1
|
Piña JO, Faucz FR, Padilla C, Floudas CS, Chittiboina P, Quezado M, Tatsi C. Spatial Transcriptomic Analysis of Pituitary Corticotroph Tumors Unveils Intratumor Heterogeneity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.04.23293576. [PMID: 37662403 PMCID: PMC10473795 DOI: 10.1101/2023.08.04.23293576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Spatial transcriptomic (ST) analysis of tumors provides a novel approach on studying gene expression along with the localization of tumor cells in their environment to uncover spatial interactions. Herein, we present ST analysis of corticotroph pituitary neuroendocrine tumors (PitNETs) from formalin-fixed, paraffin-embedded (FFPE) tissues. We report that the in situ annotation of tumor tissue can be inferred from the gene expression profiles and is in concordance with the annotation made by a pathologist. Furthermore, relative gene expression in the tumor corresponds to common protein staining used in the evaluation of PitNETs, such as reticulin and Ki-67 index. Finally, we identify intratumor heterogeneity; clusters within the same tumor may present with different secretory capacity and transcriptomic profiles, unveiling potential intratumor cell variability with possible therapeutic interest. Together, our results provide the first attempt to clarify the spatial cell profile in PitNETs.
Collapse
Affiliation(s)
- Jeremie Oliver Piña
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Fabio R. Faucz
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Cameron Padilla
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Charalampos S. Floudas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina Tatsi
- Unit on Hypothalamic and Pituitary Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Medina EJ, Zohdy YM, Porto E, Revuelta Barbero JM, Bray D, Maldonado J, Rodas A, Mayol M, Morales B, Neill S, Read W, Pradilla G, Ioachimescu A, Garzon-Muvdi T. Therapeutic response to pazopanib: case report and literature review on molecular abnormalities of aggressive prolactinomas. Front Endocrinol (Lausanne) 2023; 14:1195792. [PMID: 37529607 PMCID: PMC10388536 DOI: 10.3389/fendo.2023.1195792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Aggressive prolactinomas (APRLs) pose a significant clinical challenge due to their high rate of regrowth and potentially life-threatening complications. In this study, we present a case of a patient with an APRL who had a trial of multiple therapeutic modalities with the aim to provide a review of molecular abnormalities and management of APRLs by corroborating our experience with previous literature. Methods A total of 268 articles were reviewed and 46 were included. Case reports and series, and studies that investigated the molecular and/or genetic analysis of APRLs were included. Special care was taken to include studies describing prolactinomas that would fall under the APRL subtype according to the European Society of Endocrinology guidelines; however, the author did not label the tumor as "aggressive" or "atypical". Addiontionally, we present a case report of a 56-year-old man presented with an invasive APRL that was resistant to multiple treatment modalities. Results Literature review revealed multiple molecular abnormalities of APRLs including mutations in and/or deregulation of ADAMTS6, MMP-9, PITX1, VEGF, POU6F2, CDKN2A, and Rb genes. Mismatch repair genes, downregulation of microRNAs, and hypermethylation of specific genes including RASSF1A, p27, and MGMT were found to be directly associated with the aggressiveness of prolactinomas. APRL receptor analysis showed that low levels of estrogen receptor (ER) and an increase in somatostatin receptors (SSTR5) and epidermal growth factor receptors (EGFR) were associated with increased invasiveness and higher proliferation activity. Our patient had positive immunohistochemistry staining for PD-L1, MSH2, and MSH6, while microarray analysis revealed mutations in the CDKN2A and POU6F2 genes. Despite undergoing two surgical resections, radiotherapy, and taking dopamine agonists, the tumor continued to progress. The patient was administered pazopanib, which resulted in a positive response and the patient remained progression-free for six months. However, subsequent observations revealed tumor progression. The patient was started on PD-L1 inhibitor pembrolizumab, yet the tumor continued to progress. Conclusion APRLs are complex tumors that require a multidisciplinary management approach. Knowledge of the molecular underpinnings of these tumors is critical for understanding their pathogenesis and identifying potential targets for precision medical therapy.
Collapse
Affiliation(s)
- Eduardo J. Medina
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Youssef M. Zohdy
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Edoardo Porto
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - David Bray
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Justin Maldonado
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Alejandra Rodas
- Department of Otolaryngology, Emory University, Atlanta, GA, United States
| | - Miguel Mayol
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Bryan Morales
- Department of Pathology, Emory University, Atlanta, GA, United States
| | - Stewart Neill
- Department of Pathology, Emory University, Atlanta, GA, United States
| | - William Read
- Department of Oncology, Emory University, Atlanta, GA, United States
| | - Gustavo Pradilla
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | | | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Derwich A, Sykutera M, Bromińska B, Rubiś B, Ruchała M, Sawicka-Gutaj N. The Role of Activation of PI3K/AKT/mTOR and RAF/MEK/ERK Pathways in Aggressive Pituitary Adenomas-New Potential Therapeutic Approach-A Systematic Review. Int J Mol Sci 2023; 24:10952. [PMID: 37446128 PMCID: PMC10341524 DOI: 10.3390/ijms241310952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary tumors (PT) are mostly benign, although occasionally they demonstrate aggressive behavior, invasion of surrounding tissues, rapid growth, resistance to conventional treatments, and multiple recurrences. The pathogenesis of PT is still not fully understood, and the factors responsible for its invasiveness, aggressiveness, and potential for metastasis are unknown. RAF/MEK/ERK and mTOR signaling are significant pathways in the regulation of cell growth, proliferation, and survival, its importance in tumorigenesis has been highlighted. The aim of our review is to determine the role of the activation of PI3K/AKT/mTOR and RAF/MEK/ERK pathways in the pathogenesis of pituitary tumors. Additionally, we evaluate their potential in a new therapeutic approach to provide alternative therapies and improved outcomes for patients with aggressive pituitary tumors that do not respond to standard treatment. We perform a systematic literature search using the PubMed, Embase, and Scopus databases (search date was 2012-2023). Out of the 529 screened studies, 13 met the inclusion criteria, 7 related to the PI3K/AKT/mTOR pathway, and 7 to the RAF/MEK/ERK pathway (one study was used in both analyses). Understanding the specific factors involved in PT tumorigenesis provides opportunities for targeted therapies. We also review the possible new targeted therapies and the use of mTOR inhibitors and TKI in PT management. Although the RAF/MEK/ERK and PI3K/AKT/mTOR pathways play a pivotal role in the complex signaling network along with many interactions, further research is urgently needed to clarify the exact functions and the underlying mechanisms of these signaling pathways in the pathogenesis of pituitary adenomas and their role in its invasiveness and aggressive clinical outcome.
Collapse
Affiliation(s)
- Aleksandra Derwich
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Monika Sykutera
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Barbara Bromińska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| |
Collapse
|
4
|
Prognostic Significance of PTTG1 and Its Methylation in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3507436. [PMID: 35251171 PMCID: PMC8894038 DOI: 10.1155/2022/3507436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
Pituitary tumor-transforming gene-1 (PTTG1), one type of DNA repair-related gene, has been reported to be dysregulated in several tumors and serve as a tumor promotor. Previously, the oncogenic roles of PTTG1 were also reported in lung adenocarcinoma (LUAD). However, the prognostic values of PTTG1 in LUAD and the possible mechanism of its dysregulation have not been clarified. We analyzed TCGA datasets and reported that PTTG1 expression showed a distinct increase within LUAD specimens in comparison with nontumor specimens. Further survival study revealed that patients containing a great PTTG1 level had noticeably less overall survival and progression-free survival as compared with patients containing a low PTTG1 level. Multivariate analyses confirmed that PTTG1 expression was a factor of prognosis that is independent in terms of LUAD patients. Besides, PTTG1 methylation had a negative regulation on PTTG1, so PTTG1 had a high expressing level in LUAD tissues. However, the relation between hypermethylation and overall survival was not demonstrated using TCGA datasets. In addition, we observed that LUAD specimens with advanced stages exhibited a higher level of PTTG1. Finally, the dysregulated genes related to PTTG1 expression were screened, and KEGG assays revealed that the above genes were involved in the p53 signaling pathway, indicating the possible regulatory function of PTTG1 in the p53 signaling pathway. Overall, our findings suggest that PTTG1 may serve as an efficient clinical biomarker and a therapeutic target for patients suffering from LUAD.
Collapse
|
5
|
Sabatino ME, Grondona E, De Paul AL. Architects of Pituitary Tumour Growth. Front Endocrinol (Lausanne) 2022; 13:924942. [PMID: 35837315 PMCID: PMC9273718 DOI: 10.3389/fendo.2022.924942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
The pituitary is a master gland responsible for the modulation of critical endocrine functions. Pituitary neuroendocrine tumours (PitNETs) display a considerable prevalence of 1/1106, frequently observed as benign solid tumours. PitNETs still represent a cause of important morbidity, due to hormonal systemic deregulation, with surgical, radiological or chronic treatment required for illness management. The apparent scarceness, uncommon behaviour and molecular features of PitNETs have resulted in a relatively slow progress in depicting their pathogenesis. An appropriate interpretation of different phenotypes or cellular outcomes during tumour growth is desirable, since histopathological characterization still remains the main option for prognosis elucidation. Improved knowledge obtained in recent decades about pituitary tumorigenesis has revealed that this process involves several cellular routes in addition to proliferation and death, with its modulation depending on many signalling pathways rather than being the result of abnormalities of a unique proliferation pathway, as sometimes presented. PitNETs can display intrinsic heterogeneity and cell subpopulations with diverse biological, genetic and epigenetic particularities, including tumorigenic potential. Hence, to obtain a better understanding of PitNET growth new approaches are required and the systematization of the available data, with the role of cell death programs, autophagy, stem cells, cellular senescence, mitochondrial function, metabolic reprogramming still being emerging fields in pituitary research. We envisage that through the combination of molecular, genetic and epigenetic data, together with the improved morphological, biochemical, physiological and metabolically knowledge on pituitary neoplastic potential accumulated in recent decades, tumour classification schemes will become more accurate regarding tumour origin, behaviour and plausible clinical results.
Collapse
Affiliation(s)
- Maria Eugenia Sabatino
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba, Argentina
| | - Ezequiel Grondona
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Ana Lucía De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
- *Correspondence: Ana Lucía De Paul,
| |
Collapse
|
6
|
Yin L, He Z, Yi B, Xue L, Sun J. Simvastatin Suppresses Human Breast Cancer Cell Invasion by Decreasing the Expression of Pituitary Tumor-Transforming Gene 1. Front Pharmacol 2020; 11:574068. [PMID: 33250768 PMCID: PMC7672329 DOI: 10.3389/fphar.2020.574068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Statins, or 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, have been widely used to lower cholesterol and prevent cardiovascular diseases. Recent preclinical and clinical studies have shown that statins exert beneficial effects in the management of breast cancer, while the underlying mechanisms remain to be elucidated. Herein, we sought to investigate the effect of statins on the expression of pituitary tumor-transforming gene 1 (PTTG1), a critical gene involved in human breast cancer invasion and metastasis. Our results showed that PTTG1 is highly expressed in malignant Hs578T and MDA-MB-231 breast cancer cell lines as compared with normal or less malignant breast cancer cells. Furthermore, we found that the expression of PTTG1 was markedly suppressed by lipophilic statins, such as simvastatin, fluvastatin, mevastatin, and lovastatin, but not by hydrophilic pravastatin. In a dose and time dependent manner, simvastatin suppressed PTTG1 expression by decreasing PTTG1 mRNA stability in MDA-MB-231 cells. Both siRNA-mediated knockdown of PTTG1 expression and simvastatin treatment markedly inhibited MDA-MB-231 cell invasion, MMP-2 and MMP-9 activity, and the expression of PTTG1 downstream target genes, while ectopic expression of PTTG1 promoted cancer cell invasion, and partly reversed simvastatin-mediated inhibition of cell invasion. Mechanistically, we found that inhibition of PTTG1 expression by simvastatin was reversed by geranylgeranyl pyrophosphate, but not by farnesyl pyrophosphate, suggesting the involvement of geranylgeranyl synthesis in regulating PTTG1 expression. Our results identified statins as novel inhibitors of PTTG1 expression in breast cancer cells and provide mechanistic insights into how simvastatin prevent breast cancer metastasis as observed in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Litian Yin
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States.,Key Laboratory for Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhongmei He
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States.,Key Laboratory for Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Bing Yi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Linyuan Xue
- Key Laboratory for Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Cheng T, Wang Y, Lu M, Zhan X, Zhou T, Li B, Zhan X. Quantitative Analysis of Proteome in Non-functional Pituitary Adenomas: Clinical Relevance and Potential Benefits for the Patients. Front Endocrinol (Lausanne) 2019; 10:854. [PMID: 31920968 PMCID: PMC6915109 DOI: 10.3389/fendo.2019.00854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/21/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Non-functional pituitary adenoma (NFPA) is a common tumor that occurs in the pituitary gland, and generally without any symptoms at its early stage and without clinical elevation of hormones, which is commonly diagnosed when it grows up to compress its surrounding tissues and organs. Currently, the pathogenesis of NFPA has not been clarified yet. It is necessary to investigate molecular alterations in NFPA, and identify reliable biomarkers and drug therapeutic targets for effective treatments. Methods: Tandem mass tags (TMT)-based quantitative proteomics was used to identify and quantify proteins in NFPAs. GO and KEGG enrichment analyses were used to analyze the identified proteins. Differentially expressed genes (DEGs) between NFPA and control tissues were obtained from GEO datasets. These two sets of protein and gene data were analyzed to obtain overlapped molecules (genes; proteins), followed by further GO and KEGG pathway analyses of these overlapped molecules, and molecular network analysis to obtain the hub molecules with Cytoscape. Two hub molecules (SRC and AKT1) were verified with Western blotting. Results: Totally 6076 proteins in NFPA tissues were identified, and 3598 DEGs between NFPA and control tissues were identified from GEO database. Overlapping analysis of 6076 proteins and 3598 DEGs obtained 1088 overlapped molecules (DEGs; proteins). KEGG pathway analysis of 6076 proteins obtained 114 statistically significant pathways, including endocytosis, and spliceosome signaling pathways. KEGG pathway analysis of 1088 overlapped molecules obtained 52 statistically significant pathways, including focal adhesion, cGMP-PKG pathway, and platelet activation signaling pathways. These pathways play important roles in cell energy supply, adhesion, and maintenance of the tumor microenvironment. According to the association degree in Cytoscape, ten hub molecules (DEGs; proteins) were identified, including GAPDH, ALB, ACACA, SRC, ENO2, CALM1, POTEE, HSPA8, DECR1, and AKT1. Western-blotting analysis confirmed the upregulated expressions of SRC and PTMScan experiment confirmed the increased levels of pAKT1, in NFPAs compared to controls. Conclusions: This study established the large-scale quantitative protein profiling of NFPA tissue proteome. It offers a basis for subsequent in-depth proteomics analysis of NFPAs, and insight into the molecular mechanism of NFPAs. It also provided the basic data to discover reliable biomarkers and therapeutic targets for NFPA patients.
Collapse
Affiliation(s)
- Tingting Cheng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Ya Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Biao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Bostan M, Petrică-Matei GG, Ion G, Radu N, Mihăilă M, Hainăroşie R, Braşoveanu LI, Roman V, Constantin C, Neagu MT. Cisplatin effect on head and neck squamous cell carcinoma cells is modulated by ERK1/2 protein kinases. Exp Ther Med 2019; 18:5041-5051. [PMID: 31798724 PMCID: PMC6880449 DOI: 10.3892/etm.2019.8139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
The extracellular signal-regulated kinases (ERKs) are key transducers of the extracellular signals into intracellular responses and represent major molecular players in tumorigenesis. The aim of this study was to determine how curcumin (CRM) used as an adjuvant supports the apoptotic process induced by a single chemical agent treatment (cisplatin-CisPT) on two head and neck squamous cell carcinoma cell lines (FaDu and PE/CA-PJ49) and the involvement of ERK1/2 and/or p53 activation in this process. Data have shown that the CisPt effect is potentiated by CRM. CRM induced an increase of p53 protein phosphorylation in both cell lines. CisPt decreased p53 protein phosphorylation in FaDu cells, but increased it in PE/CA-PJ49 cells. Data showed that the constitutive expression of activated ERK1/2 protein-kinase was different in the two analyzed tumor cell lines. ERK1/2 activation status was essential for both cell processes, proliferation and apoptosis induced by CisPt and/or CRM treatment on squamous cell carcinoma cells. Our data suggest that p53 phosphorylation in the apoptotic process induced by CRM treatment might require the involvement of ERK1/2. In this regard the CisPt treatment suggested that p53 phosphorylation is ERK1/2 independent in FaDu cells having a p53 gene deletion and ERK1/2 dependent in PE/CA-PJ49 cells having a p53 gene amplification. Moreover, in both tumor cell lines our results support the involvement of p53 phosphorylation-ERK1/2 activation-dependent in the apoptosis induced by combined treatments (CisPt and CRM). The use of CRM as adjuvant could increase the efficiency of chemotherapy by modulating cellular activation processes of ERK1/2 signaling pathways. In conclusion, the particular mode of intervention by which ERK1/2 might influence cell proliferation and/or apoptosis processes depends on the type of therapeutic agent, the cells' particularities, and the activation status of the ERK1/2.
Collapse
Affiliation(s)
- Marinela Bostan
- ‘Stefan S. Nicolau’ Institute of Virology, Center of Immunology, 030304 Bucharest, Romania
- Department of Immunology, ‘Victor Babeș’ National Institute of Pathology, 050096 Bucharest, Romania
| | | | - Gabriela Ion
- ‘Stefan S. Nicolau’ Institute of Virology, Center of Immunology, 030304 Bucharest, Romania
| | - Nicoleta Radu
- Department of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Βucharest, Romania
- Biotechnology Department and National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Mirela Mihăilă
- ‘Stefan S. Nicolau’ Institute of Virology, Center of Immunology, 030304 Bucharest, Romania
| | - Răzvan Hainăroşie
- ‘Prof. Dr. Dorin Hociotă’ Institute of Phonoaudiology and Functional ENT Surgery, 061344 Bucharest, Romania
| | | | - Viviana Roman
- ‘Stefan S. Nicolau’ Institute of Virology, Center of Immunology, 030304 Bucharest, Romania
| | - Carolina Constantin
- Department of Immunology, ‘Victor Babeș’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Monica Teodora Neagu
- Department of Immunology, ‘Victor Babeș’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
9
|
Li N, Zhan X. Mitochondrial Dysfunction Pathway Networks and Mitochondrial Dynamics in the Pathogenesis of Pituitary Adenomas. Front Endocrinol (Lausanne) 2019; 10:690. [PMID: 31649621 PMCID: PMC6794370 DOI: 10.3389/fendo.2019.00690] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondrion is a multi-functional organelle, which is associated with various signaling pathway networks, including energy metabolism, oxidative stress, cell apoptosis, cell cycles, autophagy, and immunity process. Mitochondrial proteins have been discovered to modulate these signaling pathway networks, and multiple biological behaviors to adapt to various internal environments or signaling events of human pathogenesis. Accordingly, mitochondrial dysfunction that alters the bioenergetic and biosynthetic state might contribute to multiple diseases, including cell transformation and tumor. Multiomics studies have revealed that mitochondrial dysfunction, oxidative stress, and cell cycle dysregulation signaling pathways operate in human pituitary adenomas, which suggest mitochondria play critical roles in pituitary adenomas. Some drugs targeting mitochondria are found as a therapeutic strategy for pituitary adenomas, including melatonin, melatonin inhibitors, temozolomide, pyrimethamine, 18 beta-glycyrrhetinic acid, gossypol acetate, Yougui pill, T-2 toxin, grifolic acid, cyclosporine A, dopamine agonists, and paeoniflorin. This article reviews the latest experimental evidence and potential biological roles of mitochondrial dysfunction and mitochondrial dynamics in pituitary adenoma progression, potential molecular mechanisms between mitochondria and pituitary adenoma progression, and current status and perspectives of mitochondria-based biomarkers and targeted drugs for effective management of pituitary adenomas.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Popa ML, Popa AC, Tanase C, Gheorghisan-Galateanu AA. Acanthosis nigricans: To be or not to be afraid. Oncol Lett 2019; 17:4133-4138. [PMID: 30944606 PMCID: PMC6444334 DOI: 10.3892/ol.2018.9736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Acanthosis nigricans (AN), a skin disorder with high prevalence, represents a dermatological condition with esthetic implications, but otherwise mild symptoms. For any clinician, it is in fact the tip of the iceberg, leading him/her to investigate what lies beneath the surface, since AN points to a systemic problem or disease: metabolic disorder (most frequently), endocrine syndrome, medication side effects, malignancy, and genetic factors. Sometimes, it is the first observed sign of a malignancy or of diabetes mellitus, especially in patients with chronic metabolic disorder; therefore, it is not to be taken lightly. The present review summarizes the information in literature regarding the etiopathogenesis of AN. We propose a new classification that aims to better organize the different types of AN, with implications on the extent and urgency of the investigation plan, as well as various therapeutic algorithms. Therapy options are also presented, both systemic treatments that target the underlying disease, and local ones for esthetic reasons.
Collapse
Affiliation(s)
- Maria-Linda Popa
- Department of Cellular and Molecular Biology and Histology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | | | - Cristiana Tanase
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Ancuta-Augustina Gheorghisan-Galateanu
- Department of Cellular and Molecular Biology and Histology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- ‘C.I. Parhon’ National Institute of Endocrinology, 001863 Bucharest, Romania
| |
Collapse
|
11
|
Constantin C, Lupu AR, Fertig TE, Gherghiceanu M, Pop S, Ion RM, Neagu M. Unveiling Ga(III) phthalocyanine-a different photosensitizer in neuroblastoma cellular model. J Cell Mol Med 2018; 23:1086-1094. [PMID: 30451363 PMCID: PMC6349146 DOI: 10.1111/jcmm.14009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022] Open
Abstract
Phthalocyanines (Pc) and their metallated derivatives are strongly considered for photodynamic therapy (PDT) possessing unique properties as possible new photosensitizers (PS). We have used toxicological assessments, real-time monitoring of cellular impedance, and imagistic measurements for assessing the in vitro dark toxicity and PDT efficacy of Ga(III)-Pc in SHSy5Y neuroblastoma cells. We have established the non-toxic concentration range of Ga(III)-Pc, a compound which shows a high intracellular accumulation, with perinuclear distribution in confocal microscopy. By choosing Ga(III)Pc non-toxic dose, we performed in vitro experimental PDT hampering cellular proliferation. Our proposed Ga(III)-Pc could complete a future PS panel for neuroblastoma alternate therapy.
Collapse
Affiliation(s)
- Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania
| | - Andreea-Roxana Lupu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Tudor Emanuel Fertig
- The Pathology Unit, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Mihaela Gherghiceanu
- The Pathology Unit, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Sevinci Pop
- Molecular and Cellular Medicine Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Rodica-Mariana Ion
- Nanomedicine Research Group, National Institute for Research & Development in Chemistry and Petrochemistry, Bucharest, Romania
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania.,Doctoral School, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
12
|
Myokines as Possible Therapeutic Targets in Cancer Cachexia. J Immunol Res 2018; 2018:8260742. [PMID: 30426026 PMCID: PMC6217752 DOI: 10.1155/2018/8260742] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/23/2018] [Indexed: 01/04/2023] Open
Abstract
Cachexia is an extremely serious syndrome which occurs in most patients with different cancers, and it is characterized by systemic inflammation, a negative protein and energy balance, and involuntary loss of body mass. This syndrome has a dramatic impact on the patient's quality of life, and it is also associated with a low response to chemotherapy leading to a decrease in survival. Despite this, cachexia is still underestimated and often untreated. New research is needed in this area to understand this complex phenomenon and ultimately find treatment methods and therapeutic targets. The skeletal muscle can act as an endocrine organ. Signaling between muscles and other systems is done through myokines, cytokines, and proteins produced and released by myocytes. In this review, we would like to draw attention to some of the most important myokines that could have potential as biomarkers and therapeutic targets: myostatin, irisin, myonectin, decorin, fibroblast growth factor 21, interleukin-6, interleukin-8, and interleukin-15.
Collapse
|
13
|
Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. J Immunol Res 2018; 2018:2180373. [PMID: 30271792 PMCID: PMC6146775 DOI: 10.1155/2018/2180373] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Persistent, low-grade inflammation is now considered a hallmark feature of chronic kidney disease (CKD), being involved in the development of all-cause mortality of these patients. Although substantial improvements have been made in clinical care, CKD remains a major public health burden, affecting 10–15% of the population, and its prevalence is constantly growing. Due to its insidious nature, CKD is rarely diagnosed in early stages, and once developed, its progression is unfortunately irreversible. There are many factors that contribute to the setting of the inflammatory status in CKD, including increased production of proinflammatory cytokines, oxidative stress and acidosis, chronic and recurrent infections, altered metabolism of adipose tissue, and last but not least, gut microbiota dysbiosis, an underestimated source of microinflammation. In this scenario, a huge step forward was made by the increasing progression of omics approaches, specially designed for identification of biomarkers useful for early diagnostic and follow-up. Recent omics advances could provide novel insights in deciphering the disease pathophysiology; thus, identification of circulating biomarker panels using state-of-the-art proteomic technologies could improve CKD early diagnosis, monitoring, and prognostics. This review aims to summarize the recent knowledge regarding the relationship between inflammation and CKD, highlighting the current proteomic approaches, as well as the inflammasomes and gut microbiota dysbiosis involvement in the setting of CKD, culminating with the troubling bidirectional connection between CKD and renal malignancy, raised on the background of an inflammatory condition.
Collapse
|
14
|
Neagu M, Constantin C, Tampa M, Matei C, Lupu A, Manole E, Ion RM, Fenga C, Tsatsakis AM. Toxicological and efficacy assessment of post-transition metal (Indium) phthalocyanine for photodynamic therapy in neuroblastoma. Oncotarget 2018; 7:69718-69732. [PMID: 27626486 PMCID: PMC5342510 DOI: 10.18632/oncotarget.11942] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/02/2016] [Indexed: 12/28/2022] Open
Abstract
Metallo-phthalocyanines due to their photophysical characteristics as high yield of triplet state and long lifetimes, appear to be good candidates for photodynamic therapy (PDT). Complexes with diamagnetic metals such as Zn2+, Al3+ Ga3+ and In3+meet such requirements and are recognized as potential PDT agents. Clinically, Photofrin® PDT in neuroblastoma therapy proved in pediatric subjects diagnosed with progressive/recurrent malignant brain tumors increased progression free survival and overall survival outcome. Our study focuses on the dark toxicity testing of a Chloro-Indium-phthalocyanine photosensitizer (In-Pc) upon SH-SY5Y neuroblastoma cell line and its experimental in vitro PDT. Upon testing, In-Pc has shown a relatively high singlet oxygen quantum yield within the cells subjected to PDT (0.553), and 50 μg/mL IC50. Classical toxicological and efficacy assessment were completed with dynamic cellular impedance measurement methodology. Using this technology we have shown that long time incubation of neuroblastoma cell lines in In-Pc (over 5 days) does not significantly hinder cell proliferation when concentration are ≤ 10 μg/mL. When irradiating neuroblastoma cells loaded with non-toxic concentration of In-Pc, 50% of cells entered apoptosis. Transmission electron microscopy has confirmed apoptotic characteristics of cells. Investigating the proliferative capacity of the in vitro treated cells we have shown that cells that "escape" the irradiation protocol, present a reduced proliferative capacity. In conclusion, In-Pc represents another photosensitizer that can display sound PDT properties enhancing neuroblastoma therapy armentarium.
Collapse
Affiliation(s)
- Monica Neagu
- Faculty of Biology, University of Bucharest, Romania.,Immunobiology Laboratory and Alternative Testing Multi-Disciplinary Team, "Victor Babeş" National Institute of Pathology, Bucharest, Romania
| | - Carolina Constantin
- Immunobiology Laboratory and Alternative Testing Multi-Disciplinary Team, "Victor Babeş" National Institute of Pathology, Bucharest, Romania
| | - Mircea Tampa
- Dermatology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Clara Matei
- Dermatology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Andreea Lupu
- Immunobiology Laboratory and Alternative Testing Multi-Disciplinary Team, "Victor Babeş" National Institute of Pathology, Bucharest, Romania
| | - Emilia Manole
- Immunobiology Laboratory and Alternative Testing Multi-Disciplinary Team, "Victor Babeş" National Institute of Pathology, Bucharest, Romania.,Research Center, Colentina Clinical Hospital, Bucharest, Romania
| | - Rodica-Mariana Ion
- Nanomedicine Research Group, National Institute of R&D for Chemistry and Petrochemistry - ICECHIM, Bucharest, Romania.,Materials Engineering Department, Valahia University of Targovişte, Romania
| | - Concettina Fenga
- Section of Occupational Medicine, University of Messina, Messina, Italy
| | - Aristidis M Tsatsakis
- Department of Toxicology and Forensic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
15
|
Asari Y, Kageyama K, Nakada Y, Tasso M, Takayasu S, Niioka K, Ishigame N, Daimon M. Inhibitory effects of a selective Jak2 inhibitor on adrenocorticotropic hormone production and proliferation of corticotroph tumor AtT20 cells. Onco Targets Ther 2017; 10:4329-4338. [PMID: 28919782 PMCID: PMC5590765 DOI: 10.2147/ott.s141345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose The primary cause of Cushing’s disease is adrenocorticotropic hormone (ACTH)-producing pituitary adenomas. EGFR signaling induces POMC mRNA-transcript levels and ACTH secretion from corticotroph tumors. The Jak–STAT pathway is located downstream of EGFR signaling; therefore, a Jak2 inhibitor could be an effective therapy for EGFR-related tumors. In this study, we determined the effect of a potent and selective Jak2 inhibitor, SD1029, on ACTH production and proliferation in mouse AtT20 corticotroph tumor cells. Materials and methods AtT20 pituitary corticotroph tumor cells were cultured after transfection with PTTG1- or GADD45β-specific siRNA. Expression levels of mouse POMC, PTTG1, and GADD45β mRNAs were evaluated using quantitative real-time polymerase chain reaction. ACTH levels were measured using ACTH ELISA. Western blot analysis was performed to examine protein expression of phosphorylated STAT3/STAT3. Viable cells and DNA fragmentation were measured using a cell-proliferation assay and cell-death detection ELISA, respectively. Cellular DNA content was analyzed using fluorescence-activated cell sorting. Results SD1029 decreased POMC and PTTG1 mRNA and ACTH levels, while increasing GADD45β levels. The drug also decreased AtT20-cell proliferation and induced apoptosis, but did not alter cell-cycle progression. SD1029 also inhibited STAT3 phosphorylation. PTTG1 knockdown inhibited POMC mRNA levels and cell proliferation. However, combined treatment with PTTG1 knockdown and SD1029 had no additive effect on POMC mRNA levels or cell proliferation. GADD45β knockdown inhibited the SD1029-induced decrease in POMC mRNA levels and also partially inhibited the decrease in cell proliferation. Conclusion Both PTTG1 and GADD45β may be responsible, at least in part, for the Jak2-induced suppression of ACTH synthesis and cell proliferation. Accordingly, therapies that target EGFR-dependent Jak2/STAT3 may have clinical applications for treating Cushing’s disease.
Collapse
Affiliation(s)
- Yuko Asari
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Kazunori Kageyama
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Yuki Nakada
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Mizuki Tasso
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Shinobu Takayasu
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Kanako Niioka
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Noriko Ishigame
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
16
|
Voiculescu V, Calenic B, Ghita M, Lupu M, Caruntu A, Moraru L, Voiculescu S, Ion A, Greabu M, Ishkitiev N, Caruntu C. From Normal Skin to Squamous Cell Carcinoma: A Quest for Novel Biomarkers. DISEASE MARKERS 2016; 2016:4517492. [PMID: 27642215 PMCID: PMC5011506 DOI: 10.1155/2016/4517492] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
Squamous cells carcinoma (SCC) is the second most frequent of the keratinocyte-derived malignancies after basal cell carcinoma and is associated with a significant psychosocial and economic burden for both the patient himself and society. Reported risk factors for the malignant transformation of keratinocytes and development of SCC include ultraviolet light exposure, followed by chronic scarring and inflammation, exposure to chemical compounds (arsenic, insecticides, and pesticides), and immune-suppression. Despite various available treatment methods and recent advances in noninvasive or minimal invasive diagnostic techniques, the risk recurrence and metastasis are far from being negligible, even in patients with negative histological margins and lymph nodes. Analyzing normal, dysplastic, and malignant keratinocyte proteome holds special promise for novel biomarker discovery in SCC that could be used in the future for early detection, risk assessment, tumor monitoring, and development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Vlad Voiculescu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihaela Ghita
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Lupu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, Bucharest, Romania
| | - Liliana Moraru
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, Bucharest, Romania
| | - Suzana Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Alexandra Ion
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Nikolay Ishkitiev
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Constantin Caruntu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
17
|
Mihai S, Codrici E, Popescu ID, Enciu AM, Rusu E, Zilisteanu D, Albulescu R, Anton G, Tanase C. Proteomic Biomarkers Panel: New Insights in Chronic Kidney Disease. DISEASE MARKERS 2016; 2016:3185232. [PMID: 27667892 PMCID: PMC5030443 DOI: 10.1155/2016/3185232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease, despite being a "silent epidemic" disease, represents one of the main causes of mortality in general population, along with cardiovascular disease, which is the leading cause of poor prognosis for these patients. The specific objective of our study was to characterize the relationship between the inflammatory status, the bone disorders markers, and kidney failure in chronic kidney disease patient stages 2-4, in order to design a novel biomarker panel that improves early disease diagnosis and therapeutic response, thus being further integrated into clinical applications. A panel of proteomic biomarkers, assessed by xMAP array, which includes mediators of inflammation (IL-6, TNF-α) and mineral and bone disorder biomarkers (OPG, OPN, OCN, FGF-23, and Fetuin-A), was found to be more relevant than a single biomarker to detect early CKD stages. The association between inflammatory cytokines and bone disorders markers, IL-6, TNF-α, OPN, OPG, and FGF-23, reflects the severity of vascular changes in CKD and predicts disease progression. Proteomic xMAP analyses shed light on a new approach to clinical evaluation for CKD staging and prognosis.
Collapse
Affiliation(s)
- Simona Mihai
- 1Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Splaiul Independentei 99-101, Sector 5, 050096 Bucharest, Romania
| | - Elena Codrici
- 1Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Splaiul Independentei 99-101, Sector 5, 050096 Bucharest, Romania
| | - Ionela Daniela Popescu
- 1Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Splaiul Independentei 99-101, Sector 5, 050096 Bucharest, Romania
| | - Ana-Maria Enciu
- 1Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Splaiul Independentei 99-101, Sector 5, 050096 Bucharest, Romania
- 2Cellular and Molecular Medicine Department, Carol Davila University of Medicine and Pharmacy, No. 8 B-dul Eroilor Sanitari, Sector 5, 050474 Bucharest, Romania
| | - Elena Rusu
- 3Fundeni Clinic of Nephrology, Carol Davila University of Medicine and Pharmacy, Șoseaua Fundeni 258, Sector 2, 022328 Bucharest, Romania
- 4Fundeni Clinical Institute, Nephrology Department, Șoseaua Fundeni 258, Sector 2, 022328 Bucharest, Romania
| | - Diana Zilisteanu
- 3Fundeni Clinic of Nephrology, Carol Davila University of Medicine and Pharmacy, Șoseaua Fundeni 258, Sector 2, 022328 Bucharest, Romania
- 4Fundeni Clinical Institute, Nephrology Department, Șoseaua Fundeni 258, Sector 2, 022328 Bucharest, Romania
| | - Radu Albulescu
- 1Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Splaiul Independentei 99-101, Sector 5, 050096 Bucharest, Romania
- 5National Institute for Chemical Pharmaceutical R&D, Pharmaceutical Biotechnology Department, Calea Vitan 112, Sector 3, 031299 Bucharest, Romania
| | - Gabriela Anton
- 6Stefan S. Nicolau Institute of Virology, Molecular Virology Department, Șoseaua Mihai Bravu 285, Sector 3, 030304 Bucharest, Romania
| | - Cristiana Tanase
- 1Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Splaiul Independentei 99-101, Sector 5, 050096 Bucharest, Romania
- 7Faculty of Medicine, Titu Maiorescu University, Strada Dâmbovnicului 22, Sector 4, 040441 Bucharest, Romania
- *Cristiana Tanase:
| |
Collapse
|
18
|
Abstract
Proteomic technologies remain the main backbone of biomarkers discovery in cancer. The continuous development of proteomic technologies also enlarges the bioinformatics domain, thus founding the main pillars of cancer therapy. The main source for diagnostic/prognostic/therapy monitoring biomarker panels are molecules that have a dual role, being both indicators of disease development and therapy targets. Proteomic technologies, such as mass-spectrometry approaches and protein array technologies, represent the main technologies that can depict these biomarkers. Herein, we will illustrate some of the most recent strategies for biomarker discovery in cancer, including the development of immune-markers and the use of cancer stem cells as target therapy. The challenges of proteomic biomarker discovery need new forms of cross-disciplinary conglomerates that will result in increased and tailored access to treatments for patients; diagnostic companies would benefit from the enhanced co-development of companion diagnostics and pharmaceutical companies. In the technology optimization in biomarkers, immune assays are the leaders of discovery machinery.
Collapse
Affiliation(s)
- Cristiana Tanase
- a Victor Babes National Institute of Pathology , Bucharest , Romania
- b Faculty of Medicine , Titu Maiorescu University , Bucharest , Romania
| | - Radu Albulescu
- a Victor Babes National Institute of Pathology , Bucharest , Romania
- c National Institute for Chemical-Pharmaceutical R&D , Bucharest , Romania
| | - Monica Neagu
- a Victor Babes National Institute of Pathology , Bucharest , Romania
- d Faculty of Biology , Bucharest University , Bucharest , Romania
| |
Collapse
|
19
|
Tanase C, Codrici E, Popescu ID, Cruceru ML, Enciu AM, Albulescu R, Ciubotaru V, Arsene D. Angiogenic markers: molecular targets for personalized medicine in pituitary adenoma. Per Med 2013; 10:539-548. [PMID: 29776197 DOI: 10.2217/pme.13.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM Pituitary adenomas are typically slow-growing and histologically benign tumors that can occasionally behave in a malignant-like manner, invading adjacent structures or recurring after treatment. Using protein analysis methods and multiplex xMAP assays, we aimed to find out if these particular types of tumors express angiogenic markers VEGF and basic FGF (bFGF), which are associated with tumor growth and invasiveness, and quantify them in order to establish their usefulness as biomarkers. MATERIALS & METHODS We have analysed the expression of angiogenic markers VEGF and bFGF in serum and tissue specimens from 66 pituitary adenomas (43 invasive and 23 noninvasive). For serum analysis, we used xMAP and ELISA, and for tissue analysis, we performed histopathology and immunohistochemistry. RESULTS & CONCLUSION We measured the serum angiogenic factors in pituitary adenomas. The quantification methods revealed significant differences between pituitary adenoma patients and controls, for both VEGF (212.4 vs 112.5 pg/ml in controls) and bFGF (mean value of 12.6 vs 10.8 pg/ml in controls), and also differentiated between invasive and noninvasive adenomas (p < 0.05). The tissue expression of VEGF and bFGF strongly correlated with their serum level increase. Our findings can be further developed into methods for selection of patients suitable for personalized, antiangiogenic therapy.
Collapse
Affiliation(s)
- Cristiana Tanase
- Victor Babes National Institute of Pathology, 99-101 Spl. Independentei, 050096, Bucharest, Romania.
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 99-101 Spl. Independentei, 050096, Bucharest, Romania
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, 99-101 Spl. Independentei, 050096, Bucharest, Romania
| | | | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 99-101 Spl. Independentei, 050096, Bucharest, Romania
- Carol Davila University of Medicine, Bucharest, Romania
| | - Radu Albulescu
- Victor Babes National Institute of Pathology, 99-101 Spl. Independentei, 050096, Bucharest, Romania
- National Institute for Chemical-Pharmaceutical R&D, Bucharest, Romania
| | - Vasile Ciubotaru
- Bagdasar Arseni Hospital, Neurosurgery Department, Bucharest, Romania
| | - Dorel Arsene
- Victor Babes National Institute of Pathology, 99-101 Spl. Independentei, 050096, Bucharest, Romania
| |
Collapse
|
20
|
Lekva T, Berg JP, Fougner SL, Olstad OK, Ueland T, Bollerslev J. Gene expression profiling identifies ESRP1 as a potential regulator of epithelial mesenchymal transition in somatotroph adenomas from a large cohort of patients with acromegaly. J Clin Endocrinol Metab 2012; 97:E1506-14. [PMID: 22585092 DOI: 10.1210/jc.2012-1760] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT The epithelial marker E-cadherin plays a crucial role in epithelial-mesenchymal transition (EMT). Decreased protein content in somatotroph adenomas has been associated with increased tumor size, invasion, and poor response to somatostatin analog (SA) treatment, but the potential mechanisms of EMT progression in these adenomas are lacking. OBJECTIVE We hypothesized that characterization of EMT-related transcripts in somatotroph adenomas could identify novel therapeutic targets in individuals with poor response to SA treatment and provide more knowledge of the mechanism of EMT progression. PATIENTS Fifty-three patients with acromegaly participated in the study. RESEARCH DESIGN AND METHODS We performed microarray analysis of 16 adenomas, eight with high expression and eight with low expression of E-cadherin, in order to identify EMT-related transcripts. Candidate transcripts were further explored in vivo in 53 adenomas and in vitro in a rat pituitary GH-producing cell (GH3) after exploring three models for reducing E-cadherin and inducing a mesenchymal phenotype. RESULTS In vivo E-cadherin mRNA expression in tumor tissue is associated negatively with tumor size and invasiveness and positively with GH and IGF-I levels in serum and response to SA treatment. Microarray and subsequent PCR analysis identify several EMT-related genes associated with E-cadherin expression. In vitro, few of these EMT-related genes were regulated by silencing E-cadherin or by TGF-β1 treatment in GH3 cells. In contrast, silencing Esrp1 in GH3 cells regulated many of the EMT-related transcripts. CONCLUSION These results indicate that ESRP1 could be a master regulator of the EMT process in pituitary adenomas causing acromegaly.
Collapse
Affiliation(s)
- Tove Lekva
- Section of Specialized Endocrinology, Department of Endocrinology, and Research Institute for Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Pituitary adenomas may hypersecrete hormones (including prolactin, growth hormone and adrenocorticotropic hormone, and rarely follicle-stimulating hormone, luteinizing hormone or TSH) or may be nonfunctional. Despite their high prevalence in the general population, these tumors are invariably benign and exhibit features of differentiated pituitary cell function as well as premature proliferative arrest. Pathogenesis of dysregulated pituitary cell proliferation and unrestrained hormone hypersecretion may be mediated by hypothalamic, intrapituitary and/or peripheral factors. Altered expression of pituitary cell cycle genes, activation of pituitary selective oncoproteins or loss of pituitary suppressor factors may be associated with aberrant growth factor signaling. Considerable information on the etiology of these tumors has been derived from transgenic animal models, which may not accurately and universally reflect human tumor pathophysiology. Understanding subcellular mechanisms that underlie pituitary tumorigenesis will enable development of tumor aggression markers as well as novel targeted therapies.
Collapse
Affiliation(s)
- Shlomo Melmed
- Cedars-Sinai Medical Center, Academic Affairs Room 2015, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
22
|
Neagu M, Constantin C, Tanase C. Immune-related biomarkers for diagnosis/prognosis and therapy monitoring of cutaneous melanoma. Expert Rev Mol Diagn 2011; 10:897-919. [PMID: 20964610 DOI: 10.1586/erm.10.81] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skin melanoma, a life-threatening disease, has a recently reported worldwide increase in incidence, despite primary prevention. Skin melanoma statistics emphasize the need for finding markers related to the immune response of the host. The mechanisms that are able to over-power the local immune surveillance comprise molecules that can be valuable markers for diagnosis and prognosis. This article summarizes the immune markers that can monitor the disease stage and evaluate the efficacy of therapeutic interventions. Recent data regarding immunotherapy are presented in the context of tumor escape from immune surveillance and the immune molecules that are both targets and a means of monitoring. Perspectives for developing immune interventions for skin melanoma management and the position of tissue or soluble immune markers as a diagnostic/prognostic panel are evaluated. State-of-the-art technology is emphasized for developing immune molecular signatures for a complex characterization of the patient's immunological status.
Collapse
Affiliation(s)
- Monica Neagu
- Victor Babes' National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania.
| | | | | |
Collapse
|
23
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:384-93. [PMID: 20588116 DOI: 10.1097/med.0b013e32833c4b2b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|