1
|
Gao Z, Zhao Q, Xu Y, Wang L. Improving the efficacy of combined radiotherapy and immunotherapy: focusing on the effects of radiosensitivity. Radiat Oncol 2023; 18:89. [PMID: 37226275 DOI: 10.1186/s13014-023-02278-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Cancer treatment is gradually entering an era of precision, with multitude studies in gene testing and immunotherapy. Tumor cells can be recognized and eliminated by the immune system through the expression of tumor-associated antigens, but when the cancer escapes or otherwise suppresses immunity, the balance between cancer cell proliferation and immune-induced cancer cell killing may be interrupted, resulting in tumor proliferation and progression. There has been significant attention to combining conventional cancer therapies (i.e., radiotherapy) with immunotherapy as opposed to treatment alone. The combination of radio-immunotherapy has been demonstrated in both basic research and clinical trials to provide more effective anti-tumor responses. However, the absolute benefits of radio-immunotherapy are dependent on individual characteristics and not all patients can benefit from radio-immunotherapy. At present, there are numerous articles about exploring the optimal models for combination radio-immunotherapy, but the factors affecting the efficacy of the combination, especially with regard to radiosensitivity remain inconclusive. Radiosensitivity is a measure of the response of cells, tissues, or individuals to ionizing radiation, and various studies have shown that the radiosensitivity index (RSI) will be a potential biomarker for predicting the efficacy of combination radio-immunotherapy. The purpose of this review is to focus on the factors that influence and predict the radiosensitivity of tumor cells, and to evaluate the impact and predictive significance of radiosensitivity on the efficacy of radio-immunotherapy combination.
Collapse
Affiliation(s)
- Zhiru Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Qian Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430064, China
| | - Yiyue Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
2
|
Strybel U, Marczak L, Zeman M, Polanski K, Mielańczyk Ł, Klymenko O, Samelak-Czajka A, Jackowiak P, Smolarz M, Chekan M, Zembala-Nożyńska E, Widlak P, Pietrowska M, Wojakowska A. Molecular Composition of Serum Exosomes Could Discriminate Rectal Cancer Patients with Different Responses to Neoadjuvant Radiotherapy. Cancers (Basel) 2022; 14:993. [PMID: 35205741 PMCID: PMC8870712 DOI: 10.3390/cancers14040993] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Identification of biomarkers that could be used for the prediction of the response to neoadjuvant radiotherapy (neo-RT) in locally advanced rectal cancer remains a challenge addressed by different experimental approaches. Exosomes and other classes of extracellular vesicles circulating in patients' blood represent a novel type of liquid biopsy and a source of cancer biomarkers. Here, we used a combined proteomic and metabolomic approach based on mass spectrometry techniques for studying the molecular components of exosomes isolated from the serum of rectal cancer patients with different responses to neo-RT. This allowed revealing several proteins and metabolites associated with common pathways relevant for the response of rectal cancer patients to neo-RT, including immune system response, complement activation cascade, platelet functions, metabolism of lipids, metabolism of glucose, and cancer-related signaling pathways. Moreover, the composition of serum-derived exosomes and a whole serum was analyzed in parallel to compare the biomarker potential of both specimens. Among proteins that the most properly discriminated good and poor responders were GPLD1 (AUC = 0.85, accuracy of 74%) identified in plasma as well as C8G (AUC = 0.91, accuracy 81%), SERPINF2 (AUC = 0.91, accuracy 79%) and CFHR3 (AUC = 0.90, accuracy 81%) identified in exosomes. We found that the proteome component of serum-derived exosomes has the highest capacity to discriminate samples of patients with different responses to neo-RT when compared to the whole plasma proteome and metabolome. We concluded that the molecular components of exosomes are associated with the response of rectal cancer patients to neo-RT and could be used for the prediction of such response.
Collapse
Affiliation(s)
- Urszula Strybel
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Lukasz Marczak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Marcin Zeman
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | - Łukasz Mielańczyk
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Ł.M.); (O.K.)
| | - Olesya Klymenko
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Ł.M.); (O.K.)
| | - Anna Samelak-Czajka
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Paulina Jackowiak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Mateusz Smolarz
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Mykola Chekan
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Ewa Zembala-Nożyńska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Piotr Widlak
- Clinical Research Support Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Anna Wojakowska
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| |
Collapse
|
3
|
Zhu X, Wang Y, Jiang C, Li X, Sun L, Wang G, Fu X. Radiosensitivity-Specific Proteomic and Signaling Pathway Network of Non-Small Cell Lung Cancer (NSCLC). Int J Radiat Oncol Biol Phys 2021; 112:529-541. [PMID: 34506873 DOI: 10.1016/j.ijrobp.2021.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/07/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE An unmet clinical need in non-small cell lung cancer (NSCLC) management is the accurate prediction of radiation response in patients receiving radical radiation therapy. We explored the intrinsic radiosensitivity of NSCLC from the proteomic profiles of NSCLC cell lines and paraffin-embedded human samples. METHODS AND MATERIALS To uncover radiosensitivity-specific proteomic and signaling pathways, we performed quantitative proteomics by data-independent acquisition mass spectrometry assay on 29 human NSCLC cell lines and 13 paraffin-embedded human NSCLC samples. We validated closely interacting radioresistant proteins by western blotting, immunofluorescence, real-time quantitative polymerase chain reaction in NSCLC cell lines, and immunohistochemistry in paraffin-embedded human samples. We validated the functions of 3 key hub proteins by lentivirus transfection, clonogenic survival assay, and flow cytometry. RESULTS The proteomic profiling of NSCLC showed that the intrinsic radiosensitivity of NSCLC is mainly modulated by signaling pathways of proteoglycans in cancer, focal adhesion, and regulation of the actin cytoskeleton. We identified 71 differentially expressed proteins and validated 8 closely interacting proteins as radioresistant proteins of NSCLC. Moreover, we also validated the functionality of integrin-linked protein kinase, p21-activated kinase 1, and Ras GTPase-activating-like protein IQGAP1 in the radiation response of NSCLC cell lines. Finally, with the NSCLC radiosensitivity-specific proteins, we delineated the atlas network of NSCLC radiosensitivity-related signaling pathways. CONCLUSIONS Radiosensitivity-specific proteins could guide individualized radiation therapy in clinical practice by predicting the radiation response of patients with NSCLC. Moreover, the NSCLC radiosensitivity-related signaling pathway atlas could guide further exploration of the underlying mechanism.
Collapse
Affiliation(s)
- Xueru Zhu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yiting Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Jiang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyang Li
- Department of Radiation Oncology, The First Affiliated Hospital of University of Science and Technology of China, Anhui, China
| | - Linying Sun
- Institution of Computing Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guangzhong Wang
- Institution of Computing Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Perillo A, Agbaje Olufemi MV, De Robbio J, Mancuso RM, Roscigno A, Tirozzi M, Scognamiglio IR. Liquid biopsy in NSCLC: a new challenge in radiation therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:156-173. [PMID: 36046142 PMCID: PMC9400754 DOI: 10.37349/etat.2021.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most common cancer and the leading cause of cancer mortality worldwide. To date, tissue biopsy has been the gold standard for the diagnosis and the identification of specific molecular mutations, to guide choice of therapy. However, this procedure has several limitations. Liquid biopsy could represent a solution to the intrinsic limits of traditional biopsy. It can detect cancer markers such as circulating tumor DNA or RNA (ctDNA, ctRNA), and circulating tumor cells, in plasma, serum or other biological fluids. This procedure is minimally invasive, reproducible and can be used repeatedly. The main clinical applications of liquid biopsy in non-small cell lung cancer (NSCLC) patients are the early diagnosis, stratification of the risk of relapse, identification of mutations to guide application of targeted therapy and the evaluation of the minimum residual disease. In this review, the current role of liquid biopsy and associated markers in the management of NSCLC patients was analyzed, with emphasis on ctDNA and CTCs, and radiotherapy.
Collapse
Affiliation(s)
- Annarita Perillo
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Mohamed Vincenzo Agbaje Olufemi
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Jacopo De Robbio
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Rossella Margherita Mancuso
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Anna Roscigno
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Maddalena Tirozzi
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Ida Rosalia Scognamiglio
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
5
|
Disulfiram Acts as a Potent Radio-Chemo Sensitizer in Head and Neck Squamous Cell Carcinoma Cell Lines and Transplanted Xenografts. Cells 2021; 10:cells10030517. [PMID: 33671083 PMCID: PMC7999545 DOI: 10.3390/cells10030517] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023] Open
Abstract
The poor prognosis of locally advanced and metastatic head and neck squamous cell carcinoma (HNSCC) is primarily mediated by the functional properties of cancer stem cells (CSCs) and resistance to chemoradiotherapy. We investigated whether the aldehyde dehydrogenase (ALDH) inhibitor disulfiram (DSF) can enhance the sensitivity of therapy. Cell viability was assessed by the 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) and apoptosis assays, and the cell cycle and reactive oxygen species (ROS) levels were evaluated by fluorescence-activated cell sorting (FACS). The radio-sensitizing effect was measured by a colony formation assay. The synergistic effects were calculated by combination index (CI) analyses. The DSF and DSF/Cu2+ inhibited the cell proliferation (inhibitory concentration 50 (IC50) of DSF and DSF/Cu2+ were 13.96 μM and 0.24 μM). DSF and cisplatin displayed a synergistic effect (CI values were <1). DSF or DSF/Cu2+ abolished the cisplatin-induced G2/M arrest (from 52.9% to 40.7% and 41.1%), and combining irradiation (IR) with DSF or DSF/Cu2+ reduced the colony formation and attenuated the G2/M arrest (from 53.6% to 40.2% and 41.9%). The combination of cisplatin, DSF or DSF/Cu2+, and IR enhanced the radio-chemo sensitivity by inducing apoptosis (42.04% and 32.21%) and ROS activity (46.3% and 37.4%). DSF and DSF/Cu2+ enhanced the sensitivity of HNSCC to cisplatin and IR. Confirming the initial data from patient-derived tumor xenograft (PDX) supported a strong rationale to repurpose DSF as a radio-chemosensitizer and to assess its therapeutic potential in a clinical setting.
Collapse
|
6
|
Ionizing Radiation Protein Biomarkers in Normal Tissue and Their Correlation to Radiosensitivity: Protocol for a Systematic Review. J Pers Med 2020; 11:jpm11010003. [PMID: 33375047 PMCID: PMC7822013 DOI: 10.3390/jpm11010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Radiosensitivity is a significantly enhanced reaction of cells, tissues, organs or organisms to ionizing radiation (IR). During radiotherapy, surrounding normal tissue radiosensitivity often limits the radiation dose that can be applied to the tumour, resulting in suboptimal tumour control or adverse effects on the life quality of survivors. Predicting radiosensitivity is a component of personalized medicine, which will help medical professionals allocate radiation therapy decisions for effective tumour treatment. So far, there are no reviews of the current literature that explore the relationship between proteomic changes after IR exposure and normal tissue radiosensitivity systematically. Objectives: The main objective of this protocol is to specify the search and evaluation strategy for a forthcoming systematic review (SR) dealing with the effects of in vivo and in vitro IR exposure on the proteome of human normal tissue with focus on radiosensitivity. Methods: The SR framework has been developed following the guidelines established in the National Toxicology Program/Office of Health Assessment and Translation (NTP/OHAT) Handbook for Conducting a Literature-Based Health Assessment, which provides a standardised methodology to implement the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to environmental health assessments. The protocol will be registered in PROSPERO, an open source protocol registration system, to guarantee transparency. Eligibility criteria: Only experimental studies, in vivo and in vitro, investigating effects of ionizing radiation on the proteome of human normal tissue correlated with radio sensitivity will be included. Eligible studies will include English peer reviewed articles with publication dates from 2011–2020 which are sources of primary data. Information sources: The search strings will be applied to the scientific literature databases PubMed and Web of Science. The reference lists of included studies will also be manually searched. Data extraction and results: Data will be extracted according to a pre-defined modality and compiled in a narrative report following guidelines presented as a “Synthesis without Meta-analyses” method. Risk of bias: The risk of bias will be assessed based on the NTP/OHAT risk of bias rating tool for human and animal studies (OHAT 2019). Level of evidence rating: A comprehensive assessment of the quality of evidence for both in vivo and in vitro studies will be followed, by assigning a confidence rating to the literature. This is followed by translation into a rating on the level of evidence (high, moderate, low, or inadequate) regarding the research question. Registration: PROSPERO Submission ID 220064.
Collapse
|
7
|
Holm M, Joenväärä S, Saraswat M, Tohmola T, Ristimäki A, Renkonen R, Haglund C. Preoperative Radiotherapy Leads to Significant Differences in the Plasma Protein Profile of Rectal Cancer Patients. Oncology 2020; 98:493-500. [PMID: 32294655 DOI: 10.1159/000505697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most common cancer worldwide, accounting for 10% of the global cancer burden. Rectal cancer accounts for around 30% of CRC cases, and patients with resectable rectal cancer are often given preoperative radiotherapy (PRT) to reduce the rate of local recurrence. The human plasma proteome is an exceptionally complex proteome and ideal to study due to its ability to reflect the presence of diseases such as cancer and the ease of obtaining blood samples. Previous proteomic studies involving rectal cancer patients have mostly focused on the identification of proteins involved in resistance to radiotherapy. OBJECTIVE The aim of this study was to investigate the overall effects of PRT on plasma protein expression in rectal cancer patients, as there is a lack of such studies. METHODS Here, we have used mass spectrometry and subsequent statistical analyses to analyze the plasma samples of 30 rectal cancer patients according to PRT status (positive or negative) and tumor stage (II or III). RESULTS AND CONCLUSIONS We discovered 42 proteins whose levels differed significantly between stage II and III rectal cancer patients who did or did not receive PRT. This study shows that PRT, although localized to the pelvis, leads to measurable, tumor stage-specific changes in plasma protein expression. Future studies of plasma proteins should, when relevant, take this into account and be aware of the widespread effects that PRT has on the plasma proteome.
Collapse
Affiliation(s)
- Matilda Holm
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland, .,Department of Pathology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland, .,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland, .,Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tiialotta Tohmola
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland.,Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Risto Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Wen P, Gao Y, Chen B, Qi X, Hu G, Xu A, Xia J, Wu L, Lu H, Zhao G. Pan-Cancer Analysis of Radiotherapy Benefits and Immune Infiltration in Multiple Human Cancers. Cancers (Basel) 2020; 12:cancers12040957. [PMID: 32294976 PMCID: PMC7226004 DOI: 10.3390/cancers12040957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Response to radiotherapy (RT) in cancers varies widely among patients. Therefore, it is very important to predict who will benefit from RT before clinical treatment. Consideration of the immune tumor microenvironment (TME) could provide novel insight into tumor treatment options. In this study, we investigated the link between immune infiltration status and clinical RT outcome in order to identify certain leukocyte subsets that could potentially influence the clinical RT benefit across cancers. By integrally analyzing the TCGA data across seven cancers, we identified complex associations between immune infiltration and patients RT outcomes. Besides, immune cells showed large differences in their populations in various cancers, and the most abundant cells were resting memory CD4 T cells. Additionally, the proportion of activated CD4 memory T cells and activated mast cells, albeit at low number, were closely related to RT overall survival in multiple cancers. Furthermore, a prognostic model for RT outcomes was established with good performance based on the immune infiltration status. Summarized, immune infiltration was found to be of significant clinical relevance to RT outcomes. These findings may help to shed light on the impact of tumor-associated immune cell infiltration on cancer RT outcomes, and identify biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Pengbo Wen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei 230031, China; (P.W.); (Y.G.); (B.C.); (X.Q.); (G.H.); (A.X.); (L.W.)
- University of Science and Technology of China, Hefei 230026, China
| | - Yang Gao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei 230031, China; (P.W.); (Y.G.); (B.C.); (X.Q.); (G.H.); (A.X.); (L.W.)
- University of Science and Technology of China, Hefei 230026, China
| | - Bin Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei 230031, China; (P.W.); (Y.G.); (B.C.); (X.Q.); (G.H.); (A.X.); (L.W.)
- University of Science and Technology of China, Hefei 230026, China
| | - Xiaojing Qi
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei 230031, China; (P.W.); (Y.G.); (B.C.); (X.Q.); (G.H.); (A.X.); (L.W.)
- University of Science and Technology of China, Hefei 230026, China
| | - Guanshuo Hu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei 230031, China; (P.W.); (Y.G.); (B.C.); (X.Q.); (G.H.); (A.X.); (L.W.)
- University of Science and Technology of China, Hefei 230026, China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei 230031, China; (P.W.); (Y.G.); (B.C.); (X.Q.); (G.H.); (A.X.); (L.W.)
| | - Junfeng Xia
- Institute of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei 230039, China;
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei 230031, China; (P.W.); (Y.G.); (B.C.); (X.Q.); (G.H.); (A.X.); (L.W.)
| | - Huayi Lu
- Department of Ophthalmology & Visual Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Correspondence: (H.L.); (G.Z.)
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei 230031, China; (P.W.); (Y.G.); (B.C.); (X.Q.); (G.H.); (A.X.); (L.W.)
- Correspondence: (H.L.); (G.Z.)
| |
Collapse
|
9
|
Lacombe J, Cretignier T, Meli L, Wijeratne EMK, Veuthey JL, Cuendet M, Gunatilaka AAL, Zenhausern F. Withanolide D Enhances Radiosensitivity of Human Cancer Cells by Inhibiting DNA Damage Non-homologous End Joining Repair Pathway. Front Oncol 2020; 9:1468. [PMID: 31970089 PMCID: PMC6960174 DOI: 10.3389/fonc.2019.01468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
Along with surgery and chemotherapy, radiation therapy (RT) is an important modality in cancer treatment, and the development of radiosensitizers is a current key challenge in radiobiology to maximize RT efficiency. In this study, the radiosensitizing effect of a natural compound from the withanolide family, withanolide D (WD), was assessed. Clonogenic assays showed that a 1 h WD pretreatment (0.7 μM) before irradiation decreased the surviving fraction of several cancer cell lines. To determine the mechanisms by which WD achieved its radiosensitizing effect, we then assessed whether WD could promote radiation-induced DNA damages and inhibit double-strand breaks (DSBs) repair in SKOV3 cells. Comet and γH2AX/53BP1 foci formation assays confirmed that DSBs were higher between 1 and 24 h after 2 Gy-irradiation in WD-treated cells compared to vehicle-treated cells, suggesting that WD induced the persistence of radiation-induced DNA damages. Immunoblotting was then performed to investigate protein expression involved in DNA repair pathways. Interestingly, DNA-PKc, ATM, and their phosphorylated forms appeared to be inhibited 24 h post-irradiation in WD-treated samples. XRCC4 expression was also down-regulated while RAD51 expression did not change compared to vehicle-treated cells suggesting that only non-homologous end joining (NHEJ) pathways was inhibited by WD. Mitotic catastrophe (MC) was then investigated in SKOV3, a p53-deficient cell line, to assess the consequence of such inhibition. MC was induced after irradiation and was predominant in WD-treated samples as shown by the few numbers of cells pursuing into anaphase and the increased amount of bipolar metaphasic cells. Together, these data demonstrated that WD could be a promising radiosensitizer candidate for RT by inhibiting NHEJ pathway and promoting MC. Additional studies are required to better understand its efficiency and mechanism of action in more relevant clinical models.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, United States
| | - Titouan Cretignier
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Laetitia Meli
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources & the Environment, College of Agriculture & Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources & the Environment, College of Agriculture & Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, United States.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Kultova G, Tichy A, Rehulkova H, Myslivcova-Fucikova A. The hunt for radiation biomarkers: current situation. Int J Radiat Biol 2020; 96:370-382. [PMID: 31829779 DOI: 10.1080/09553002.2020.1704909] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose: The possibility of a large-scale acute radiation exposure necessitates the development of new methods that could provide a rapid assessment of the doses received by individuals using high-throughput technologies. There is also a great interest in developing new biomarkers of dose exposure, which could be used in large molecular epidemiological studies in order to correlate estimated doses received and health effects. The goal of this review was to summarize current literature focused on biological dosimetry, namely radiation-responsive biomarkers.Methods: The studies involved in this review were thoroughly selected according to the determined criteria and PRISMA guidelines.Results: We described briefly recent advances in radiation genomics and metabolomics, giving particular emphasis to proteomic analysis. The majority of studies were performed on animal models (rats, mice, and non-human primates). They have provided much beneficial information, but the most relevant tests have been done on human (oncological) patients. By inspecting the radiaiton biodosimetry literate of the last 10 years, we identified a panel of candidate markers for each -omic approach involved.Conslusions: We reviewed different methodological approaches and various biological materials, which can be exploited for dose-effect prediction. The protein biomarkers from human plasma are ideal for this specific purpose. From a plethora of candidate markers, FDXR is a very promising transcriptomic candidate, and importantly this biomarker was also confirmed by some studies at protein level in humans.
Collapse
Affiliation(s)
- Gabriela Kultova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.,Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Kralove, Czech Republic
| | - Ales Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Helena Rehulkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Alena Myslivcova-Fucikova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Asadzadeh-Aghdaei H, Okhovatian F, Razzaghi Z, Heidari M, Vafaee R, Nikzamir A. Radiation Therapy in Patients With Brain Cancer: Post-proteomics Interpretation. J Lasers Med Sci 2019; 10:S59-S63. [PMID: 32021675 PMCID: PMC6983876 DOI: 10.15171/jlms.2019.s11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Radiation therapy (RT) as a common method for cancer treatment could result in some side effects. The molecular investigation is one of the approaches that could assist in decrypting the molecular mechanisms of this incident. For this aim, protein-protein interaction (PPI) network analysis as a complementary study of the proteome is conducted to explore the RT effect on brain cancer after the early stage of exposure prior to the appearance of the skin lesion. Methods: Cytoscape 3.7.2 and its plug-ins were used to analyze the network of differential expression of proteins (DEPs) in the treatment condition, and the centrality and pathway enrichment was conducted by the use of NetworkAnalyzer and ClueGO+CluePedia. Results: A network of 15 DEPs indicated that 6 nodes were key players in the network stability and SERPINC1 and F5 were from the query proteins. The pathways of post-translational protein phosphorylation, platelet degranulation, and complement and coagulation cascades were the most highlighted ones for the central nodes that could be affected in RT. Conclusion: The central proteins of the network of early-stage treatments could have additional importance in the mechanisms of radiotherapy response prior to skin lesions. Introduced biomarkers can be used for the patients' follow-up. These candidates are worth precise attention for this type of therapy after approving by validation studies.
Collapse
Affiliation(s)
- Hamid Asadzadeh-Aghdaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Okhovatian
- Physiotherapy Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadhossein Heidari
- Proteomics Research Center, Faculty of paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolrahim Nikzamir
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Kang Z, Jifu E, Guo K, Ma X, Zhang Y, Yu E. Knockdown of long non-coding RNA TINCR decreases radioresistance in colorectal cancer cells. Pathol Res Pract 2019; 215:152622. [PMID: 31540772 DOI: 10.1016/j.prp.2019.152622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 12/13/2022]
Abstract
An increasing number of studies have revealed the role of long non-coding RNAs in cancer. However, the mechanisms of action and functional utility in colorectal cancer (CRC) have not been fully elucidated. Here we describe the functional role and potential mechanism of TINCR (terminal differentiation-induced non-coding RNA) in CRC. Firstly, TINCR was selected using sequencing analyses and the starBase database. Cell Counting Kit-8, scratch wound healing, and transwell assays revealed that TINCR inhibited proliferation and migration in SW620 and HTC116 cells. Intriguingly, TINCR expression was up-regulated in a radioresistant CRC cell line (SW620R). Although TINCR had no significant effects on SW620R cell proliferation or migration, knockdown of TINCR reduced the radioresistance, and its overexpression had opposite effects. We then focused on transcription factor 4 (TCF4) as it is downregulated in CRC and associated with increased stemness in tumors. We found that TINCR and TCF4 levels were positively related in SW620R cells. TINCR knockdown reduced sphere formation ability in SW620R cells. TINCR also suppressed the OCT4 and SOX2 stemness genes, despite having no effect on NANOG. The expression levels of these genes were substantially higher in SW620R than in SW620 cells. To further explore the mechanism of TINCR and radioresistance, miR-137 was analyzed as it targets TCF4. We firstly confirmed that TCF4 is a target of miR-137. We then identified that TINCR knockdown enhanced miR-137 expression in SW620R cells. Collectively, these findings suggest that TINCR knockdown inhibits TCF4 by regulating miR-137 expression.
Collapse
Affiliation(s)
- Zhengchun Kang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - E Jifu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Kai Guo
- Department of Gastroenterology, The 161th Hospital of PLA, Wuhan, Hubei, 430010, China
| | - Xiuzhu Ma
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yingyi Zhang
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Enda Yu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
13
|
Lacombe J, Brengues M, Mangé A, Bourgier C, Gourgou S, Pèlegrin A, Ozsahin M, Solassol J, Azria D. Quantitative proteomic analysis reveals AK2 as potential biomarker for late normal tissue radiotoxicity. Radiat Oncol 2019; 14:142. [PMID: 31399108 PMCID: PMC6688300 DOI: 10.1186/s13014-019-1351-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
Background Biomarkers for predicting late normal tissue toxicity to radiotherapy are necessary to personalize treatments and to optimize clinical benefit. Many radiogenomic studies have been published on this topic. Conversely, proteomics approaches are not much developed, despite their advantages. Methods We used the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic approach to analyze differences in protein expression levels in ex-vivo irradiated (8 Gy) T lymphocytes from patients with grade ≥ 2 radiation-induced breast fibrosis (grade ≥ 2 bf+) and patients with grade < 2 bf + after curative intent radiotherapy. Patients were selected from two prospective clinical trials (COHORT and PHRC 2005) and were used as discovery and confirmation cohorts. Results Among the 1979 quantified proteins, 23 fulfilled our stringent biological criteria. Immunoblotting analysis of four of these candidate proteins (adenylate kinase 2, AK2; annexin A1; heat shock cognate 71 kDa protein; and isocitrate dehydrogenase 2) confirmed AK2 overexpression in 8 Gy-irradiated T lymphocytes from patients with grade ≥ 2 bf + compared with patients with grade < 2 bf+. As these candidate proteins are involved in oxidative stress regulation, we also evaluated radiation-induced reactive oxygen species (ROS) production in peripheral blood mononuclear cells from patients with grade ≥ 2 bf + and grade < 2 bf+. Total ROS level, and especially superoxide anion level, increased upon ex-vivo 8 Gy-irradiation in all patients. Analysis of NADPH oxidases (NOXs), a major source of superoxide ion in the cell, showed a significant increase of NOX4 mRNA and protein levels after irradiation in both patient groups. Conversely, only NOX4 mRNA level was significantly different between groups (grade ≥ 2 bf + and grade < 2 bf+). Conclusion These findings identify AK2 as a potential radiosensitivity candidate biomarker. Overall, our proteomic approach highlights the important role of oxidative stress in late radiation-induced toxicity, and paves the way for additional studies on NOXs and superoxide ion metabolism. Electronic supplementary material The online version of this article (10.1186/s13014-019-1351-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jérôme Lacombe
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Muriel Brengues
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Alain Mangé
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Céline Bourgier
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | | | - André Pèlegrin
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | | | - Jérôme Solassol
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France.,Department of Pathology and Onco-Biology, CHU Montpellier, Montpellier, France
| | - David Azria
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France. .,Department of Radiation Oncology, ICM, 34298, Montpellier Cedex 5, France.
| |
Collapse
|
14
|
He T. Implementation of Proteomics in Clinical Trials. Proteomics Clin Appl 2019; 13:e1800198. [DOI: 10.1002/prca.201800198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/15/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Tianlin He
- Mosaiques Diagnostics GmbH 30659 Hannover Germany
- Institute of Molecular Cardiovascular Research (IMCAR)University Hospital RWTH Aachen 52074 Aachen Germany
| |
Collapse
|
15
|
Delfino I, Perna G, Ricciardi V, Lasalvia M, Manti L, Capozzi V, Lepore M. X-ray irradiation effects on nuclear and membrane regions of single SH-SY5Y human neuroblastoma cells investigated by Raman micro-spectroscopy. J Pharm Biomed Anal 2019; 164:557-573. [DOI: 10.1016/j.jpba.2018.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 11/28/2022]
|
16
|
Xu J, Patel NH, Saleh T, Cudjoe EK, Alotaibi M, Wu Y, Lima S, Hawkridge AM, Gewirtz DA. Differential Radiation Sensitivity in p53 Wild-Type and p53-Deficient Tumor Cells Associated with Senescence but not Apoptosis or (Nonprotective) Autophagy. Radiat Res 2018; 190:538-557. [PMID: 30132722 DOI: 10.1667/rr15099.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies of radiation interaction with tumor cells often focus on apoptosis as an end point; however, clinically relevant doses of radiation also promote autophagy and senescence. Moreover, functional p53 has frequently been implicated in contributing to radiation sensitivity through the facilitation of apoptosis. To address the involvement of apoptosis, autophagy, senescence and p53 status in the response to radiation, the current studies utilized isogenic H460 non-small cell lung cancer cells that were either p53-wild type (H460wt) or null (H460crp53). As anticipated, radiosensitivity was higher in the H460wt cells than in the H460crp53 cell line; however, this differential radiation sensitivity did not appear to be a consequence of apoptosis. Furthermore, radiosensitivity did not appear to be reduced in association with the promotion of autophagy, as autophagy was markedly higher in the H460wt cells. Despite radiosensitization by chloroquine in the H460wt cells, the radiation-induced autophagy proved to be essentially nonprotective, as inhibition of autophagy via 3-methyl adenine (3-MA), bafilomycin A1 or ATG5 silencing failed to alter radiation sensitivity or promote apoptosis in either the H460wt or H460crp53 cells. Radiosensitivity appeared to be most closely associated with senescence, which occurred earlier and to a greater extent in the H460wt cells. This finding is consistent with the in-depth proteomics analysis on the secretomes from the H460wt and H460crp53 cells (with or without radiation exposure) that showed no significant association with radioresistance-related proteins, whereas several senescence-associated secretory phenotype (SASP) factors were upregulated in H460wt cells relative to H460crp53 cells. Taken together, these findings indicate that senescence, rather than apoptosis, plays a central role in determination of radiosensitivity; furthermore, autophagy is likely to have minimal influence on radiosensitivity under conditions where autophagy takes the nonprotective form.
Collapse
Affiliation(s)
- Jingwen Xu
- a Department of Pharmacology and Toxicology, Shenyang Pharmaceutical University, Liaoning, China
| | - Nipa H Patel
- b Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Tareq Saleh
- b Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Emmanuel K Cudjoe
- c Department of Pharmacotherapy and Outcome Sciences and Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Moureq Alotaibi
- f Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Yingliang Wu
- a Department of Pharmacology and Toxicology, Shenyang Pharmaceutical University, Liaoning, China
| | - Santiago Lima
- d Department of Biology, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Adam M Hawkridge
- c Department of Pharmacotherapy and Outcome Sciences and Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - David A Gewirtz
- b Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
17
|
Lacombe J, Sima C, Amundson SA, Zenhausern F. Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review. PLoS One 2018; 13:e0198851. [PMID: 29879226 PMCID: PMC5991767 DOI: 10.1371/journal.pone.0198851] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose To compile a list of genes that have been reported to be affected by external ionizing radiation (IR) and to assess their performance as candidate biomarkers for individual human radiation dosimetry. Methods Eligible studies were identified through extensive searches of the online databases from 1978 to 2017. Original English-language publications of microarray studies assessing radiation-induced changes in gene expression levels in human blood after external IR were included. Genes identified in at least half of the selected studies were retained for bio-statistical analysis in order to evaluate their diagnostic ability. Results 24 studies met the criteria and were included in this study. Radiation-induced expression of 10,170 unique genes was identified and the 31 genes that have been identified in at least 50% of studies (12/24 studies) were selected for diagnostic power analysis. Twenty-seven genes showed a significant Spearman’s correlation with radiation dose. Individually, TNFSF4, FDXR, MYC, ZMAT3 and GADD45A provided the best discrimination of radiation dose < 2 Gy and dose ≥ 2 Gy according to according to their maximized Youden’s index (0.67, 0.55, 0.55, 0.55 and 0.53 respectively). Moreover, 12 combinations of three genes display an area under the Receiver Operating Curve (ROC) curve (AUC) = 1 reinforcing the concept of biomarker combinations instead of looking for an ideal and unique biomarker. Conclusion Gene expression is a promising approach for radiation dosimetry assessment. A list of robust candidate biomarkers has been identified from analysis of the studies published to date, confirming for example the potential of well-known genes such as FDXR and TNFSF4 or highlighting other promising gene such as ZMAT3. However, heterogeneity in protocols and analysis methods will require additional studies to confirm these results.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- * E-mail:
| | - Chao Sima
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, College Station, TX, United States of America
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Medical Center, New York, NY, United States of America
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- Honor Health Research Institute, Scottsdale, Arizona, United States of America
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
18
|
Zou Y, Yao S, Chen X, Liu D, Wang J, Yuan X, Rao J, Xiong H, Yu S, Yuan X, Zhu F, Hu G, Wang Y, Xiong H. LncRNA OIP5-AS1 regulates radioresistance by targeting DYRK1A through miR-369-3p in colorectal cancer cells. Eur J Cell Biol 2018; 97:369-378. [PMID: 29773344 DOI: 10.1016/j.ejcb.2018.04.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/30/2018] [Accepted: 04/10/2018] [Indexed: 01/12/2023] Open
Abstract
OBJECT This study aimed to investigate the role of lncRNA OIP5-AS1 in regulating radioresistance of colorectal cancer (CRC) cells. METHODS Microarray analysis was used to screen out lncRNAs differentially expressed in radio-resistant CRC cell lines. Expression levels of OIP5-AS1, miR-369-3p and DYRK1A in CRC cell lines were measured by qRT-PCR. Protein expression of DYRK1A was determined by western blot. The target relationships among OIP5-AS1, miR-369-3p and DYRK1A were validated by dual luciferase reporter assay. Impacts of OIP5-AS1 or DYRK1A on CRC cellular activity and apoptosis were investigated by MTT assay, clonogenic survival assay and flow cytometry to analyze OIP5-AS1 or DYRK1A's effect on radioresistance of CRC cells. RESULTS LncRNA OIP5-AS1 and DYRK1A were down-regulated in radio-resistant CRC cell lines. OIP5-AS1 suppressed the expression of miR-369-3p, thus up-regulating DYRK1A, the downstream gene of miR-369-3p. OIP5-AS1 and DYRK1A impaired cell clonogenic survival and promoted cell apoptosis after irradiation, improving radiosensitivity of CRC cells. CONCLUSION LncRNA OIP5-AS1 suppressed cell viability, promoted radio-induced apoptosis, and enhanced the radiosensitivity of CRC cells by regulating DYRK1A expression through miR-369-3p.
Collapse
Affiliation(s)
- Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shuo Yao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiuqiong Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jianhua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jie Rao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shiying Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Feng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological, Shanghai, 200031, China
| | - Yihua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO171BJ, UK
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
19
|
Doble PA, Miklos GLG. Distributions of manganese in diverse human cancers provide insights into tumour radioresistance. Metallomics 2018; 10:1191-1210. [DOI: 10.1039/c8mt00110c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We show that measuring manganese levels in tumours of cancer patients is predictive for their radiation treatment.
Collapse
Affiliation(s)
- Philip A. Doble
- Elemental Bio-imaging Facility
- University of Technology Sydney
- Broadway
- Australia
| | | |
Collapse
|
20
|
Chaiswing L, Weiss HL, Jayswal RD, St. Clair DK, Kyprianou N. Profiles of Radioresistance Mechanisms in Prostate Cancer. Crit Rev Oncog 2018; 23:39-67. [PMID: 29953367 PMCID: PMC6231577 DOI: 10.1615/critrevoncog.2018025946] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Radiation therapy (RT) is commonly used for the treatment of localized prostate cancer (PCa). However, cancer cells often develop resistance to radiation through unknown mechanisms and pose an intractable challenge. Radiation resistance is highly unpredictable, rendering the treatment less effective in many patients and frequently causing metastasis and cancer recurrence. Understanding the molecular events that cause radioresistance in PCa will enable us to develop adjuvant treatments for enhancing the efficacy of RT. Radioresistant PCa depends on the elevated DNA repair system and the intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and scavenge anti-cancer regimens, whereas the elevated heat shock protein 90 (HSP90) and the epithelial-mesenchymal transition (EMT) enable radioresistant PCa cells to metastasize after exposure to radiation. The up-regulation of the DNA repairing system, ROS, HSP90, and EMT effectors has been studied extensively, but not targeted by adjuvant therapy of radioresistant PCa. Here, we emphasize the effects of ionizing radiation and the mechanisms driving the emergence of radioresistant PCa. We also address the markers of radioresistance, the gene signatures for the predictive response to radiotherapy, and novel therapeutic platforms for targeting radioresistant PCa. This review provides significant insights into enhancing the current knowledge and the understanding toward optimization of these markers for the treatment of radioresistant PCa.
Collapse
Affiliation(s)
| | - Heidi L. Weiss
- The Markey Biostatistics and Bioinformatics Shared Resource Facility
| | - Rani D. Jayswal
- The Markey Biostatistics and Bioinformatics Shared Resource Facility
| | | | - Natasha Kyprianou
- Department of Toxicology and Cancer Biology
- Department of Urology
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
21
|
Comprehensive Analysis of Cancer-Proteogenome to Identify Biomarkers for the Early Diagnosis and Prognosis of Cancer. Proteomes 2017; 5:proteomes5040028. [PMID: 29068423 PMCID: PMC5748563 DOI: 10.3390/proteomes5040028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
During the past century, our understanding of cancer diagnosis and treatment has been based on a monogenic approach, and as a consequence our knowledge of the clinical genetic underpinnings of cancer is incomplete. Since the completion of the human genome in 2003, it has steered us into therapeutic target discovery, enabling us to mine the genome using cutting edge proteogenomics tools. A number of novel and promising cancer targets have emerged from the genome project for diagnostics, therapeutics, and prognostic markers, which are being used to monitor response to cancer treatment. The heterogeneous nature of cancer has hindered progress in understanding the underlying mechanisms that lead to abnormal cellular growth. Since, the start of The Cancer Genome Atlas (TCGA), and the International Genome consortium projects, there has been tremendous progress in genome sequencing and immense numbers of cancer genomes have been completed, and this approach has transformed our understanding of the diagnosis and treatment of different types of cancers. By employing Genomics and proteomics technologies, an immense amount of genomic data is being generated on clinical tumors, which has transformed the cancer landscape and has the potential to transform cancer diagnosis and prognosis. A complete molecular view of the cancer landscape is necessary for understanding the underlying mechanisms of cancer initiation to improve diagnosis and prognosis, which ultimately will lead to personalized treatment. Interestingly, cancer proteome analysis has also allowed us to identify biomarkers to monitor drug and radiation resistance in patients undergoing cancer treatment. Further, TCGA-funded studies have allowed for the genomic and transcriptomic characterization of targeted cancers, this analysis aiding the development of targeted therapies for highly lethal malignancy. High-throughput technologies, such as complete proteome, epigenome, protein-protein interaction, and pharmacogenomics data, are indispensable to glean into the cancer genome and proteome and these approaches have generated multidimensional universal studies of genes and proteins (OMICS) data which has the potential to facilitate precision medicine. However, due to slow progress in computational technologies, the translation of big omics data into their clinical aspects have been slow. In this review, attempts have been made to describe the role of high-throughput genomic and proteomic technologies in identifying a panel of biomarkers which could be used for the early diagnosis and prognosis of cancer.
Collapse
|
22
|
Rostami A, Bratman SV. Utilizing circulating tumour DNA in radiation oncology. Radiother Oncol 2017; 124:357-364. [DOI: 10.1016/j.radonc.2017.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
|
23
|
Lacombe J, Zenhausern F. Emergence of miR-34a in radiation therapy. Crit Rev Oncol Hematol 2017; 109:69-78. [PMID: 28010900 PMCID: PMC5199215 DOI: 10.1016/j.critrevonc.2016.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/14/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Expressions of many microRNAs (miRNAs) in response to ionizing radiation (IR) have already been investigated and some of them seem to play an important role in the tumor radioresistance, normal tissue radiotoxicity or as predictive biomarkers to radiation. miR-34a is an emerging miRNA in recent radiobiology studies. Here, we review this miR-34 family member by detailing its different roles in radiation response and we will discuss about the role that it can play in radiation treatment. Thus, we will show that IR regulates miR-34a by increasing its expression. We will also highlight different biological processes involved in cellular response to IR and regulated by miR-34a in order to demonstrate the role it can play in tumor radio-response or normal tissue radiotoxicity as a radiosensitizer or radioprotector. miR-34a is poised to assert itself as an important player in radiobiology and should become more and more important in radiation therapy management.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, University of Arizona, 145 S. 79th Street, Chandler, AZ 85226, USA.
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, University of Arizona, 145 S. 79th Street, Chandler, AZ 85226, USA; Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, 425 N. 5th Street, Phoenix, AZ 85004, USA.
| |
Collapse
|
24
|
Yun HS, Baek JH, Yim JH, Um HD, Park JK, Song JY, Park IC, Kim JS, Lee SJ, Lee CW, Hwang SG. Radiotherapy diagnostic biomarkers in radioresistant human H460 lung cancer stem-like cells. Cancer Biol Ther 2016; 17:208-18. [PMID: 26901847 PMCID: PMC4847996 DOI: 10.1080/15384047.2016.1139232] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tumor cell radioresistance is a major contributor to radiotherapy failure, highlighting the importance of identifying predictive biomarkers for radioresistance. In this work, we established a radioresistant H460 (RR-H460) cell line from parental radiosensitive H460 lung cancer cells by exposure to fractionated radiation. The radiation-resistant, anti-apoptotic phenotype of RR-H460 cell lines was confirmed by their enhanced clonogenic survival and increased expression of the radioresistance genes Hsp90 and Her-3. RR-H460 cells displayed characteristics of cancer stem-like cells (CSCs), including induction of the surface marker CD44 and stem cell markers Nanog, Oct4, and Sox2. RR-H460 cells also exhibited sphere formation and malignant behavior, further supporting a CSC phenotype. Using proteomic analyses, we identified 8 proteins that were up-regulated in RR-H460 CSC lines and therefore potentially involved in radioresistance and CSC-related biological processes. Notably, 4 of these—PAI-2, NOMO2, KLC4, and PLOD3—have not been previously linked to radioresistance. Depletion of these individual genes sensitized RR-H460 cells to radiotoxicity and additively enhancing radiation-induced apoptosis. Our findings suggest the possibility of integrating molecular targeted therapy with radiotherapy as a strategy for resolving the radioresistance of lung tumors.
Collapse
Affiliation(s)
- Hong Shik Yun
- a Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences , Seoul , South Korea.,b Department of Life Science , College of Natural Sciences, Hanyang University , Seoul , South Korea
| | - Jeong-Hwa Baek
- a Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences , Seoul , South Korea.,c Department of Molecular Cell Biology , Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon , South Korea
| | - Ji-Hye Yim
- a Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences , Seoul , South Korea
| | - Hong-Duck Um
- a Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences , Seoul , South Korea
| | - Jong Kuk Park
- a Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences , Seoul , South Korea
| | - Jie-Young Song
- a Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences , Seoul , South Korea
| | - In-Chul Park
- a Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences , Seoul , South Korea
| | - Jae-Sung Kim
- a Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences , Seoul , South Korea
| | - Su-Jae Lee
- a Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences , Seoul , South Korea
| | - Chang-Woo Lee
- c Department of Molecular Cell Biology , Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon , South Korea
| | - Sang-Gu Hwang
- a Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences , Seoul , South Korea
| |
Collapse
|
25
|
Liu X, Shen X, Lai Y, Ji K, Sun H, Wang Y, Hou C, Zou N, Wan J, Yu J. Toxicological proteomic responses of halophyte Suaeda salsa to lead and zinc. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:163-171. [PMID: 27616546 DOI: 10.1016/j.ecoenv.2016.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
The long term (30 days) toxicological effects of environmentally relevant concentrations of Pb2+ (20μg/L) and Zn2+ (100μg/L) were characterized in Suaeda salsa using proteomics techniques. The responsive proteins were related to metabolism (Krebs cycle and Calvin cycle), protein biosynthesis, stress and defense, energy, signaling pathway and photosynthesis in Pb2+, Zn2+ and Pb2++ Zn2+ exposed groups in S. salsa after exposures for 30 days. The proteomic profiles also showed differential responses in S. salsa to metal exposures. In Pb2+-treated group, the proteins were categorized into cystein metabolism and pentose phosphate pathway. The responsive proteins were basically involved in glutathione metabolism, glycolysis, cystein and methane metabolism, and voltage-dependent anion channel in Zn2+-treated group. In Pb2++ Zn2+-treated group, the proecular mechanism at protein level remtein responses were devided into tyrosine metabolism and glycolysis. Our results showed that the two typical heavy metals, lead and zinc, could induce toxicological effects in halophyte S. salsa at protein level.
Collapse
Affiliation(s)
- Xiaoli Liu
- School of Life Sciences, Ludong University, Yantai 264025, PR China.
| | - Xuejiao Shen
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Yongkai Lai
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Kang Ji
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Hushan Sun
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Yiyan Wang
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Chengzong Hou
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Ning Zou
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Junli Wan
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Junbao Yu
- The Coastal Resources and Environment Team for Blue-Yellow Area, Ludong University, Yantai 264025, PR China
| |
Collapse
|
26
|
Kurth I, Hein L, Mäbert K, Peitzsch C, Koi L, Cojoc M, Kunz-Schughart L, Baumann M, Dubrovska A. Cancer stem cell related markers of radioresistance in head and neck squamous cell carcinoma. Oncotarget 2016; 6:34494-509. [PMID: 26460734 PMCID: PMC4741468 DOI: 10.18632/oncotarget.5417] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/25/2015] [Indexed: 01/01/2023] Open
Abstract
Despite recent advances in understanding of the molecular pathogenesis and improvement of treatment techniques, locally advanced head and neck squamous cell carcinoma (HNSCC) remains associated with an unfavorable prognosis. Compelling evidence suggests that cancer stem cells (CSC) may cause tumor recurrence if they are not eradicated by current therapies as radiotherapy or radio-chemotherapy. Recent in vitro studies have demonstrated that CSCs may be protected from treatment-induced death by multiple intrinsic and extrinsic mechanisms. Therefore, early determination of CSC abundance in tumor biopsies prior-treatment and development of therapeutics, which specifically target CSCs, are promising strategies to optimize treatment. Here we provide evidence that aldehyde dehydrogenase (ALDH) activity is indicative for radioresistant HNSCC CSCs. Our study suggests that ALDH+ cells comprise a population that maintains its tumorigenic properties in vivo after irradiation and may provide tumor regrowth after therapy. We found that ALDH activity in HNSCC cells can be attributed, at least in part, to the ALDH1A3 isoform and inhibition of the ALDH1A3 expression by small interfering RNA (siRNA) decreases tumor cell radioresistance. The expression dynamic of ALDH1A3 upon irradiation by either induction or selection of the ALDH1A3 positive population correlates to in vivo curability, suggesting that changes in protein expression during radiotherapy are indicative for tumor radioresistance. Our data indicate that ALDH1A3+ HNSCC cells may contribute to tumor relapse after irradiation, and inhibition of this cell population might improve therapeutic response to radiotherapy.
Collapse
Affiliation(s)
- Ina Kurth
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Linda Hein
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Katrin Mäbert
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Lydia Koi
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Monica Cojoc
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Leoni Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Baumann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
Azria D, Bourgier C, Brengues M. One Size Fits All: Does the Dogma Stand in Radiation Oncology? EBioMedicine 2016; 10:19-20. [PMID: 27453323 PMCID: PMC5006722 DOI: 10.1016/j.ebiom.2016.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 11/26/2022] Open
Affiliation(s)
- David Azria
- Department of Radiation Oncology, Montpellier Cancer Institute (ICM), Montpellier Cancer Research Institute (IRCM), University of Montpellier, Montpellier, France; INSERM U1194, Montpellier Cancer Research Institute (IRCM), University of Montpellier, Montpellier, France.
| | - Celine Bourgier
- Department of Radiation Oncology, Montpellier Cancer Institute (ICM), Montpellier Cancer Research Institute (IRCM), University of Montpellier, Montpellier, France; INSERM U1194, Montpellier Cancer Research Institute (IRCM), University of Montpellier, Montpellier, France
| | - Muriel Brengues
- INSERM U1194, Montpellier Cancer Research Institute (IRCM), University of Montpellier, Montpellier, France
| |
Collapse
|
28
|
Batar B, Guven G, Eroz S, Bese NS, Guven M. Decreased DNA repair gene XRCC1 expression is associated with radiotherapy-induced acute side effects in breast cancer patients. Gene 2016; 582:33-7. [DOI: 10.1016/j.gene.2016.01.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/11/2022]
|
29
|
Proteomics discovery of radioresistant cancer biomarkers for radiotherapy. Cancer Lett 2015; 369:289-97. [DOI: 10.1016/j.canlet.2015.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/08/2015] [Accepted: 09/23/2015] [Indexed: 12/28/2022]
|
30
|
Shukla HD, Mahmood J, Vujaskovic Z. Integrated proteo-genomic approach for early diagnosis and prognosis of cancer. Cancer Lett 2015; 369:28-36. [DOI: 10.1016/j.canlet.2015.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 12/28/2022]
|
31
|
Tóth E, Vékey K, Ozohanics O, Jekő A, Dominczyk I, Widlak P, Drahos L. Changes of protein glycosylation in the course of radiotherapy. J Pharm Biomed Anal 2015; 118:380-386. [PMID: 26609677 DOI: 10.1016/j.jpba.2015.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 01/11/2023]
Abstract
This is the first study of changes in protein glycosylation due to exposure of human subjects to ionizing radiation. Site specific glycosylation patterns of 7 major plasma proteins were analyzed; 171 glycoforms were identified; and the abundance of 99 of these was followed in the course of cancer radiotherapy in 10 individual patients. It was found that glycosylation of plasma proteins does change in response to partial body irradiation (∼ 60 Gy), and the effects last during follow-up; the abundance of some glycoforms changed more than twofold. Both the degree of changes and their time-evolution showed large inter-individual variability.
Collapse
Affiliation(s)
- Eszter Tóth
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Semmelweis University, School of Ph.D. Studies, Budapest, Hungary
| | - Károly Vékey
- Core Technologies Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Olivér Ozohanics
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anita Jekő
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Iwona Dominczyk
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Piotr Widlak
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - László Drahos
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
32
|
YANG XIAODONG, XU HONGTAO, XU XIAOHUI, RU GAN, LIU WEI, ZHU JUNJIA, WU YONGYOU, ZHAO KUI, WU YONG, XING CHUNGEN, ZHANG SHUYU, CAO JIANPING, LI MING. Knockdown of long non-coding RNA HOTAIR inhibits proliferation and invasiveness and improves radiosensitivity in colorectal cancer. Oncol Rep 2015; 35:479-87. [DOI: 10.3892/or.2015.4397] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/12/2015] [Indexed: 11/06/2022] Open
|
33
|
Azria D, Riou O, Castan F, Nguyen TD, Peignaux K, Lemanski C, Lagrange JL, Kirova Y, Lartigau E, Belkacemi Y, Bourgier C, Rivera S, Noël G, Clippe S, Mornex F, Hennequin C, Kramar A, Gourgou S, Pèlegrin A, Fenoglietto P, Ozsahin EM. Radiation-induced CD8 T-lymphocyte Apoptosis as a Predictor of Breast Fibrosis After Radiotherapy: Results of the Prospective Multicenter French Trial. EBioMedicine 2015; 2:1965-73. [PMID: 26844275 PMCID: PMC4703704 DOI: 10.1016/j.ebiom.2015.10.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Monocentric cohorts suggested that radiation-induced CD8 T-lymphocyte apoptosis (RILA) can predict late toxicity after curative intent radiotherapy (RT). We assessed the role of RILA as a predictor of breast fibrosis (bf +) after adjuvant breast RT in a prospective multicenter trial. METHODS A total of 502 breast-cancer patients (pts) treated by conservative surgery and adjuvant RT were recruited at ten centers. RILA was assessed before RT by flow cytometry. Impact of RILA on bf + (primary endpoint) or relapse was assessed using a competing risk method. Receiver-operator characteristic (ROC) curve analyses were also performed in intention to treat. This study is registered with ClinicalTrials.gov, number NCT00893035 and final analyses are presented here. FINDINGS Four hundred and fifty-six pts (90.8%) were included in the final analysis. One hundred and eight pts (23.7%) received whole breast and node irradiation. A boost dose of 10-16 Gy was delivered in 449 pts (98.5%). Adjuvant hormonotherapy was administered to 349 pts (76.5%). With a median follow-up of 38.6 months, grade ≥ 2 bf + was observed in 64 pts (14%). A decreased incidence of grade ≥ 2 bf + was observed for increasing values of RILA (p = 0.012). No grade 3 bf + was observed for patients with RILA ≥ 12%. The area under the ROC curve was 0.62. For cut-off values of RILA ≥ 20% and < 12%, sensitivity and specificity were 80% and 34%, 56% and 67%, respectively. Negative predictive value for grade ≥ 2 bf + was equal to 91% for RILA ≥ 20% and positive predictive value was equal to 22% for RILA < 12% where the overall prevalence of grade ≥ 2 bf + was estimated at 14%. A significant decrease in the risk of grade ≥ 2 bf + was found if patients had no adjuvant hormonotherapy (sHR = 0.31, p = 0.007) and presented a RILA ≥ 12% (sHR = 0.45, p = 0.002). INTERPRETATION RILA significantly predicts the risk of breast fibrosis. This study validates the use of RILA as a rapid screening test before RT delivery and will change definitely our daily clinical practice in radiation oncology. FUNDING The French National Cancer Institute (INCa) through the "Program Hospitalier de Recherche Clinique (PHRC)".
Collapse
Affiliation(s)
- David Azria
- Montpellier Cancer Institute (ICM), Montpellier Cancer Research Institute (IRCM), University of Montpellier, Montpellier, France
| | - Olivier Riou
- Montpellier Cancer Institute (ICM), Montpellier Cancer Research Institute (IRCM), University of Montpellier, Montpellier, France
| | - Florence Castan
- Montpellier Cancer Institute (ICM), Montpellier Cancer Research Institute (IRCM), University of Montpellier, Montpellier, France
| | | | | | - Claire Lemanski
- Montpellier Cancer Institute (ICM), Montpellier Cancer Research Institute (IRCM), University of Montpellier, Montpellier, France
| | | | | | | | | | - Céline Bourgier
- Montpellier Cancer Institute (ICM), Montpellier Cancer Research Institute (IRCM), University of Montpellier, Montpellier, France
| | | | | | | | | | | | | | - Sophie Gourgou
- Montpellier Cancer Institute (ICM), Montpellier Cancer Research Institute (IRCM), University of Montpellier, Montpellier, France
| | - André Pèlegrin
- Montpellier Cancer Institute (ICM), Montpellier Cancer Research Institute (IRCM), University of Montpellier, Montpellier, France
| | - Pascal Fenoglietto
- Montpellier Cancer Institute (ICM), Montpellier Cancer Research Institute (IRCM), University of Montpellier, Montpellier, France
| | | |
Collapse
|
34
|
Bourgier C, Colinge J, Aillères N, Fenoglietto P, Brengues M, Pèlegrin A, Azria D. [Radiomics: Definition and clinical development]. Cancer Radiother 2015; 19:532-7. [PMID: 26344440 DOI: 10.1016/j.canrad.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 11/24/2022]
Abstract
The ultimate goal in radiation oncology is to offer a personalized treatment to all patients indicated for radiotherapy. Radiomics is a tool that reinforces a deep analysis of tumors at the molecular aspect taking into account intrinsic susceptibility in a long-term follow-up. Radiomics allow qualitative and quantitative performance analyses with high throughput extraction of numeric radiologic data to obtain predictive or prognostic information from patients treated for cancer. A second approach is to define biological or constitutional that could change the practice. This technique included normal tissue individual susceptibility but also potential response of tumors under ionizing radiation treatment. These "omics" are biological and technical techniques leading to simultaneous novel identification and exploration a set of genes, lipids, proteins.
Collapse
Affiliation(s)
- C Bourgier
- Institut de recherche en cancérologie de Montpellier (IRCM), 208, rue des Apothicaires, 34298 Montpellier cedex 05, France; Inserm U896, 208, rue des Apothicaires, 34298 Montpellier cedex 05, France; Université Montpellier 1, 208, rue des Apothicaires, 34298 Montpellier cedex 05, France; Pôle de radiothérapie oncologique, institut régional du cancer de Montpellier (ICM), 208, rue des Apothicaires, 34298 Montpellier cedex 05, France
| | - J Colinge
- Institut de recherche en cancérologie de Montpellier (IRCM), 208, rue des Apothicaires, 34298 Montpellier cedex 05, France; Inserm U896, 208, rue des Apothicaires, 34298 Montpellier cedex 05, France; Université Montpellier 1, 208, rue des Apothicaires, 34298 Montpellier cedex 05, France
| | - N Aillères
- Pôle de radiothérapie oncologique, institut régional du cancer de Montpellier (ICM), 208, rue des Apothicaires, 34298 Montpellier cedex 05, France
| | - P Fenoglietto
- Pôle de radiothérapie oncologique, institut régional du cancer de Montpellier (ICM), 208, rue des Apothicaires, 34298 Montpellier cedex 05, France
| | - M Brengues
- Institut de recherche en cancérologie de Montpellier (IRCM), 208, rue des Apothicaires, 34298 Montpellier cedex 05, France; Inserm U896, 208, rue des Apothicaires, 34298 Montpellier cedex 05, France; Université Montpellier 1, 208, rue des Apothicaires, 34298 Montpellier cedex 05, France; Pôle de radiothérapie oncologique, institut régional du cancer de Montpellier (ICM), 208, rue des Apothicaires, 34298 Montpellier cedex 05, France
| | - A Pèlegrin
- Pôle de radiothérapie oncologique, institut régional du cancer de Montpellier (ICM), 208, rue des Apothicaires, 34298 Montpellier cedex 05, France
| | - D Azria
- Institut de recherche en cancérologie de Montpellier (IRCM), 208, rue des Apothicaires, 34298 Montpellier cedex 05, France; Inserm U896, 208, rue des Apothicaires, 34298 Montpellier cedex 05, France; Université Montpellier 1, 208, rue des Apothicaires, 34298 Montpellier cedex 05, France; Pôle de radiothérapie oncologique, institut régional du cancer de Montpellier (ICM), 208, rue des Apothicaires, 34298 Montpellier cedex 05, France.
| |
Collapse
|
35
|
Bourgier C, Lacombe J, Solassol J, Mange A, Pèlegrin A, Ozsahin M, Azria D. Late side-effects after curative intent radiotherapy: Identification of hypersensitive patients for personalized strategy. Crit Rev Oncol Hematol 2015; 93:312-9. [DOI: 10.1016/j.critrevonc.2014.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/22/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022] Open
|
36
|
The role of telomeres in predicting individual radiosensitivity of patients with cancer in the era of personalized radiotherapy. Cancer Treat Rev 2015; 41:354-60. [PMID: 25704912 DOI: 10.1016/j.ctrv.2015.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023]
Abstract
Radiotherapy plays a key role in cancer treatments, but tumor cell death differs from one tumor to another. The response of patients to radiotherapy varies considerably and adverse side effects are difficult to prevent. The mechanisms involved in the heterogeneity of this response are not well understood. In order to enhance the efficacy and safety of radiotherapy, it is important to identify subpopulations most at risk of developing a late adverse response to radiotherapy. Telomeres are composed of multiple repeats of a unique sequence of nucleotides forming a TTAGGG pattern. They protect chromosomes from end-to-end fusion and maintain genomic stability. Telomeres have been shown to be extremely sensitive to radiotherapy especially because of their atypical DNA damage repair response, which includes partial inhibition of the non-homologous end joining repair pathway. Ionizing Radiation (IR)-induced damage to telomere DNA could lead to chromosome instability and the initiation or progression of tumor processes. Telomeres could thus be a reliable marker of IR exposure and as such become a new parameter for predicting radiosensitivity. Furthermore, short telomeres are more sensitive to radiotherapy, which could partially explain differences in tumor cell death and in inter-individual sensitivity to radiotherapy. Telomere length could be used to identify subpopulations of patients who could benefit from higher or lower doses per fraction. Finally, pharmacological interference with tumor-cell telomere biology to reduce telomere length and/or telomere stability could also enhance the effectiveness and safety of radiotherapy. Telomeres could play a key role in radiotherapy in the era of personalized medicine.
Collapse
|
37
|
Kunwar A, Haston CK. DNA damage at respiratory distress, but not acute time-points, correlates with tissue fibrosis following thoracic radiation exposure in mice. Int J Radiat Biol 2015; 91:360-7. [PMID: 25529973 DOI: 10.3109/09553002.2015.997897] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Radiation exposure can result in DNA damage but whether the extent of DNA damage correlates with the radiation-induced tissue injury in the lung is not known. We aimed to determine whether numbers of γH2AX foci, representing histone H2AX phosphorylation a marker of DNA damage, measured within days of radiation exposure, correlated with known later lung injury responses in eight inbred mouse strains. MATERIALS AND METHODS Mice received 18 Gy pulmonary irradiation and numbers of γH2AX positive nuclei in the lung were immunohistochemically determined. RESULTS Numbers of γH2AX foci, assessed up to seven days post irradiation did not correlate with pulmonary fibrosis. γH2AX counts from mice in respiratory distress, however, significantly correlated with fibrosis and lungs from mice treated with a fibrosis-reducing antagonist had fewer γH2AX foci. CONCLUSIONS Acute response measures of pulmonary DNA damage did not predict for pathology, but levels of this marker in distressed mice were correlative of fibrosis.
Collapse
Affiliation(s)
- Amit Kunwar
- Department of Human Genetics, McGill University , Montreal, QC , Canada
| | | |
Collapse
|
38
|
Nonlinear quantitative radiation sensitivity prediction model based on NCI-60 cancer cell lines. ScientificWorldJournal 2014; 2014:903602. [PMID: 25032244 PMCID: PMC4083270 DOI: 10.1155/2014/903602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 12/14/2022] Open
Abstract
We proposed a nonlinear model to perform a novel quantitative radiation sensitivity prediction. We used the NCI-60 panel, which consists of nine different cancer types, as the platform to train our model. Important radiation therapy (RT) related genes were selected by significance analysis of microarrays (SAM). Orthogonal latent variables (LVs) were then extracted by the partial least squares (PLS) method as the new compressive input variables. Finally, support vector machine (SVM) regression model was trained with these LVs to predict the SF2 (the surviving fraction of cells after a radiation dose of 2 Gy γ-ray) values of the cell lines. Comparison with the published results showed significant improvement of the new method in various ways: (a) reducing the root mean square error (RMSE) of the radiation sensitivity prediction model from 0.20 to 0.011; and (b) improving prediction accuracy from 62% to 91%. To test the predictive performance of the gene signature, three different types of cancer patient datasets were used. Survival analysis across these different types of cancer patients strongly confirmed the clinical potential utility of the signature genes as a general prognosis platform. The gene regulatory network analysis identified six hub genes that are involved in canonical cancer pathways.
Collapse
|
39
|
Leszczynski D. Radiation proteomics: A brief overview. Proteomics 2014; 14:481-8. [DOI: 10.1002/pmic.201300390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/30/2013] [Accepted: 12/01/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Dariusz Leszczynski
- STUK - Radiation and Nuclear Safety Authority; Helsinki Finland
- Department of Biosciences and Biotechnology; University of Helsinki; Helsinki Finland
| |
Collapse
|
40
|
Azimzadeh O, Atkinson MJ, Tapio S. Proteomics in radiation research: present status and future perspectives. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:31-8. [PMID: 24105449 DOI: 10.1007/s00411-013-0495-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/17/2013] [Indexed: 05/23/2023]
Abstract
Rapidly developing postgenome research has made proteins an attractive target for biological analysis. The well-established term of proteome is defined as the complete set of proteins expressed in a given cell, tissue or organism. Unlike the genome, a proteome is rapidly changing as it tends to adapt to microenvironmental signals. The systematic analysis of the proteome at a given time and state is referred to as proteomics. This technique provides information on the molecular and cellular mechanisms that regulate physiology and pathophysiology of the cell. Applications of proteome profiling in radiation research are increasing. However, the large-scale proteomics data sets generated need to be integrated into other fields of radiation biology to facilitate the interpretation of radiation-induced cellular and tissue effects. The aim of this review is to introduce the most recent developments in the field of radiation proteomics.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | | |
Collapse
|
41
|
Grandjean M, Sermeus A, Branders S, Defresne F, Dieu M, Dupont P, Raes M, De Ridder M, Feron O. Hypoxia integration in the serological proteome analysis unmasks tumor antigens and fosters the identification of anti-phospho-eEF2 antibodies as potential cancer biomarkers. PLoS One 2013; 8:e76508. [PMID: 24130777 PMCID: PMC3794947 DOI: 10.1371/journal.pone.0076508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 08/27/2013] [Indexed: 11/24/2022] Open
Abstract
The expression by tumor cells of proteins with aberrant structure, expression or distribution accounts for the development of a humoral immune response. Autoantibodies (aAb) directed against tumor-associated antigens (TAA) may thus be particularly relevant for early detection of cancer. Serological proteome analysis (SERPA) aims to identify such circulating aAb through the immunoblotting of 2D-separated tumor cell proteins with cancer patient serum and the consecutive MS identification of proteins in reactive spots. This method has the advantage to use post-translationally modified proteins as a source of potential TAA. Here, we applied this strategy by using colorectal tumor cells pre-exposed to hypoxia in order to promote the expression of a pattern of TAA more likely to represent in vivo conditions. We used two human HCT116 and HT29 colorectal cancer cell lines exposed for 48 hours to 1% O2. Spots positive after immunoblotting of 2D-separated lysates of hypoxic cells with the sera of tumor-bearing mice, were collected and analysed by MS for protein identification. Among the hypoxia-specific immunogenic proteins, we identified a phosphorylated form of eukaryotic translation elongation factor 2 (phospho-Thr56 eEF2). We confirmed the increased phosphorylation of this protein in hypoxic colorectal tumor cells as well as in mouse tumors. Using a specific immunoassay, we could detect the presence of corresponding anti-phospho-Thr56 eEF2 aAb in the serum of tumor-bearing mice (vs healthy mice). We further documented that the detection of these aAb preceded the detection of a palpable tumor mass in mice and validated the presence of anti-phospho-Thr56 eEF2 aAb in the serum of patients with adenomatous polyps and colorectal carcinoma. In conclusion, this study validates a phosphorylated form of eEF2 as a new TAA and more generally, provides evidence that integrating hypoxia upstream of SERPA offers a more relevant repertoire of TAA able to unmask the presence of circulating aAb.
Collapse
Affiliation(s)
- Marie Grandjean
- UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Brussels, Belgium
| | | | - Samuel Branders
- UCLouvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Machine Learning Group, Louvain-la-Neuve, Belgium
| | - Florence Defresne
- UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Brussels, Belgium
| | - Marc Dieu
- UNamur, Namur Research Institute for Life Sciences (NARILIS), Research Unit of Cell Biology (URBC), Namur, Belgium
| | - Pierre Dupont
- UCLouvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Machine Learning Group, Louvain-la-Neuve, Belgium
| | - Martine Raes
- UNamur, Namur Research Institute for Life Sciences (NARILIS), Research Unit of Cell Biology (URBC), Namur, Belgium
| | - Mark De Ridder
- UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Feron
- UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Brussels, Belgium
- * E-mail:
| |
Collapse
|