. We found that the soluble CD26 (sCD26) concentration is diminished in serum of colorectal cancer patients compared to healthy donors, suggesting the potential utility of a sCD26 immunochemical detection test for early diagnosis. sCD26 originates from plasma membrane CD26 lacking its transmembrane and cytoplasmic domains. Some 90%–95% of sCD26 has been associated with serum dipeptidyl peptidase IV (DPP-IV) activity. DPP-IV, assigned to the CD26 cluster, is a pleiotropic enzyme expressed mainly on epithelial cells and lymphocytes. Our studies intended to validate this test for population screening to detect colorectal cancer and advanced adenomas are reviewed here.
Collapse
Affiliation(s)
- Oscar J Cordero
- Oscar J Cordero, Monica Imbernon, Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, School of Biology, CIBUS Building, Campus Vida, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Vázquez E, Villaverde A. Engineering building blocks for self-assembling protein nanoparticles. Microb Cell Fact 2010; 9:101. [PMID: 21192790 PMCID: PMC3022712 DOI: 10.1186/1475-2859-9-101] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 12/30/2010] [Indexed: 12/14/2022] Open
Abstract
Like natural viruses, manmade protein cages for drug delivery are to be ideally formed by repetitive subunits with self-assembling properties, mimicking viral functions and molecular organization. Naturally formed nanostructures (such as viruses, flagella or simpler protein oligomers) can be engineered to acquire specific traits of interest in biomedicine, for instance through the addition of cell targeting agents for desired biodistribution and specific delivery of associated drugs. However, fully artificial constructs would be highly desirable regarding finest tuning and adaptation to precise therapeutic purposes. Although engineering of protein assembling is still in its infancy, arising principles and promising strategies of protein manipulation point out the rational construction of nanoscale protein cages as a feasible concept, reachable through conventional recombinant DNA technologies and microbial protein production.
Collapse
Affiliation(s)
- Esther Vázquez
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | |
Collapse
|
33
|
Ivanov NA, Kholodok GN, Kulish ID. [Comparative analysis of antibiotic sensitivity of Streptococcus pneumoniae strains isolated from patients and carriers]. THE LANCET. INFECTIOUS DISEASES 1990; 13:719-24. [PMID: 2383142 DOI: 10.1016/s1473-3099(13)70107-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The data on antibiotic sensitivity of 38 strains of S. pneumoniae isolated from children and 46 strains isolated from carriers are presented. The isolates from the carriers had significantly higher sensitivity to benzylpenicillin, ampicillin, methicillin, oxacillin, cefazolin, erythromycin, oleandomycin and lincomycin. Resistance to gentamicin was more frequent in the strains isolated from the carriers. Among the strains of S. pneumoniae isolated from the patients and carriers representatives of serovar K19 were more frequent. There were no statistically reliable difference in them by sensitivity to benzylpenicillin, ampicillin, cefazolin, lincomycin and rifampicin. Still, the isolates from the carriers were much more sensitive to methicillin, oxacillin, oleandomycin and erythromycin.
Collapse
|