1
|
Jiao F, Meng L, Du K, Li X. The autophagy-lysosome pathway: a potential target in the chemical and gene therapeutic strategies for Parkinson's disease. Neural Regen Res 2025; 20:139-158. [PMID: 38767483 PMCID: PMC11246151 DOI: 10.4103/nrr.nrr-d-23-01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/06/2023] [Indexed: 05/22/2024] Open
Abstract
Parkinson's disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such as α-synuclein in neurons. As one of the major intracellular degradation pathways, the autophagy-lysosome pathway plays an important role in eliminating these proteins. Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance of α-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson's disease. Moreover, multiple genes associated with the pathogenesis of Parkinson's disease are intimately linked to alterations in the autophagy-lysosome pathway. Thus, this pathway appears to be a promising therapeutic target for treatment of Parkinson's disease. In this review, we briefly introduce the machinery of autophagy. Then, we provide a description of the effects of Parkinson's disease-related genes on the autophagy-lysosome pathway. Finally, we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy-lysosome pathway and their applications in Parkinson's disease.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Lingyan Meng
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Kang Du
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Xuezhi Li
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
2
|
Szachniewicz MM, Neustrup MA, van den Eeden SJF, van Meijgaarden KE, Franken KLMC, van Veen S, Koning RI, Limpens RWAL, Geluk A, Bouwstra JA, Ottenhoff THM. Evaluation of PLGA, lipid-PLGA hybrid nanoparticles, and cationic pH-sensitive liposomes as tuberculosis vaccine delivery systems in a Mycobacterium tuberculosis challenge mouse model - A comparison. Int J Pharm 2024; 666:124842. [PMID: 39424087 DOI: 10.1016/j.ijpharm.2024.124842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Tuberculosis (TB) continues to pose a global threat for millennia, currently affecting over 2 billion people and causing 10.6 million new cases and 1.3 million deaths annually. The only existing vaccine, Mycobacterium Bovis Bacillus Calmette-Guérin (BCG), provides highly variable and inadequate protection in adults and adolescents. This study explores newly developed subunit tuberculosis vaccines that use a multistage protein fusion antigen Ag85b-ESAT6-Rv2034 (AER). The protection efficacy, as well as in vivo induced immune responses, were compared for five vaccines: BCG; AER-CpG/MPLA mix; poly(D,L-lactic-co-glycolic acid) (PLGA); lipid-PLGA hybrid nanoparticles (NPs); and cationic pH-sensitive liposomes (the latter three delivering AER together with CpG and MPLA). All vaccines, except the AER-adjuvant mix, induced protection in Mycobacterium tuberculosis (Mtb)-challenged C57/Bl6 mice as indicated by a significant reduction in bacterial burden in lungs and spleens of the animals. Four AER-based vaccines significantly increased the number of circulating multifunctional CD4+ and CD8+ T-cells producing IL-2, IFNγ, and TNFα, exhibiting a central memory phenotype. Furthermore, AER-based vaccines induced an increase in CD69+ B-cell counts as well as high antigen-specific antibody titers. Unexpectedly, none of the observed immune responses were associated with the bacterial burden outcome, such that the mechanism responsible for the observed vaccine-induced protection of these vaccines remains unclear. These findings suggest the existence of non-classical protective mechanisms for Mtb infection, which could, once identified, provide interesting targets for novel vaccines.
Collapse
Affiliation(s)
- Mikołaj M Szachniewicz
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands.
| | - Malene A Neustrup
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - Susan J F van den Eeden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Krista E van Meijgaarden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Kees L M C Franken
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Suzanne van Veen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Roman I Koning
- Electron Microscopy Facility, Leiden University Medical Center (LUMC), the Netherlands
| | - Ronald W A L Limpens
- Electron Microscopy Facility, Leiden University Medical Center (LUMC), the Netherlands
| | - Annemieke Geluk
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - Tom H M Ottenhoff
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| |
Collapse
|
3
|
Parashar AK, Saraogi GK, Jain PK, Kurmi B, Shrivastava V, Arora V. Polymer-drug conjugates: revolutionizing nanotheranostic agents for diagnosis and therapy. Discov Oncol 2024; 15:641. [PMID: 39527173 PMCID: PMC11554983 DOI: 10.1007/s12672-024-01509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Nanotheranostics, an amalgamation of therapeutic and diagnostic capabilities at the nanoscale, is revolutionizing personalized medicine. Polymer-drug conjugates (PDCs) stand at the forefront of this arena, offering a multifaceted approach to treat complex diseases such as cancer. This review explores the recent advancements in PDCs, highlighting their design principles, working mechanisms, and the therapeutic applications. We discuss the incorporation of imaging agents into PDCs that allow for real-time monitoring of drug delivery and treatment efficacy. With the aim of improving patient care, the review examines how PDCs enable targeted drug delivery, minimize side effects, and provide valuable diagnostic data, hence enhancing the precision of medical interventions. We also address the challenges facing the clinical translation of PDCs, such as scalability, regulatory hurdles, and cost-effectiveness, providing a comprehensive outlook on the future of nanotheranostics in patient management.
Collapse
Affiliation(s)
- Ashish Kumar Parashar
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India, 201306.
| | | | | | - Balakdas Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | | | - Vandana Arora
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India, 201306
| |
Collapse
|
4
|
Chen T, Lau KSK, Singh A, Zhang YX, Taromsari SM, Salari M, Naguib HE, Morshead CM. Biodegradable stimulating electrodes for resident neural stem cell activation in vivo. Biomaterials 2024; 315:122957. [PMID: 39541841 DOI: 10.1016/j.biomaterials.2024.122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/14/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Brain stimulation has been recognized as a clinically effective strategy for treating neurological disorders. Endogenous brain neural precursor cells (NPCs) have been shown to be electrosensitive cells that respond to electrical stimulation by expanding in number, undergoing directed cathodal migration, and differentiating into neural phenotypes in vivo, supporting the application of electrical stimulation to promote neural repair. In this study, we present the design of a flexible and biodegradable brain stimulation electrode for temporally regulated neuromodulation of NPCs. Leveraging the cathodally skewed electrochemical window of molybdenum and the volumetric charge transfer properties of conductive polymer, we engineered the electrodes with high charge injection capacity for the delivery of biphasic monopolar stimulation. We demonstrate that the electrodes are biocompatible and can deliver an electric field sufficient for NPC activation for 7 days post implantation before undergoing resorption in physiological conditions, thereby eliminating the need for surgical extraction. The biodegradable electrode demonstrated its potential to be used for NPC-based neural repair strategies.
Collapse
Affiliation(s)
- Tianhao Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kylie Sin Ki Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Aryan Singh
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yi Xin Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sara Mohseni Taromsari
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Meysam Salari
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Hani E Naguib
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
6
|
Jin L, Liu H, Wang C, Mao C, Wu S, Zhang Y, Li Z, Zhu S, Jiang H, Cui Z, Zheng Y, Liu X. Interface/Dipole Polarized Antibiotics-Loaded Fe 3O 4/PB Nanoparticles for Non-Invasive Therapy of Osteomyelitis Under Medical Microwave Irradiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410917. [PMID: 39344940 DOI: 10.1002/adma.202410917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Due to their poor light penetration, photothermal therapy and photodynamic therapy are ineffective in treating deep tissue infections, such as osteomyelitis caused by Staphylococcus aureus (S. aureus). Here, a microwave (MW)-responsive magnetic targeting composite system consisting of ferric oxide (Fe3O4)/Prussian blue (PB) nanoparticles, gentamicin (Gent), and biodegradable poly(lactic-co-glycolic acid) (PLGA) is reported. The PLGA/Fe3O4/PB/Gent complex is used in combination with MW thermal therapy (MTT), MW dynamic therapy (MDT), and chemotherapy (CT) to treat acute osteomyelitis infected with S. aureus-infected. The powerful antibacterial effect of the PLGA/Fe3O4/PB/Gent is determined by the synergistic effects of heat and reactive oxygen species (ROS) generation by the Fe3O4/PB nanoparticles under MW irradiation and the effective release of Gent at the infection site via magnetic targeting. The antibacterial mechanism of the PLGA/Fe3O4/PB/Gent under MW irradiation is analyzed using bacterial transcriptome RNA sequencing. The MW heat and ROS reduce the activity of the protein transporters on the bacterial membrane, along with the transport of various ions and the acceleration of phosphate metabolism, which can lead to increased permeability of the bacterial membrane, damage the ribosome and DNA, and accompany the internal protein efflux of the bacteria, thus effectively killing the bacteria.
Collapse
Affiliation(s)
- Liguo Jin
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Hanpeng Liu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Congyang Mao
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Xiangmei Liu
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
7
|
Iorio F, El Khatib M, Wöltinger N, Turriani M, Di Giacinto O, Mauro A, Russo V, Barboni B, Boccaccini AR. Electrospun poly(ε-caprolactone)/poly(glycerol sebacate) aligned fibers fabricated with benign solvents for tendon tissue engineering. J Biomed Mater Res A 2024. [PMID: 39295227 DOI: 10.1002/jbm.a.37794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024]
Abstract
The electrospinning technique is a commonly employed approach to fabricate fibers intended for various tissue engineering applications. The aim of this study is to develop a novel strategy for tendon repair through the use of aligned poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS) fibers fabricated in benign solvents, and further explore the potential application of PGS in tendon tissue engineering (TTE). The fibers were characterized for their morphological and physicochemical properties; amniotic epithelial stem cells (AECs) were used to assess the fibers teno-inductive and immunomodulatory potential due to their ability to teno-differentiate undergoing first a stepwise epithelial to mesenchymal transition, and due to their documented therapeutic role in tendon regeneration. The addition of PGS to PCL improved the spinnability of the polymer solution, as well as the uniformity and directionality of the so-obtained fibers. The mechanical properties were in the range of most TTE applications, specifically in the case of PCL/PGS 4:1 and 2:1 ratios. Compared to PCL alone, the same ratios also allowed a better AECs infiltration and growth over 7 days of culture, and triggered the activation of tendon-related genes (SCX, COL1, TNMD) and the expression of tenomodulin (TNMD) at the protein level. Concerning the immunomodulatory properties, both PCL and PCL/PGS fibers negatively affected the immunomodulatory profile of AECs, up-regulating both anti-inflammatory (IL-10) and pro-inflammatory (IL-12) cytokines over 7 days of culture. Overall, PCL/PGS 2:1 fibers fabricated with benign solvents proved to be the most suitable composition for TTE application based on their topographical cues, mechanical properties, biocompatibility, and teno-inductive properties.
Collapse
Affiliation(s)
- Francesco Iorio
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Mohammad El Khatib
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Natalie Wöltinger
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Maura Turriani
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Oriana Di Giacinto
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Barbara Barboni
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
8
|
Yang J, Zeng H, Luo Y, Chen Y, Wang M, Wu C, Hu P. Recent Applications of PLGA in Drug Delivery Systems. Polymers (Basel) 2024; 16:2606. [PMID: 39339068 PMCID: PMC11435547 DOI: 10.3390/polym16182606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable and biocompatible copolymer in drug delivery systems (DDSs). In this article, we highlight the critical physicochemical properties of PLGA, including its molecular weight, intrinsic viscosity, monomer ratio, blockiness, and end caps, that significantly influence drug release profiles and degradation times. This review also covers the extensive literature on the application of PLGA in delivering small-molecule drugs, proteins, peptides, antibiotics, and antiviral drugs. Furthermore, we discuss the role of PLGA-based DDSs in the treating various diseases, including cancer, neurological disorders, pain, and inflammation. The incorporation of drugs into PLGA nanoparticles and microspheres has been shown to enhance their therapeutic efficacy, reduce toxicity, and improve patient compliance. Overall, PLGA-based DDSs holds great promise for the advancement of the treatment and management of multiple chronic conditions.
Collapse
Affiliation(s)
- Jie Yang
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Huiying Zeng
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Yusheng Luo
- International School, Jinan University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510660, China
| | - Miao Wang
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510660, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Ping Hu
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| |
Collapse
|
9
|
Marecki EK, Oh KW, Knight PR, Davidson BA. Poly(lactic-co-glycolic acid) nanoparticle fabrication, functionalization, and biological considerations for drug delivery. BIOMICROFLUIDICS 2024; 18:051503. [PMID: 39296325 PMCID: PMC11410388 DOI: 10.1063/5.0201465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Nanoparticles can be used for drug delivery and consist of many sizes and chemical compositions. They can accommodate a diverse population of drugs and can be made to target specific areas of the body. Fabrication methods generally follow either top-down or bottom-up manufacturing techniques, which have differing production controls, which determine nanoparticle characteristics including but not limited to size and encapsulation efficiency. Functionalizing these nanoparticles is done to add drugs, prevent aggregation, add positive charge, add targeting, etc. As the nanoparticles reach the target cells, cellular uptake occurs, drug is released, and the nanoparticle is broken down. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles have often been used for drug delivery applications as they have shown minimal toxicity, which has helped with US FDA approval. This review breaks down PLGA nanoparticle fabrication, functionalization, and biological considerations.
Collapse
Affiliation(s)
| | | | - Paul R Knight
- Department of Anesthesiology, The State University of New York at Buffalo, Buffalo, New York 14203, USA
| | - Bruce A Davidson
- Department of Anesthesiology, The State University of New York at Buffalo, Buffalo, New York 14203, USA
| |
Collapse
|
10
|
Shi R, Zhu Y, Lu W, Zhai R, Zhou M, Shi S, Chen Y. Nanomaterials: innovative approaches for addressing key objectives in periodontitis treatment. RSC Adv 2024; 14:27904-27927. [PMID: 39224639 PMCID: PMC11367407 DOI: 10.1039/d4ra03809f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease primarily caused by dental plaque, which is a significant global public health concern due to its high prevalence and severe impact on oral, and even systemic diseases. The current therapeutic plan focuses on three objectives: pathogenic bacteria inhibition, inflammation control, and osteogenic differentiation induction. Existing treatments still have plenty of drawbacks, thus, there is a pressing need for novel methods to achieve more effective treatment effects. Nanomaterials, as emerging materials, have been proven to exert their inherent biological properties or serve as stable drug delivery platforms, which may offer innovative solutions in periodontitis treatment. Nanomaterials utilized in periodontitis treatment fall into two categories, organic and inorganic nanomaterials. Organic nanomaterials are known for their biocompatibility and their potential to promote tissue regeneration and cell functions, including natural and synthetic polymers. Inorganic nanomaterials, such as metal, oxides, and mesoporous silica nanoparticles, exhibit unique physicochemical properties that make them suitable as antibacterial agents and drug delivery platforms. The inorganic nanosurface provides terrain induction for cell migration and osteogenic regeneration at defect sites by introducing different surface morphologies. Inorganic nanomaterials also play a role in antibacterial photodynamic therapy (aPDT) for eliminating pathogenic bacteria in the oral cavity. In this review, we will introduce multiple forms and applications of nanomaterials in periodontitis treatment and focus on their roles in addressing the key therapeutic objectives, to emphasize their promising future in achieving more effective and patient-friendly approaches toward periodontal tissue regeneration and overall health.
Collapse
Affiliation(s)
- Ruijianghan Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Weitong Lu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Ruohan Zhai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yang Chen
- Department of Pediatric Surgery, Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University Chengdu 610041 Sichuan China
| |
Collapse
|
11
|
Zhang WY, Zheng XL, Coghi PS, Chen JH, Dong BJ, Fan XX. Revolutionizing adjuvant development: harnessing AI for next-generation cancer vaccines. Front Immunol 2024; 15:1438030. [PMID: 39206192 PMCID: PMC11349682 DOI: 10.3389/fimmu.2024.1438030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
With the COVID-19 pandemic, the importance of vaccines has been widely recognized and has led to increased research and development efforts. Vaccines also play a crucial role in cancer treatment by activating the immune system to target and destroy cancer cells. However, enhancing the efficacy of cancer vaccines remains a challenge. Adjuvants, which enhance the immune response to antigens and improve vaccine effectiveness, have faced limitations in recent years, resulting in few novel adjuvants being identified. The advancement of artificial intelligence (AI) technology in drug development has provided a foundation for adjuvant screening and application, leading to a diversification of adjuvants. This article reviews the significant role of tumor vaccines in basic research and clinical treatment and explores the use of AI technology to screen novel adjuvants from databases. The findings of this review offer valuable insights for the development of new adjuvants for next-generation vaccines.
Collapse
Affiliation(s)
- Wan-Ying Zhang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiao-Li Zheng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Paolo Saul Coghi
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jun-Hui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bing-Jun Dong
- Gynecology Department, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Xing-Xing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
12
|
Zhang H, Song M, Zhuang S, Wang Z, Shi H, Song Z, Song C, Cen L. Development of α-Tocopherol Loaded PLGA Nanoparticles and Its Evaluation as a Novel Immune Adjuvant. Macromol Rapid Commun 2024:e2400400. [PMID: 38981020 DOI: 10.1002/marc.202400400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Indexed: 07/11/2024]
Abstract
With the continuous development of preventive and therapeutic vaccines, traditional adjuvants cannot provide sufficient immune efficacy and it is of high necessity to develop safe and effective novel nanoparticle-based vaccine adjuvants. α-Tocopherol (TOC) is commonly used in oil-emulsion adjuvant systems as an immune enhancer, yet its bioavailability is limited by poor water solubility. This study aims to develop TOC-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TOC-PLGA NPs) to explore the potential of TOC-PLGA NPs as a novel nanoparticle-immune adjuvant. TOC-PLGA NPs are prepared by a nanoprecipitation method and their physicochemical properties are characterized. It is shown that TOC-PLGA NPs are 110.8 nm, polydispersity index value of 0.042, and Zeta potential of -13.26 mV. The encapsulation efficiency and drug loading of NPs are 82.57% and 11.80%, respectively, and the cumulative release after 35 days of in vitro testing reaches 47%. Furthermore, TOC-PLGA NPs demonstrate a superior promotion effect on RAW 264.7 cell proliferation compared to PLGA NPs, being well phagocytosed and also promoting antigen uptake by macrophages. TOC-PLGA NPs can strongly upregulate the expression of co-stimulatory surface molecules and the secretion of cytokines. In conclusion, TOC-PLGA NPs can be a novel vaccine adjuvant with excellent biocompatibility and significant immune-enhancing activity.
Collapse
Affiliation(s)
- Huan Zhang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Meng Song
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Shiya Zhuang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Zining Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Hui Shi
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Zhuolang Song
- Shanghai Mingqi Energy Technology Co., Ltd, No. 29, Lane 155, Baocheng Road, Shanghai, 201199, China
| | - Chuanhe Song
- Shanghai Mingqi Energy Technology Co., Ltd, No. 29, Lane 155, Baocheng Road, Shanghai, 201199, China
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| |
Collapse
|
13
|
Shahzad KA, Wang Z, Li X, Li J, Xu M, Tan F. Immunomodulatory effect of PLGA-encapsulated mesenchymal stem cells-derived exosomes for the treatment of allergic rhinitis. Front Immunol 2024; 15:1429442. [PMID: 39040099 PMCID: PMC11260627 DOI: 10.3389/fimmu.2024.1429442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Allergic rhinitis (AR) is an upper airway inflammatory disease of the nasal mucosa. Conventional treatments such as symptomatic pharmacotherapy and allergen-specific immunotherapy have considerable limitations and drawbacks. As an emerging therapy with regenerative potential and immunomodulatory effect, mesenchymal stem cell-derived exosomes (MSC-Exos) have recently been trialed for the treatment of various inflammatory and autoimmune diseases. Methods In order to achieve sustained and protected release of MSC-Exos for intranasal administration, we fabricated Poly(lactic-co-glycolic acid) (PLGA) micro and nanoparticles-encapsulated MSC-Exos (PLGA-Exos) using mechanical double emulsion for local treatment of AR. Preclinical in vivo imaging, ELISA, qPCR, flow cytometry, immunohistochemical staining, and multiomics sequencing were used for phenotypic and mechanistic evaluation of the therapeutic effect of PLGA-Exos in vitro and in vivo. Results The results showed that our PLGA platform could efficiently encapsulate and release the exosomes in a sustained manner. At protein level, PLGA-Exos treatment upregulated IL-2, IL-10 and IFN-γ, and downregulated IL-4, IL-17 and antigen-specific IgE in ovalbumin (OVA)-induced AR mice. At cellular level, exosomes treatment reduced Th2 cells, increased Tregs, and reestablished Th1/Th2 balance. At tissue level, PLGA-Exos significantly attenuated the infiltration of immune cells (e.g., eosinophils and goblet cells) in nasal mucosa. Finally, multiomics analysis discovered several signaling cascades, e.g., peroxisome proliferator-activated receptor (PPAR) pathway and glycolysis pathway, that might mechanistically support the immunomodulatory effect of PLGA-Exos. Discussion For the first time, we present a biomaterial-facilitated local delivery system for stem cell-derived exosomes as a novel and promising strategy for AR treatment.
Collapse
Affiliation(s)
- Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai, China
| | - Maoxiang Xu
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
| |
Collapse
|
14
|
Xiang Q, Wan Y, Pu X, Lu M, Xu L, Yan R, Li X, Song X. Protective efficacy of Eimeria maxima EmLPL and EmTregIM-1 against homologous challenge in chickens. Poult Sci 2024; 103:103865. [PMID: 38810564 PMCID: PMC11166879 DOI: 10.1016/j.psj.2024.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Chicken coccidiosis has inflicted significant economic losses upon the poultry industry. The primary strategies for preventing and controlling chicken coccidiosis include anticoccidial drugs and vaccination. However, these approaches face limitations, such as drug residues and resistance associated with anticoccidial drugs, and safety concerns related to live vaccines. Consequently, the urgent development of innovative vaccines, such as subunit vaccines, is imperative. In previous study, we screened 2 candidate antigens: Eimeria maxima lysophospholipase (EmLPL) and E. maxima regulatory T cell inducing molecule 1 (EmTregIM-1). To investigate the immune protective effect of the 2 candidate antigens against Eimeria maxima (E. maxima) infection, we constructed recombinant plasmids, namely pET-28a-EmLPL and pET-28a-EmTregIM-1, proceeded to induce the expression of recombinant proteins of EmLPL (rEmLPL) and EmTregIM-1 (rEmTregIM-1). The immunogenic properties of these proteins were confirmed through western blot analysis. Targeting EmLPL and EmTregIM-1, we developed subunit vaccines and encapsulated them in PLGA nanoparticles, resulting in nano-vaccines: PLGA-rEmLPL and PLGA-rEmTregIM-1. The efficacy of these vaccines was assessed through animal protection experiments. The results demonstrated that rEmLPL and rEmTregIM-1 were successfully recognized by anti-E. maxima chicken sera and His-conjugated mouse monoclonal antibodies. Immunization with both subunit and nano-vaccines containing EmLPL and EmTregIM-1 markedly mitigated weight loss and reduced oocyst shedding in chickens infected with E. maxima. Furthermore, the anticoccidial indexes (ACI) for both rEmLPL and PLGA-rEmLPL exceeded 160, whereas those for rEmTregIM-1 and PLGA-rEmTregIM-1 were above 120 but did not reach 160, indicating superior protective efficacy of the rEmLPL and PLGA-rEmLPL formulations. By contrast, the protection afforded by rEmTregIM-1 and PLGA-rEmTregIM-1 was comparatively lower. Thus, EmLPL is identified as a promising candidate antigen for vaccine development against E. maxima infection.
Collapse
Affiliation(s)
- Quanjia Xiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yun Wan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xianglin Pu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
15
|
Nguyen HX, Kipping T, Banga AK. Polymeric Microneedles Enhance Transdermal Delivery of Therapeutics. Pharmaceutics 2024; 16:845. [PMID: 39065542 PMCID: PMC11280287 DOI: 10.3390/pharmaceutics16070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
This research presents the efficacy of polymeric microneedles in improving the transdermal permeation of methotrexate across human skin. These microneedles were fabricated from PLGA Expansorb® 50-2A and 50-8A and subjected to comprehensive characterization via scanning electron microscopy, Fourier-transform infrared spectroscopy, and mechanical analysis. We developed and assessed a methotrexate hydrogel for physicochemical and rheological properties. Dye binding, histological examinations, and assessments of skin integrity demonstrated the effective microporation of the skin by PLGA microneedles. We measured the dimensions of microchannels in the skin using scanning electron microscopy, pore uniformity analysis, and confocal microscopy. The skin permeation and disposition of methotrexate were researched in vitro. PLGA 50-8A microneedles appeared significantly longer, sharper, and more mechanically uniform than PLGA 50-2A needles. PLGA 50-8A needles generated substantially more microchannels, as well as deeper, larger, and more uniform channels in the skin than PLGA 50-2A needles. Microneedle insertion substantially reduced skin electrical resistance, accompanied by an elevation in transepidermal water loss values. PLGA 50-8A microneedle treatment provided a significantly higher cumulative delivery, flux, diffusion coefficient, permeability coefficient, and predicted steady-state plasma concentration; however, there was a shorter lag time than for PLGA 50-2A needles, base-treated, and untreated groups (p < 0.05). Conclusively, skin microporation using polymeric microneedles significantly improved the transdermal delivery of methotrexate.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam;
| | - Thomas Kipping
- MilliporeSigma, a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ajay K. Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
16
|
Dhamija P, Mehata AK, Tamang R, Bonlawar J, Vaishali, Malik AK, Setia A, Kumar S, Challa RR, Koch B, Muthu MS. Redox-Sensitive Poly(lactic- co-glycolic acid) Nanoparticles of Palbociclib: Development, Ultrasound/Photoacoustic Imaging, and Smart Breast Cancer Therapy. Mol Pharm 2024; 21:2713-2726. [PMID: 38706253 DOI: 10.1021/acs.molpharmaceut.3c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Breast cancer is one of the leading causes of mortality in women globally. The efficacy of breast cancer treatments, notably chemotherapy, is hampered by inadequate localized delivery of anticancer agents to the tumor site, resulting in compromised efficacy and increased systemic toxicity. In this study, we have developed redox-sensitive poly(lactic-co-glycolic acid) (PLGA) nanoparticles for the smart delivery of palbociclib (PLB) to breast cancer. The particle size of formulated PLB@PLGA-NPs (nonredox-sensitive) and RS-PLB@PLGA-NPs (redox-sensitive) NPs were 187.1 ± 1.8 nm and 193.7 ± 1.5 nm, respectively. The zeta potentials of nonredox-sensitive and redox-sensitive NPs were +24.99 ± 2.67 mV and +9.095 ± 1.87 mV, respectively. The developed NPs were characterized for morphological and various physicochemical parameters such as SEM, TEM, XRD, DSC, TGA, XPS, etc. The % entrapment efficiency of PLB@PLGA-NPs and RS-PLB@PLGA-NPs was found to be 85.48 ± 1.29% and 87.72 ± 1.55%, respectively. RS-PLB@PLGA-NPs displayed a rapid drug release at acidic pH and a higher GSH concentration compared to PLB@PLGA-NPs. The cytotoxicity assay in MCF-7 cells suggested that PLB@PLGA-NPs and RS-PLB@PLGA-NPs were 5.24-fold and 14.53-fold higher cytotoxic compared to the free PLB, respectively. Further, the cellular uptake study demonstrated that redox-sensitive NPs had significantly higher cellular uptake compared to nonredox-sensitive NPs and free Coumarin 6 dye. Additionally, AO/EtBr assay and reactive oxygen species analysis confirmed the superior activity of RS-PLB@PLGA-NPs over PLB@PLGA-NPs and free PLB. In vivo anticancer activity in dimethyl-benz(a)anthracene-induced breast cancer rats depicted that RS-PLB@PLGA-NPs was highly effective in reducing the tumor size, hypoxic tumor, and tumor vascularity compared to PLB@PLGA-NPs and free PLB. Further, hemocompatibility study reveals that the developed NPs were nonhemolytic to human blood. Moreover, an in vivo histopathology study confirmed that both nanoparticles were safe and nontoxic to the vital organs.
Collapse
Affiliation(s)
- Piyush Dhamija
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Rupen Tamang
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Jyoti Bonlawar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Vaishali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Shailendra Kumar
- SATHI, Central Discovery Centre, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ranadheer Reddy Challa
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India
| | - Biplob Koch
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
17
|
Lin J, Chen X, Li Y, Yu L, Chen Y, Zhang B. A dual-targeting therapeutic nanobubble for imaging-guided atherosclerosis treatment. Mater Today Bio 2024; 26:101037. [PMID: 38586870 PMCID: PMC10995877 DOI: 10.1016/j.mtbio.2024.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Atherosclerosis is a cardiovascular disease that seriously endangers human health. Low shear stress (LSS) is recognized as a vital factor in causing chronic inflammatory and further inducing the occurrence and development of atherosclerosis. Targeting imaging and treatment are of substantial significance for the diagnosis and therapy of atherosclerosis. On this ground, a kind of ultrasound (US) imaging-guided therapeutic polymer nanobubbles (NBs) with dual targeting of magnetism and antibody was rationally designed and constructed for the efficiently treating LSS-mediated atherosclerosis. Under the combined targeting effect of an external magnetic field and antibodies, the drug-loaded therapeutic NBs can be effectively accumulated in the inflammatory area caused by LSS. Upon US irradiation, the NBs can be selectively disrupted, leading to the rapid release of the loaded drugs at the targeted site. Notably, the US irradiation generates a cavitation effect that induces repairable micro gaps in nearby cells, thereby enhancing the uptake of released drugs and further improving the therapeutic effect. The prominent US imaging, efficient anti-inflammatory effect and treatment outcome of LSS-mediated atherosclerosis had been verified in vivo on a surgically constructed LSS-atherosclerosis animal model. This work showcased the potential of the designed NBs with multifunctionality for in vivo imaging, dual-targeting, and drug delivery in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jie Lin
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Xiaoying Chen
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Yi Li
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Luodan Yu
- Department of Radiology, Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
- Shanghai Institute of Materdicine, Shanghai, 200051, PR China
| | - Bo Zhang
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| |
Collapse
|
18
|
Pecorini G, Braccini S, Simoni S, Corti A, Parrini G, Puppi D. Additive Manufacturing of Wet-Spun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-Based Scaffolds Loaded with Hydroxyapatite. Macromol Biosci 2024; 24:e2300538. [PMID: 38534197 DOI: 10.1002/mabi.202300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Tissue engineering represents an advanced therapeutic approach for the treatment of bone tissue defects. Polyhydroxyalkanoates are a promising class of natural polymers in this context thanks to their biocompatibility, processing versatility, and mechanical properties. The aim of this study is the development by computer-aided wet-spinning of novel poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-based composite scaffolds for bone engineering. In particular, PHBV scaffolds are loaded with hydroxyapatite (HA), an osteoinductive ceramic, in order to tailor their biological activity and mechanical properties. PHBV blending with poly(lactide-co-glycolide) (PLGA) is also explored to increase the processing properties of the polymeric mixture used for composite scaffold fabrication. Different HA percentages, up to 15% wt., can be loaded into the PHBV or PHBV/PLGA scaffolds without compromising their interconnected porous architecture, as well as the polymer morphological and thermal properties, as demonstrated by scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. In addition, HA loading results in increased scaffold compressive stiffness to levels comparable to those of trabecular bone tissue, as well as in higher in vitro MC3T3-E1 cell viability and production of mineralized extracellular matrix, in comparison to what observed for unloaded scaffolds. The observed mechanical and biological properties suggest the suitability of the developed scaffolds for bone engineering.
Collapse
Affiliation(s)
- Gianni Pecorini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | - Simona Braccini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | - Stefano Simoni
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | - Andrea Corti
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | | | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| |
Collapse
|
19
|
Sa P, Singh P, Panda S, Swain RK, Dash R, Sahoo SK. Reversal of cisplatin resistance in oral squamous cell carcinoma by piperlongumine loaded smart nanoparticles through inhibition of Hippo-YAP signaling pathway. Transl Res 2024; 268:63-78. [PMID: 38499286 DOI: 10.1016/j.trsl.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Cisplatin alone or in combination with 5FU and docetaxel is the preferred chemotherapy regimen for advanced-stage OSCC patients. However, its use has been linked to recurrence and metastasis due to the development of drug resistance. Therefore, sensitization of cancer cells to conventional chemotherapeutics can be an effective strategy to overcome drug resistance. Piperlongumine (PL), an alkaloid, have shown anticancer properties and sensitizes numerous neoplasms, but its effect on OSCC has not been explored. However, low aqueous solubility and poor pharmacokinetics limit its clinical application. Therefore, to improve its therapeutic efficacy, we developed piperlongumine-loaded PLGA-based smart nanoparticles (smart PL-NPs) that can rapidly release PL in an acidic environment of cancer cells and provide optimum drug concentrations to overcome chemoresistance. Our results revealed that smart PL-NPs has high cellular uptake in acidic environment, facilitating the intracellular delivery of PL and sensitizing cancer cells to cisplatin, resulting in synergistic anticancer activity in vitro by increasing DNA damage, apoptosis, and inhibiting drug efflux. Further, we have mechanistically explored the Hippo-YAP signaling pathway, which is the critical mediator of chemoresistance, and investigated the chemosensitizing effect of PL in OSCC. We observed that PL alone and in combination with cisplatin significantly inhibits the activation of YAP and its downstream target genes and proteins. In addition, the combination of cisplatin with smart PL-NPs significantly inhibited tumor growth in two preclinical models (patient-derived cell based nude mice and zebrafish xenograft). Taken together, our findings suggest that smart PL-NPs with cisplatin will be a novel formulation to reverse cisplatin resistance in patients with advanced OSCC.
Collapse
Affiliation(s)
- Pratikshya Sa
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001, India
| | - Priya Singh
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001, India
| | - Sudhakar Panda
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India
| | - Rajeeb K Swain
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India
| | - Rupesh Dash
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India
| | - Sanjeeb Kumar Sahoo
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India.
| |
Collapse
|
20
|
Abid J, Khalil FMA, Saeed S, Khan SU, Iqbal I, Khan SU, Anthony S, Shahzad R, Koerniati S, Naz F. Nano revolution in cardiovascular health: Nanoparticles (NPs) as tiny titans for diagnosis and therapeutics. Curr Probl Cardiol 2024; 49:102466. [PMID: 38369205 DOI: 10.1016/j.cpcardiol.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Cardiovascular diseases (CVDs) are known as life-threatening illnessescaused by severe abnormalities in the cardiovascular system. They are a leading cause of mortality and morbidity worldwide.Nanotechnology integrated substantialinnovations in cardiovascular diagnostic and therapeutic at the nanoscale. This in-depth analysis explores cutting-edge methods for diagnosing CVDs, including nanotechnological interventions and crucial components for identifying risk factors, developing treatment plans, and monitoring patients' progress with chronic CVDs.Intensive research has gone into making nano-carriers that can image and treat patients. To improve the efficiency of treating CVDs, the presentreview sheds light on a decision-tree-based solution by investigating recent and innovative approaches in CVD diagnosis by utilizing nanoparticles (NPs). Treatment choices for chronic diseases like CVD, whose etiology might take decades to manifest, are very condition-specific and disease-stage-based. Moreover, thisreview alsobenchmarks the changing landscape of employing NPs for targeted and better drug administration while examining the limitations of various NPs in CVD diagnosis, including cost, space, time, and complexity. To better understand and treatment of cardiovascular diseases, the conversation moves on to the nano-cardiovascular possibilities for medical research.We also focus on recent developments in nanoparticle applications, the ways they might be helpful, and the medical fields where they may find future use. Finally, this reviewadds to the continuing conversation on improved diagnosis and treatment approaches for cardiovascular disorders by discussing the obstacles and highlighting the revolutionary effects of nanotechnology.
Collapse
Affiliation(s)
- Junaid Abid
- Department of Food Science and Technology, University of Haripur, Pakistan; State Key Laboratory of Food nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, College of Science and Arts, Department of Biology, MohayilAsirAbha, 61421, Saudi Arabia
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, QLD, 4111, Australia
| | - Shahid Ullah Khan
- Women Medical and Dental College, Khyber Medical University, Khyber Pakhtunkhwa, Pakistan; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Imran Iqbal
- Department of PLR, Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Stefan Anthony
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China.
| | - Raheel Shahzad
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong 16911, Indonesia
| | - Sri Koerniati
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia
| | - Farkhanda Naz
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China
| |
Collapse
|
21
|
Petro-Turnquist E, Pekarek MJ, Weaver EA. Swine influenza A virus: challenges and novel vaccine strategies. Front Cell Infect Microbiol 2024; 14:1336013. [PMID: 38633745 PMCID: PMC11021629 DOI: 10.3389/fcimb.2024.1336013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Swine Influenza A Virus (IAV-S) imposes a significant impact on the pork industry and has been deemed a significant threat to global public health due to its zoonotic potential. The most effective method of preventing IAV-S is vaccination. While there are tremendous efforts to control and prevent IAV-S in vulnerable swine populations, there are considerable challenges in developing a broadly protective vaccine against IAV-S. These challenges include the consistent diversification of IAV-S, increasing the strength and breadth of adaptive immune responses elicited by vaccination, interfering maternal antibody responses, and the induction of vaccine-associated enhanced respiratory disease after vaccination. Current vaccination strategies are often not updated frequently enough to address the continuously evolving nature of IAV-S, fail to induce broadly cross-reactive responses, are susceptible to interference, may enhance respiratory disease, and can be expensive to produce. Here, we review the challenges and current status of universal IAV-S vaccine research. We also detail the current standard of licensed vaccines and their limitations in the field. Finally, we review recently described novel vaccines and vaccine platforms that may improve upon current methods of IAV-S control.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matthew J. Pekarek
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric A. Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
22
|
Bārzdiņa A, Plotniece A, Sobolev A, Pajuste K, Bandere D, Brangule A. From Polymeric Nanoformulations to Polyphenols-Strategies for Enhancing the Efficacy and Drug Delivery of Gentamicin. Antibiotics (Basel) 2024; 13:305. [PMID: 38666981 PMCID: PMC11047640 DOI: 10.3390/antibiotics13040305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Gentamicin is an essential broad-spectrum aminoglycoside antibiotic that is used in over 40 clinical conditions and has shown activity against a wide range of nosocomial, biofilm-forming, multi-drug resistant bacteria. Nevertheless, the low cellular penetration and serious side effects of gentamicin, as well as the fear of the development of antibacterial resistance, has led to a search for ways to circumvent these obstacles. This review provides an overview of the chemical and pharmacological properties of gentamicin and offers six different strategies (the isolation of specific types of gentamicin, encapsulation in polymeric nanoparticles, hydrophobization of the gentamicin molecule, and combinations of gentamicin with other antibiotics, polyphenols, and natural products) that aim to enhance the drug delivery and antibacterial activity of gentamicin. In addition, factors influencing the synthesis of gentamicin-loaded polymeric (poly (lactic-co-glycolic acid) (PLGA) and chitosan) nanoparticles and the methods used in drug release studies are discussed. Potential research directions and future perspectives for gentamicin-loaded drug delivery systems are given.
Collapse
Affiliation(s)
- Ance Bārzdiņa
- Department of Pharmaceutical Chemistry, Riga Stradins University, 21 Konsula Str., LV-1007 Riga, Latvia; (A.P.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Aiva Plotniece
- Department of Pharmaceutical Chemistry, Riga Stradins University, 21 Konsula Str., LV-1007 Riga, Latvia; (A.P.)
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.S.); (K.P.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.S.); (K.P.)
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.S.); (K.P.)
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradins University, 21 Konsula Str., LV-1007 Riga, Latvia; (A.P.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradins University, 21 Konsula Str., LV-1007 Riga, Latvia; (A.P.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
| |
Collapse
|
23
|
Li Z, Huang W, Zhang M, Huo Y, Li F, Song L, Wu S, Yang Q, Li X, Zhang J, Yang L, Hao J, Kang L. Minocycline-loaded nHAP/PLGA microspheres for prevention of injury-related corneal angiogenesis. J Nanobiotechnology 2024; 22:134. [PMID: 38549081 PMCID: PMC10979583 DOI: 10.1186/s12951-024-02317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/26/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Corneal neovascularization (CoNV) threatens vision by disrupting corneal avascularity, however, current treatments, including pharmacotherapy and surgery, are hindered by limitations in efficacy and adverse effects. Minocycline, known for its anti-inflammatory properties, could suppress CoNV but faces challenges in effective delivery due to the cornea's unique structure. Therefore, in this study a novel drug delivery system using minocycline-loaded nano-hydroxyapatite/poly (lactic-co-glycolic acid) (nHAP/PLGA) nanoparticles was developed to improve treatment outcomes for CoNV. RESULTS Ultra-small nHAP was synthesized using high gravity technology, then encapsulated in PLGA by a double emulsion method to form nHAP/PLGA microspheres, attenuating the acidic by-products of PLGA degradation. The MINO@PLGA nanocomplex, featuring sustained release and permeation properties, demonstrated an efficient delivery system for minocycline that significantly inhibited the CoNV area in an alkali-burn model without exhibiting apparent cytotoxicity. On day 14, the in vivo microscope examination and ex vivo CD31 staining corroborated the inhibition of neovascularization, with the significantly smaller CoNV area (29.40% ± 6.55%) in the MINO@PLGA Tid group (three times daily) than that of the control group (86.81% ± 15.71%), the MINO group (72.42% ± 30.15%), and the PLGA group (86.87% ± 14.94%) (p < 0.05). Fluorescein sodium staining show MINO@PLGA treatments, administered once daily (Qd) and three times daily (Tid) demonstrated rapid corneal epithelial healing while the Alkali injury group and the DEX group showed longer healing times (p < 0.05). Additionally, compared to the control group, treatments with dexamethasone, MINO, and MINO@PLGA were associated with an increased expression of TGF-β as evidenced by immunofluorescence, while the levels of pro-inflammatory cytokines IL-1β and TNF-α demonstrated a significant decrease following alkali burn. Safety evaluations, including assessments of renal and hepatic biomarkers, along with H&E staining of major organs, revealed no significant cytotoxicity of the MINO@PLGA nanocomplex in vivo. CONCLUSIONS The novel MINO@PLGA nanocomplex, comprising minocycline-loaded nHAP/PLGA microspheres, has shown a substantial capacity for preventing CoNV. This study confirms the complex's ability to downregulate inflammatory pathways, significantly reducing CoNV with minimal cytotoxicity and high biosafety in vivo. Given these findings, MINO@PLGA stands as a highly promising candidate for ocular conditions characterized by CoNV.
Collapse
Affiliation(s)
- Zitong Li
- Department of Ophthalmology, Peking University First Hospital, Beijing, 100034, People's Republic of China
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, China
| | - Yan Huo
- Department of Ophthalmology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Feifei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Sitong Wu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Xiaoming Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jianjun Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| | - Jianchen Hao
- Department of Ophthalmology, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| |
Collapse
|
24
|
Hu K, Hou Z, Huang Y, Li X, Li X, Yang L. Recent development and future application of biodegradable ureteral stents. Front Bioeng Biotechnol 2024; 12:1373130. [PMID: 38572363 PMCID: PMC10987965 DOI: 10.3389/fbioe.2024.1373130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Ureteral stenting is a common clinical procedure for the treatment of upper urinary tract disorders, including conditions such as urinary tract infections, tumors, stones, and inflammation. Maintaining normal renal function by preventing and treating ureteral obstruction is the primary goal of this procedure. However, the use of ureteral stents is associated with adverse effects, including surface crusting, bacterial adhesion, and lower urinary tract symptoms (LUTS) after implantation. Recognizing the need to reduce the complications associated with permanent ureteral stent placement, there is a growing interest among both physicians and patients in the use of biodegradable ureteral stents (BUS). The evolution of stent materials and the exploration of different stent coatings have given these devices different roles tailored to different clinical needs, including anticolithic, antibacterial, antitumor, antinociceptive, and others. This review examines recent advances in BUS within the last 5 years, providing an in-depth analysis of their characteristics and performance. In addition, we present prospective insights into the future applications of BUS in clinical settings.
Collapse
Affiliation(s)
- Ke Hu
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanbin Huang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xueying Li
- College of Computer Science and Engineering, Dalian Minzu University, Dalian, China
| | - Xiancheng Li
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| |
Collapse
|
25
|
Hosseini SM, Borys B, Karimi-Abdolrezaee S. Neural stem cell therapies for spinal cord injury repair: an update on recent preclinical and clinical advances. Brain 2024; 147:766-793. [PMID: 37975820 DOI: 10.1093/brain/awad392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a leading cause of lifelong disabilities. Permanent sensory, motor and autonomic impairments after SCI are substantially attributed to degeneration of spinal cord neurons and axons, and disintegration of neural network. To date, minimal regenerative treatments are available for SCI with an unmet need for new therapies to reconstruct the damaged spinal cord neuron-glia network and restore connectivity with the supraspinal pathways. Multipotent neural precursor cells (NPCs) have a unique capacity to generate neurons, oligodendrocytes and astrocytes. Due to this capacity, NPCs have been an attractive cell source for cellular therapies for SCI. Transplantation of NPCs has been extensively tested in preclinical models of SCI in the past two decades. These studies have identified opportunities and challenges associated with NPC therapies. While NPCs have the potential to promote neuroregeneration through various mechanisms, their low long-term survival and integration within the host injured spinal cord limit the functional benefits of NPC-based therapies for SCI. To address this challenge, combinatorial strategies have been developed to optimize the outcomes of NPC therapies by enriching SCI microenvironment through biomaterials, genetic and pharmacological therapies. In this review, we will provide an in-depth discussion on recent advances in preclinical NPC-based therapies for SCI. We will discuss modes of actions and mechanism by which engrafted NPCs contribute to the repair process and functional recovery. We will also provide an update on current clinical trials and new technologies that have facilitated preparation of medical-grade human NPCs suitable for transplantation in clinical studies.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ben Borys
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
26
|
Hoseinpour R, Hasani A, Baradaran B, Abdolalizadeh J, Salehi R, Hasani A, Nabizadeh E, Yekani M, Hasani R, Kafil HS, Azizian K, Memar MY. Tuberculosis vaccine developments and efficient delivery systems: A comprehensive appraisal. Heliyon 2024; 10:e26193. [PMID: 38404880 PMCID: PMC10884459 DOI: 10.1016/j.heliyon.2024.e26193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Despite the widespread use of the Bacillus Calmette-Guérin (BCG) vaccine, Mycobacterium tuberculosis (MTB) continues to be a global burden. Vaccination has been proposed to prevent and treat tuberculosis (TB) infection, and several of them are in different phases of clinical trials. Though vaccine production is in progress but requires more attention. There are several TB vaccines in the trial phase, most of which are based on a combination of proteins/adjuvants or recombinant viral vectors used for selected MTB antigens. In this review, we attempted to discuss different types of TB vaccines based on the vaccine composition, the immune responses generated, and their clinical trial phases. Furthermore, we have briefly overviewed the effective delivery systems used for the TB vaccine and their effectiveness in different vaccines.
Collapse
Affiliation(s)
- Rasoul Hoseinpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Laboratory sciences and Microbiology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alka Hasani
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit, Sina Educational, Research, and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Applied Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Hossein Samadi Kafil
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Wang CPJ, Ko GR, Lee YY, Park J, Park W, Park TE, Jin Y, Kim SN, Lee JS, Park CG. Polymeric DNase-I nanozymes targeting neutrophil extracellular traps for the treatment of bowel inflammation. NANO CONVERGENCE 2024; 11:6. [PMID: 38332364 PMCID: PMC10853102 DOI: 10.1186/s40580-024-00414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a family of chronic disorders along the gastrointestinal tract. Because of its idiopathic nature, IBD does not have a fundamental cure; current available therapies for IBD are limited to prolonged doses of immunomodulatory agents. While these treatments may reduce inflammation, limited therapeutic efficacy, inconsistency across patients, and adverse side effects from aggressive medications remain as major drawbacks. Recently, excessive production and accumulation of neutrophil extracellular traps (NETs) also known as NETosis have been identified to exacerbate inflammatory responses and induce further tissue damage in IBD. Such discovery invited many researchers to investigate NETs as a potential therapeutic target. DNase-I is a natural agent that can effectively destroy NETs and, therefore, potentially reduce NETs-induced inflammations even without the use of aggressive drugs. However, low stability and rapid clearance of DNase-I remain as major limitations for further therapeutic applications. In this research, polymeric nanozymes were fabricated to increase the delivery and therapeutic efficacy of DNase-I. DNase-I was immobilized on the surface of polymeric nanoparticles to maintain its enzymatic properties while extending its activity in the colon. Delivery of DNase-I using this platform allowed enhanced stability and prolonged activity of DNase-I with minimal toxicity. When administered to animal models of IBD, DNase-I nanozymes successfully alleviated various pathophysiological symptoms of IBD. More importantly, DNase-I nanozyme administration successfully attenuated neutrophil infiltration and NETosis in the colon compared to free DNase-I or mesalamine.
Collapse
Affiliation(s)
- Chi-Pin James Wang
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Ga Ryang Ko
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Yun Young Lee
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI, 96813, USA
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoonhee Jin
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Se-Na Kim
- Research and Development Center, MediArk Inc., Cheongju, Chungbuk, 28644, Republic of Korea.
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Jung Seung Lee
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
28
|
Diedericks B, Kok AM, Mandiwana V, Lall N. A Review of the Potential of Poly-(lactide-co-glycolide) Nanoparticles as a Delivery System for an Active Antimycobacterial Compound, 7-Methyljuglone. Pharmaceutics 2024; 16:216. [PMID: 38399270 PMCID: PMC10893214 DOI: 10.3390/pharmaceutics16020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
7-Methyljuglone (7-MJ) is a pure compound isolated from the roots of Euclea natalensis A. DC., a shrub indigenous to South Africa. It exhibits significant promise as a potential treatment for the highly communicable disease tuberculosis (TB), owing to its effective antimycobacterial activity against Mycobacterium tuberculosis. Despite its potential therapeutic benefits, 7-MJ has demonstrated in vitro cytotoxicity against various cancerous and non-cancerous cell lines, raising concerns about its safety for consumption by TB patients. Therefore, this review focuses on exploring the potential of poly-(lactide-co-glycolic) acid (PLGA) nanoparticles as a delivery system, which has been shown to decrease in vitro cytotoxicity, and 7-MJ as an effective antimycobacterial compound.
Collapse
Affiliation(s)
- Bianca Diedericks
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
| | - Anna-Mari Kok
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- Research Fellow, South African International Maritime Institute (SAIMI), Nelson Mandela University, Gqeberha 6019, South Africa
| | - Vusani Mandiwana
- Chemicals Cluster, Centre for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 643001, India
- Senior Research Fellow, Bio-Tech R&D Institute, University of the West Indies, Kingston IAU-016615, Jamaica
| |
Collapse
|
29
|
Beniwal P, Toor AP. Functionalisation of lignin with urethane linkages and their strengthening effect on PLA composites. Int J Biol Macromol 2024; 258:129005. [PMID: 38159697 DOI: 10.1016/j.ijbiomac.2023.129005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Lignin was functionalised by crosslinking with hexamethylene diisocyanate (HDI) through the heterogenous reaction in the solvent dimethyl sulfoxide for preferential improvement in the mechanical properties of composites. The successful synthesis of lignin modified with HDI was confirmed by the instrumental analyses, e.g., FTIR, XPS, and FESEM. The incorporation of optimum crosslinked lignin in polylactic acid (PLA) matrix was systematically evaluated on the basis of their thermal stability, mechanical property, glass transition temperature (Tg), water contact angle, water absorption, and water permeability. The results displayed that incorporation of fillers had prominent effects on tensile tear strength, which could improve tensile strength up to 231 % and elongation at break up to 53 % due to the good interface compatibility between PLA and modified lignin. Further, with the inclusion of fillers, PLA composites exhibited higher crystallinity in comparison to neat PLA.
Collapse
Affiliation(s)
- Preeti Beniwal
- Dr SSB University Institute of Chemical Engineering and Technology, Panjab University, India
| | - Amrit Pal Toor
- Dr SSB University Institute of Chemical Engineering and Technology, Panjab University, India; Energy Research Centre, India.
| |
Collapse
|
30
|
Arshad I, Kanwal A, Zafar I, Unar A, Mouada H, Razia IT, Arif S, Ahsan M, Kamal MA, Rashid S, Khan KA, Sharma R. Multifunctional role of nanoparticles for the diagnosis and therapeutics of cardiovascular diseases. ENVIRONMENTAL RESEARCH 2024; 242:117795. [PMID: 38043894 DOI: 10.1016/j.envres.2023.117795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
The increasing burden of cardiovascular disease (CVD) remains responsible for morbidity and mortality worldwide; their effective diagnostic or treatment methods are of great interest to researchers. The use of NPs and nanocarriers in cardiology has drawn much interest. The present comprehensive review provides deep insights into the use of current and innovative approaches in CVD diagnostics to offer practical ways to utilize nanotechnological interventions and the critical elements in the CVD diagnosis, associated risk factors, and management strategies of patients with chronic CVDs. We proposed a decision tree-based solution by discussing the emerging applications of NPs for the higher number of rules to increase efficiency in treating CVDs. This review-based study explores the screening methods, tests, and toxicity to provide a unique way of creating a multi-parametric feature that includes cutting-edge techniques for identifying cardiovascular problems and their treatments. We discussed the benefits and drawbacks of various NPs in the context of cost, space, time and complexity that have been previously suggested in the literature for the diagnosis of CVDs risk factors. Also, we highlighted the advances in using NPs for targeted and improved drug delivery and discussed the evolution toward the nano-cardiovascular potential for medical science. Finally, we also examined the mixed-based diagnostic approaches crucial for treating cardiovascular disorders, broad applications and the potential future applications of nanotechnology in medical sciences.
Collapse
Affiliation(s)
- Ihtesham Arshad
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Ayesha Kanwal
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Ahsanullah Unar
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', Naples, Italy.
| | - Hanane Mouada
- Department of Process Engineering, Institute of science University Center of Tipaza, Tipaza, Algeria.
| | | | - Safina Arif
- Medical Lab Technology, University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China; King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia.
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam BinAbdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
31
|
Kumar Behera J, Kumar S, Sharma R, Jain A, Kumar Garg N, Khopade A, Sawant KK, Singh R, Nirbhavane P. Novel Discoveries and Clinical Advancements for Treating Onychomycosis: A Mechanistic Insight. Adv Drug Deliv Rev 2024; 205:115174. [PMID: 38161056 DOI: 10.1016/j.addr.2023.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Onychomycosis continues to be the most challenging disease condition for pharmaceutical scientists to develop an effective drug delivery system. Treatment challenges lie in incomplete cure and high relapse rate. Present compilation provides cumulative information on pathophysiology, diagnostic techniques, and conventional treatment strategies to manage onychomycosis. Novel technologies developed for successful delivery of antifungal molecules are also discussed in brief. Multidirectional information offered by this article also unlocks the panoramic view of leading patented technologies and clinical trials. The obtained clinical landscape recommends the use of advanced technology driven approaches, as a promising way-out for treatment of onychomycosis. Collectively, present review warrants the application of novel technologies for the successful management of onychomycosis. This review will assist readers to envision a better understanding about the technologies available for combating onychomycosis. We also trust that these contributions address and certainly will encourage the design and development of nanocarriers-based delivery vehicles for effective management of onychomycosis.
Collapse
Affiliation(s)
- Jitesh Kumar Behera
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, 247341, Uttar Pradesh, India
| | - Samarth Kumar
- Formulation Research & Development-Non-Orals Sun Pharmaceutical Industries Ltd, Vadodara, 390020, Gujarat, India; Department of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, M.P., India
| | - Ashay Jain
- Formulation Research & Development-Non-Orals Sun Pharmaceutical Industries Ltd, Vadodara, 390020, Gujarat, India.
| | - Neeraj Kumar Garg
- Formulation Research & Development-Non-Orals Sun Pharmaceutical Industries Ltd, Vadodara, 390020, Gujarat, India
| | - Ajay Khopade
- Formulation Research & Development-Non-Orals Sun Pharmaceutical Industries Ltd, Vadodara, 390020, Gujarat, India
| | - Krutika K Sawant
- Department of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Ranjit Singh
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, 247341, Uttar Pradesh, India
| | - Pradip Nirbhavane
- Amity Institute of Pharmacy, Amity University of Haryana, Gurgaon, 122413, India.
| |
Collapse
|
32
|
Yan B, Hua Y, Wang J, Shao T, Wang S, Gao X, Gao J. Surface Modification Progress for PLGA-Based Cell Scaffolds. Polymers (Basel) 2024; 16:165. [PMID: 38201830 PMCID: PMC10780542 DOI: 10.3390/polym16010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Poly(lactic-glycolic acid) (PLGA) is a biocompatible bio-scaffold material, but its own hydrophobic and electrically neutral surface limits its application as a cell scaffold. Polymer materials, mimics ECM materials, and organic material have often been used as coating materials for PLGA cell scaffolds to improve the poor cell adhesion of PLGA and enhance tissue adaptation. These coating materials can be modified on the PLGA surface via simple physical or chemical methods, and coating multiple materials can simultaneously confer different functions to the PLGA scaffold; not only does this ensure stronger cell adhesion but it also modulates cell behavior and function. This approach to coating could facilitate the production of more PLGA-based cell scaffolds. This review focuses on the PLGA surface-modified materials, methods, and applications, and will provide guidance for PLGA surface modification.
Collapse
Affiliation(s)
- Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Yabing Hua
- Department of Pharmacy, Xuzhou Medical University Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China;
| | - Jinyue Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Tianjiao Shao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Shan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| |
Collapse
|
33
|
Puente AA, Ortega-Rivera OA, Wirth DM, Pokorski JK, Steinmetz NF. Melt Processing Virus-Like Particle-Based Vaccine Candidates into Biodegradable Polymer Implants. Methods Mol Biol 2024; 2720:221-245. [PMID: 37775669 DOI: 10.1007/978-1-0716-3469-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Melt processing is an emerging production method to efficiently encapsulate proteins into polymeric devices for sustained release. In the context of vaccines, melt processing is well-suited to develop vaccine delivery devices that are stable outside the cold chain and can generate protective immunity from a single dose. We have demonstrated the compatibility of bacteriophage Qβ virus-like particles (VLPs) with hot-melt extrusion (HME) and have leveraged this technology to develop a single-dose vaccine candidate for vaccination against human papillomavirus (HPV). Here, we detail the methods for chemically conjugating an HPV peptide epitope from the L2 minor capsid protein to Qβ VLPs to generate HPV-Qβ particles. We outline techniques used to characterize HPV-Qβ particles, and we elaborate on the process to encapsulate HPV-Qβ into biodegradable poly(lactic-co-glycolic acid) (PLGA) implants and discuss methods for the materials characterization of the HPV-Qβ/polymer melts. The methods described could be adapted to other disease targets, i.e., by conjugation of a different peptide epitope, or transferred to other VLP systems suited for conjugation, immune response, or stability during processing. Such VLPs are ideally suited for use in HME, a mature, scalable, continuous, and solvent-free process which can be adapted to mold devices, therefore allowing the processing of the melts into various geometries, such as subcutaneous implants, or self-administrable microneedle patches.
Collapse
Affiliation(s)
- Armando A Puente
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Oscar A Ortega-Rivera
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA, USA
| | - David M Wirth
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA, USA
- Institute for Materials Design and Delivery, University of California San Diego, La Jolla, CA, USA
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA, USA.
- Institute for Materials Design and Delivery, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
34
|
Sharma R, Malviya R, Srivastava S, Ahmad I, Rab SO, Uniyal P. Targeted Treatment Strategies for Mitochondria Dysfunction: Correlation with Neurological Disorders. Curr Drug Targets 2024; 25:683-699. [PMID: 38910425 DOI: 10.2174/0113894501303824240604103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are an essential intracellular organelle for medication targeting and delivery since they seem to create energy and conduct many other cellular tasks, and mitochondrial dysfunctions and malfunctions lead to many illnesses. Many initiatives have been taken to detect, diagnose, and image mitochondrial abnormalities, and to transport and accumulate medicines precisely to mitochondria, all because of special mitochondrial aspects of the pathophysiology of cancer. In addition to the negative membrane potential and paradoxical mitochondrial dynamics, they include high temperatures, high levels of reactive oxygen species, high levels of glutathione, and high temperatures. Neurodegenerative diseases represent a broad spectrum of debilitating illnesses. They are linked to the loss of certain groups of neurons based on an individual's physiology or anatomy. The mitochondria in a cell are generally accepted as the authority with respect to ATP production. Disruption of this system is linked to several cellular physiological issues. The development of neurodegenerative disorders has been linked to mitochondrial malfunction, according to pathophysiological studies. There seems to be substantial evidence connecting mitochondrial dysfunction and oxidative stress to the development of neurodegenerative disorders. It has been extensively observed that mitochondrial malfunction triggers autophagy, which plays a role in neurodegenerative disorders. In addition, excitotoxicity and mitochondrial dysfunction have been linked to the development of neurodegenerative disorders. The pathophysiology of neurodegenerative illnesses has been linked to increased apoptosis and necrosis, as well as mitochondrial malfunction. A variety of synthetic and natural treatments have shown efficacy in treating neurodegenerative illnesses caused by mitochondrial failure. Neurodegenerative illnesses can be effectively treated with existing drugs that target mitochondria, although their precise formulations are poorly understood. Therefore, there is an immediate need to focus on creating drug delivery methods specifically targeted at mitochondria in the treatment and diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
- Era College of Pharmacy, Era University, Lucknow, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
35
|
Poulios C, Karagkiozaki V, Kapoukranidou D, Chakim Z, Zarampoukas T, Foroglou N, Logothetidis S. Bringing pathology to nanomedicine: a comparison of in vivo toxicity of polymeric nanoparticle carriers with and without chitosan coating. Virchows Arch 2023; 483:775-786. [PMID: 37402995 DOI: 10.1007/s00428-023-03581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023]
Abstract
Over the last years, there has been an increasing number of proposals for the use of nanomaterials in medicine. The safety of novel technologies must be verified, prior to their clinical application. Pathology has much to contribute towards this end. In this study, we compared the in vivo toxicity effects of poly- (lactic-co-glycolic acid) nanoparticles with and without chitosan shell. Both nanoparticle types were loaded with curcumin. The nanoparticles were assessed in vitro for potential cytotoxicity with cell viability studies. For the in vivo test, 36 adult Wistar rats were used, four of which were the control group. The remaining 32 were divided into 2 groups, each of which was administered differentially coated drug carriers: (A) nanoparticles without chitosan coating and (B) nanoparticles with chitosan coating. For both groups, the subcutaneous route was used for administration. Each group was further divided into 2 sub-groups of 8 animals each. The animals of the first sub-groups were sacrificed 24 h after the injection and those of the second on the 7th day. The control group was also divided into 2 subgroups of 2 animals each. At the appointed post-administrative date, the rats were sacrificed, and specimens from the brain, liver, kidneys, heart, stomach, lungs, and from the skin at the injection site were collected and studied histopathologically. The evaluation of both in vitro and in vivo testing shows that nanoparticles with chitosan have significantly less, if any, toxic effects compared to those without chitosan.
Collapse
Affiliation(s)
- Christos Poulios
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- European Society of Pathology, Brussels, Belgium.
| | - Varvara Karagkiozaki
- Laboratory of Thin Films, Nanobiomaterials-Nanosystems and Nanometrology, Faculty of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- BL NanoBiomed, Thessaloniki, Greece
| | - Dorothea Kapoukranidou
- Department of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Zena Chakim
- Laboratory of Thin Films, Nanobiomaterials-Nanosystems and Nanometrology, Faculty of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- BL NanoBiomed, Thessaloniki, Greece
| | - Thomas Zarampoukas
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Foroglou
- Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios Logothetidis
- Laboratory of Thin Films, Nanobiomaterials-Nanosystems and Nanometrology, Faculty of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
36
|
Wang EY, Sarmadi M, Ying B, Jaklenec A, Langer R. Recent advances in nano- and micro-scale carrier systems for controlled delivery of vaccines. Biomaterials 2023; 303:122345. [PMID: 37918182 DOI: 10.1016/j.biomaterials.2023.122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Vaccines provide substantial safety against infectious diseases, saving millions of lives each year. The recent COVID-19 pandemic highlighted the importance of vaccination in providing mass-scale immunization against outbreaks. However, the delivery of vaccines imposes a unique set of challenges due to their large molecular size and low room temperature stability. Advanced biomaterials and delivery systems such as nano- and mciro-scale carriers are becoming critical components for successful vaccine development. In this review, we provide an updated overview of recent advances in the development of nano- and micro-scale carriers for controlled delivery of vaccines, focusing on carriers compatible with nucleic acid-based vaccines and therapeutics that emerged amid the recent pandemic. We start by detailing nano-scale delivery systems, focusing on nanoparticles, then move on to microscale systems including hydrogels, microparticles, and 3D printed microneedle patches. Additionally, we delve into emerging methods that move beyond traditional needle-based applications utilizing innovative delivery systems. Future challenges for clinical translation and manufacturing in this rapidly advancing field are also discussed.
Collapse
Affiliation(s)
- Erika Yan Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Morteza Sarmadi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Binbin Ying
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ana Jaklenec
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
37
|
Dutta S, Noh S, Gual RS, Chen X, Pané S, Nelson BJ, Choi H. Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental Remediation Applications. NANO-MICRO LETTERS 2023; 16:41. [PMID: 38032424 PMCID: PMC10689718 DOI: 10.1007/s40820-023-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation. Metal-based degradable micromotor composed of magnesium (Mg), zinc (Zn), and iron (Fe) have promise due to their nontoxic fuel-free propulsion, favorable biocompatibility, and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media, efficient cargo delivery and favorable biocompatibility. A noteworthy number of degradable metal-based micromotors employ bubble propulsion, utilizing water as fuel to generate hydrogen bubbles. This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications. In addition, understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance. Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor. Here we review the design and recent advancements of metallic degradable micromotors. Furthermore, we describe the controlled degradation, efficient in vivo drug delivery, and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications. Moreover, we discuss micromotors' efficacy in detecting and destroying environmental pollutants. Finally, we address the limitations and future research directions of degradable metallic micromotors.
Collapse
Affiliation(s)
- Sourav Dutta
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Seungmin Noh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Roger Sanchis Gual
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, People's Republic of China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Hongsoo Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
38
|
Han B, Zhang R, Li L, Hu C, Li M, Liu J, Sun X, Fan W, Xie J, Lei Y. Reduction-responsive polymeric micelles for trans-corneal targeted delivery of microRNA-21-5p and glaucoma-specific gene therapy. J Mater Chem B 2023; 11:10433-10445. [PMID: 37885402 DOI: 10.1039/d3tb01430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The therapeutic value of microRNA (miRNA) for the treatment of glaucoma has become a focus of attention. However, naked miRNA cannot cross the corneal barrier and reach the target tissue by itself. Thus, the precise transport of miRNA to the target sites is key to the success of gene therapy. Herein, we selected a miRNA, namely miR-21-5p, based on its unique intraocular pressure (IOP) mechano-sensing property. Moreover, a biocompatible polymeric poly(L-lysine) (PLL) micelle conjugated with collagenase and ABCA1 antibody was judiciously constructed to achieve the trans-corneal and target delivery of miR-21-5p to the trabecular meshwork (TM) and Schlemm's canal (SC) tissues inside the eye. The topically administrated PLL micelles as an eye drop successfully crossed the cornea with the help of collagenase and then preferentially accumulated in the target TM/SC tissues under the guidance of the ABCA1 antibody. When endocytosed by TM/SC cells, the PLL micelles could be decomposed in the reductive lysosomal environment to release miR-21-5p for successfully lowering the IOP by activating the miR-21-5p/eNOS/MMP9 signaling axis, which will open new prospects for glaucoma-specific gene therapy.
Collapse
Affiliation(s)
- Binze Han
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Rong Zhang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Liping Li
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Chunchun Hu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Mengwei Li
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Jiamin Liu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, P. R. China.
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China.
| |
Collapse
|
39
|
Schreiner J, Rindt C, Wächter J, Jung N, Vogel-Kindgen S, Windbergs M. Influence of drug molecular weight on self-assembly and intestinal permeation of polymer-based nanocarriers. Int J Pharm 2023; 646:123483. [PMID: 37802258 DOI: 10.1016/j.ijpharm.2023.123483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
For oral delivery, the physicochemical properties of nanocarriers are decisive factors for permeation through the intestinal epithelium. These properties are determined by the composition of the nanocarriers as well as by the process parameters during their self-assembly. For macromolecular drugs, there is still little understanding of the drug-polymer interactions during nanocarrier self-assembly and the effects on carrier properties. In this study, the effect of drug molecular weight on nanocarrier self-assembly, physicochemical properties of nanocarriers as well as their permeation across the intestinal epithelium was investigated. Our results show that the drug molecular weight impacts the physicochemical properties of nanocarriers. Further, the physicochemical properties of the nanocarriers, governed by the molecular weight of the drug, determine their permeation properties across the intestinal epithelium. Comparative in vitro and ex vivo studies revealed that intestinal absorption is dependent on both, the properties of the tissue as well as properties of the carrier system. In conclusion, the molecular weight of drug payload is a key factor determining the physiochemical properties of polymeric nanocarriers and is closely linked to their oral absorption. Using different preclinical models to evaluate intestinal permeation of nanocarriers allows for novel insights into key formulation properties governing oral bioavailability.
Collapse
Affiliation(s)
- Jonas Schreiner
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Christopher Rindt
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jana Wächter
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
40
|
Balıbey FB, Bahadori F, Ergin Kizilcay G, Tekin A, Kanimdan E, Kocyigit A. Optimization of PLGA-DSPE hybrid nano-micelles with enhanced hydrophobic capacity for curcumin delivery. Pharm Dev Technol 2023; 28:843-855. [PMID: 37773031 DOI: 10.1080/10837450.2023.2264964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023]
Abstract
Poly (D, L Lactic-co-Glycolic acid) (PLGA) is an FDA-approved polymer. It is distinguished from other biocompatible polymers by its feasibility of production and safety for intravenous cancer tumor targeting. Curcumin (CUR) is a natural molecule with versatile bioactivities including inhibiting the nuclear Factor kappa B (Nf-kB) levels in cancer cells, increased by chemotherapy agents. Our group previously reported a successful decrease in the p65 (RelA) subunit of Nf-kB using 125 µg/ml CUR loaded into PLGA nano-micelles. However, this amount was insufficient to reduce all Nf-kB subunits. This study aimed to increase the hydrophobic capacity of PLGA toward CUR using 1,2-Distearoyl-sn-glycerol-3-phosphoethanolamine (DSPE), an FDA-approved phospholipid. PLGA-DSPE hybrid nano-micelles (HNM) were prepared using two different methods, oil-in-water (OiWa) and film preparation-rehydration (FiRe). The encapsulated CUR was successfully increased to 250 µg/ml using the FiRe method. Physicochemical characterization of CUR-loaded HNM was performed using DLS FT-IR, DSC, and HPLC. In HNM with a size of 156.6 nm, DSPE, incorporated with all functional groups of PLGA, and CUR was trapped in the core of this structure. The release profile of CUR was suitable for targeted cancer therapy and the Encapsulation Efficacy was 92%.
Collapse
Affiliation(s)
- Fatmanur Babalı Balıbey
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, Fatih, Istanbul, Turkey
- Department of Medical Biochemistry, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| | - Fatemeh Bahadori
- Department of Pharmaceutical Biotechnology, BezmialemVakif University, Istanbul, Turkey
- Department of Analytical Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | | - Adem Tekin
- Informatics Institute, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Ebru Kanimdan
- Department of Medical Biochemistry, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| |
Collapse
|
41
|
Kozan NG, Joshi M, Sicherer ST, Grasman JM. Porous biomaterial scaffolds for skeletal muscle tissue engineering. Front Bioeng Biotechnol 2023; 11:1245897. [PMID: 37854885 PMCID: PMC10579822 DOI: 10.3389/fbioe.2023.1245897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Volumetric muscle loss is a traumatic injury which overwhelms the innate repair mechanisms of skeletal muscle and results in significant loss of muscle functionality. Tissue engineering seeks to regenerate these injuries through implantation of biomaterial scaffolds to encourage endogenous tissue formation and to restore mechanical function. Many types of scaffolds are currently being researched for this purpose. Scaffolds are typically made from either natural, synthetic, or conductive polymers, or any combination therein. A major criterion for the use of scaffolds for skeletal muscle is their porosity, which is essential for myoblast infiltration and myofiber ingrowth. In this review, we summarize the various methods of fabricating porous biomaterial scaffolds for skeletal muscle regeneration, as well as the various types of materials used to make these scaffolds. We provide guidelines for the fabrication of scaffolds based on functional requirements of skeletal muscle tissue, and discuss the general state of the field for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jonathan M. Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
42
|
Xiao Z, Li Y, Xiong L, Liao J, Gao Y, Luo Y, Wang Y, Chen T, Yu D, Wang T, Zhang C, Chen Z. Recent Advances in Anti-Atherosclerosis and Potential Therapeutic Targets for Nanomaterial-Derived Drug Formulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302918. [PMID: 37698552 PMCID: PMC10582432 DOI: 10.1002/advs.202302918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Indexed: 09/13/2023]
Abstract
Atherosclerosis, the leading cause of death worldwide, is responsible for ≈17.6 million deaths globally each year. Most therapeutic drugs for atherosclerosis have low delivery efficiencies and significant side effects, and this has hampered the development of effective treatment strategies. Diversified nanomaterials can improve drug properties and are considered to be key for the development of improved treatment strategies for atherosclerosis. The pathological mechanisms underlying atherosclerosis is summarized, rationally designed nanoparticle-mediated therapeutic strategies, and potential future therapeutic targets for nanodelivery. The content of this study reveals the potential and challenges of nanoparticle use for the treatment of atherosclerosis and highlights new effective design ideas.
Collapse
Affiliation(s)
- Zhicheng Xiao
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yi Li
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Jun Liao
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yijun Gao
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yunchun Luo
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Ting Chen
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Dahai Yu
- Weihai Medical Area970 Hospital of Joint Logistic Support Force of PLAWeihai264200China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Chuan Zhang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityNew York11439USA
| |
Collapse
|
43
|
Dou D, Guo D, Shi Y, Li Y, Geng X, Wang L, Fan Y. Degradation behavior of 2D auxetic structure with biodegradable polymer under mechanical stress. J Mech Behav Biomed Mater 2023; 146:106089. [PMID: 37633171 DOI: 10.1016/j.jmbbm.2023.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Coronary heart disease is serious harm to human health. Vascular scaffold implantation is the main treatment. Biodegradable polymers are widely used in vascular scaffolds for good biodegradability and biocompatibility. However, whether the mechanical properties and radial expansion ability can successfully implant the scaffold without acute elastic retraction remains to be further studied. Because of the unique deformation mechanism, shear resistance, and resilience, auxetic structures can effectively avoid the restenosis of degraded vascular scaffolds. Firstly, the plane isotropic and plane anisotropic auxetic structural scaffolds were designed. The control structures (traditional structures) scaffolds were taken as the contrast. PCL was used to prepare the vascular auxetic by 3D printing. The printing parameters of fused deposition 3D printing, such as printing temperature, printing speed, and printing pressure, were studied to determine the optimal printing parameters of PCL. A self-assembled cyclic tensile stress loading device was used to investigate the degradation behavior of different scaffolds under different sizes of cyclic tensile stress, such as surface morphology, pH changes, mass loss rate, and mechanical properties. The increase of stress, surface roughness, and mass loss rate of the scaffolds all showed an increasing trend. pH gradually decreased from the fifth week, and the decrease was proportional to the stress. A large level of stress loading intensifies the decline of elastic modulus and the ultimate strength of the scaffold. In conclusion, the increase of periodic tensile stress will accelerate the degradation of scaffolds, and the degradation behavior of scaffolds with different configurations is different. The degradation rate of dilatant scaffolds was higher than that of control scaffolds, and the degradation rate of anisotropic auxetic scaffolds was higher than that of isotropic auxetic scaffolds, which provides a theoretical reference for the application of auxetic structure in the degradation of vascular scaffolds.
Collapse
Affiliation(s)
- Dandan Dou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Dongpei Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yanzhu Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yinghui Li
- Beijing No.2 Middle School, Beijing, 100083, China
| | - Xuezheng Geng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China; School of Engineering Medicine, Beihang University, Beijing, 100083, China
| |
Collapse
|
44
|
Yan J, Huang L, Feng J, Yang X. The Recent Applications of PLGA-Based Nanostructures for Ischemic Stroke. Pharmaceutics 2023; 15:2322. [PMID: 37765291 PMCID: PMC10535132 DOI: 10.3390/pharmaceutics15092322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the accelerated development of nanotechnology in recent years, nanomaterials have become increasingly prevalent in the medical field. The poly (lactic acid-glycolic acid) copolymer (PLGA) is one of the most commonly used biodegradable polymers. It is biocompatible and can be fabricated into various nanostructures, depending on requirements. Ischemic stroke is a common, disabling, and fatal illness that burdens society. There is a need for further improvement in the diagnosis and treatment of this disease. PLGA-based nanostructures can facilitate therapeutic compounds' passage through the physicochemical barrier. They further provide both sustained and controlled release of therapeutic compounds when loaded with drugs for the treatment of ischemic stroke. The clinical significance and potential of PLGA-based nanostructures can also be seen in their applications in cell transplantation and imaging diagnostics of ischemic stroke. This paper summarizes the synthesis and properties of PLGA and reviews in detail the recent applications of PLGA-based nanostructures for drug delivery, disease therapy, cell transplantation, and the imaging diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurology, Fushun Central Hospital, Fushun 113000, China;
| | - Lei Huang
- Department of Cardiac Function, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
45
|
Hamadani CM, Dasanayake GS, Gorniak ME, Pride MC, Monroe W, Chism CM, Heintz R, Jarrett E, Singh G, Edgecomb SX, Tanner EEL. Development of ionic liquid-coated PLGA nanoparticles for applications in intravenous drug delivery. Nat Protoc 2023; 18:2509-2557. [PMID: 37468651 DOI: 10.1038/s41596-023-00843-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/18/2023] [Indexed: 07/21/2023]
Abstract
Polymeric nanoparticles (NPs) are a promising platform for medical applications in drug delivery. However, their use as drug carriers is limited by biological (e.g., immunological) barriers after intravenous administration. Ionic liquids (ILs), formed from bulky asymmetric cations and anions, have a wide variety of physical internal and external interfacing properties. When assembled on polymeric NPs as biomaterial coatings, these external-interfacing properties can be tuned to extend their circulation half-life when intravenously injected, as well as drive biodistribution to sites of interest for selective organ accumulation. In our work, we are particularly interested in optimizing IL coatings to enable red blood cell hitchhiking in whole blood. In this protocol, we describe the preparation and physicochemical and biological characterization of choline carboxylate IL-coated polymeric NPs. The procedure is divided into five stages: (1) synthesis and characterization of choline-based ILs (1 week); (2) bare poly(lactic-co-glycolic acid) (50:50, acid terminated) Resomer 504H (PLGA) NP assembly, modified from previously established protocols, with dye encapsulation (7 h); (3) modification of the bare particles with IL coating (3 h); (4) physicochemical characterization of both PLGA and IL-PLGA NPs by dynamic light scattering, 1H nuclear magnetic resonance spectroscopy, and transmission electron microscopy (1 week); (5) ex vivo evaluation of intravenous biocompatibility (including serum-protein resistance and hemolysis) and red blood cell hitchhiking in whole BALB/c mouse blood via fluorescence-activated cell sorting (1 week). With practice and technique refinement, this protocol is accessible to late-stage graduate students and early-stage postdoctoral scientists.
Collapse
Affiliation(s)
- Christine M Hamadani
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Gaya S Dasanayake
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Meghan E Gorniak
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Mercedes C Pride
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Wake Monroe
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Claylee M Chism
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Rebekah Heintz
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Ethan Jarrett
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Gagandeep Singh
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Sara X Edgecomb
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Eden E L Tanner
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA.
| |
Collapse
|
46
|
Wang B, Dong Y, Cen Y, Chen S, Wen X, Liu K, Wu S, Yu L, Yu Y, Zhu Z, Ma J, Song B, Cui Y. PEI-PLGA nanoparticles significantly enhanced the immunogenicity of IsdB 137-361 proteins from Staphylococcus aureus. Immun Inflamm Dis 2023; 11:e928. [PMID: 37506158 PMCID: PMC10336661 DOI: 10.1002/iid3.928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Staphylococcus aureus seriously threatens human and animal health. IsdB137-361 of the iron surface determinant B protein (IsdB) from S. aureus exhibits the strong immunogenicity, but its immunoprotective effect is still to be further promoted. Because PEI-PLGA nanoparticles are generated by PEI conjugate with PLGA to develop great potential as a novel immune adjuvant, the immunogenicity of IsdB137-361 is likely be strengthened by PEI-PLGA. METHODS Here, PEI-PLGA nanoparticles containing IsdB137-361 proteins were prepared by optimizing the entrapment efficiency. Mice were immunized with IsdB137-361 -PEI-PLGA nanoparticles to assess their anti-S. aureus effects. The level of IFN-γ, IL-4, IL-17, and IL-10 cytokines from spleen lymphocytes in mice and generation of the antibodies against IsdB137-361 in serum was assessed by ELISA, the protective immune response was appraised by S. aureus challenge. RESULTS IsdB137-361 proteins loaded by PEI-PLGA were able to stimulate effectively the proliferation of spleen lymphocytes and increase the secretion of IFN-γ, IL-4, IL-17, and IL-10 cytokine from spleen lymphocytes, and significantly enhance generation of the antibodies against IsdB137-361 in serum, reduce the level of bacterial load in liver, spleen and kidney, and greatly improve the survival rate of mice after challenge. CONCLUSION These data showed that PEI-PLGA nanoparticles can significantly enhance the immunogenicity of IsdB137-361 proteins, and provide an important reference for the development of novel immune adjuvant.
Collapse
Affiliation(s)
- Beiyan Wang
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Yazun Dong
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Yuwei Cen
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Shujie Chen
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Xue Wen
- Water Environmental Protection Research Institute of Daqing Oilfield Water CompanyDaqingChina
| | - Kaiyue Liu
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Shuangshuang Wu
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Liquan Yu
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Yongzhong Yu
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Zhanbo Zhu
- College of Animal Science and Veterinary MedicineHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Jinzhu Ma
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Baifen Song
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary MedicineChina Agricul‐tural UniversityBeijingChina
| | - Yudong Cui
- College of Life Science and TechnologyHeilongjiang Bayi Agricultural UniversityDaqingChina
| |
Collapse
|
47
|
Rizzo S, Di Vito M, Mazzinelli E, Favuzzi I, Torelli R, Cacaci M, Arcovito A, Sanguinetti M, Garzoli S, Nocca G, Bugli F. Cinnamaldehyde Loaded Poly(lactide-co-glycolide) (PLGA) Microparticles for Antifungal Delivery Application against Resistant Candida albicans and Candida glabrata. PLANTS (BASEL, SWITZERLAND) 2023; 12:2437. [PMID: 37446996 DOI: 10.3390/plants12132437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Researchers have explored natural products to combat the antibiotic resistance of various microorganisms. Cinnamaldehyde (CIN), a major component of cinnamon essential oil (CC-EO), has been found to effectively inhibit the growth of bacteria, fungi, and mildew, as well as their production of toxins. Therefore, this study aimed to create a delivery system for CIN using PLGA microparticles (CIN-MPs), and to compare the antifungal activity of the carried and free CIN, particularly against antibiotic-resistant strains of Candida spp. The first part of the study focused on synthesizing and characterizing the PLGA MPs, which had no toxic effects in vivo and produced results in line with the existing literature. The subsequent experiments analyzed the antifungal effects of MPs-CIN on Candida albicans and Candida glabrata, both resistant (R) and sensitive (S) strains and compared its efficacy with the conventional addition of free CIN to the culture medium. The results indicated that conveyed CIN increased the antifungal effects of the product, particularly towards C. albicans R. The slow and prolonged release of CIN from the PLGA MPs ensured a constant and uniform concentration of the active principle within the cells.
Collapse
Affiliation(s)
- Silvia Rizzo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Elena Mazzinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ilaria Favuzzi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Margherita Cacaci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli 1, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Stefania Garzoli
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giuseppina Nocca
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli 1, 00168 Rome, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
48
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
49
|
Wan B, Bao Q, Burgess D. Long-acting PLGA microspheres: advances in excipient and product analysis toward improved product understanding. Adv Drug Deliv Rev 2023; 198:114857. [PMID: 37149041 DOI: 10.1016/j.addr.2023.114857] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) microspheres are a sustained-release drug delivery system with several successful commercial products used for the treatment of a variety of diseases. By utilizing PLGA polymers with different compositions, therapeutic agents can be released over durations varying from several weeks to several months. However, precise quality control of PLGA polymers and a fundamental understanding of all the factors associated with the performance of PLGA microsphere formulations remains challenging. This knowledge gap can hinder product development of both innovator and generic products. In this review, variability of the key release controlling excipient (PLGA), as well as advanced physicochemical characterization techniques for the PLGA polymer and PLGA microspheres are discussed. The relative merits and challenges of different in vitro release testing methods, in vivo pharmacokinetic studies, and in vitro-in vivo correlation development are also summarized. This review is intended to provide an in-depth understanding of long-acting microsphere products and consequently facilitate the development of these complex products.
Collapse
Affiliation(s)
- Bo Wan
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269
| | - Quanying Bao
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269
| | - Diane Burgess
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT 06269
| |
Collapse
|
50
|
Banka AL, Guevara MV, Brannon ER, Nguyen NQ, Song S, Cady G, Pinsky DJ, Uhrich KE, Adili R, Holinstat M, Eniola-Adefeso O. Cargo-free particles divert neutrophil-platelet aggregates to reduce thromboinflammation. Nat Commun 2023; 14:2462. [PMID: 37117163 PMCID: PMC10144907 DOI: 10.1038/s41467-023-37990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/11/2023] [Indexed: 04/30/2023] Open
Abstract
The combination of inflammation and thrombosis is a hallmark of many cardiovascular diseases. Under such conditions, platelets are recruited to an area of inflammation by forming platelet-leukocyte aggregates via interaction of PSGL-1 on leukocytes and P-selectin on activated platelets, which can bind to the endothelium. While particulate drug carriers have been utilized to passively redirect leukocytes from areas of inflammation, the downstream impact of these carriers on platelet accumulation in thromboinflammatory conditions has yet to be studied. Here, we explore the ability of polymeric particles to divert platelets away from inflamed blood vessels both in vitro and in vivo. We find that untargeted and targeted micron-sized polymeric particles can successfully reduce platelet adhesion to an inflamed endothelial monolayer in vitro in blood flow systems and in vivo in a lipopolysaccharide-induced, systemic inflammation murine model. Our data represent initial work in developing cargo-free, anti-platelet therapeutics specifically for conditions of thromboinflammation.
Collapse
Affiliation(s)
- Alison L Banka
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - M Valentina Guevara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emma R Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nhien Q Nguyen
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Shuang Song
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Gillian Cady
- Division of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David J Pinsky
- Division of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kathryn E Uhrich
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Holinstat
- Division of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|