1
|
Chen DQ, Inzunza Domínguez JA, Valle Uzeta JM, Pushparaj AP, Dickinson JE. Case report: Significant lesion reduction and neural structural changes following ibogaine treatments for multiple sclerosis. Front Immunol 2025; 16:1535782. [PMID: 39981248 PMCID: PMC11839422 DOI: 10.3389/fimmu.2025.1535782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Multiple sclerosis (MS) is a debilitating neurodegenerative disease characterized by demyelination and neuronal loss. Traditional therapies often fail to halt disease progression or reverse neurological deficits. Ibogaine, a psychoactive alkaloid, has been proposed as a potential neuroregenerative agent due to its multifaceted pharmacological profile. We present two case studies of MS patients who underwent a novel ibogaine treatment, highlighting significant neuroimaging changes and clinical improvements. Patient A demonstrated substantial lesion shrinkage and decreased Apparent Diffusion Coefficient (ADC) values, suggesting remyelination and reduced inflammation. Both patients exhibited cortical and subcortical alterations, particularly in regions associated with pain and emotional processing. These findings suggest that ibogaine may promote neuroplasticity and modulate neurocircuitry involved in MS pathology.
Collapse
Affiliation(s)
| | | | | | - Abhiram P. Pushparaj
- Ambio Life Sciences, Vancouver, BC, Canada
- Consulting Department, +ROI Regulatory Advisory, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Rudroff T. Frontal-striatal glucose metabolism and fatigue in patients with multiple sclerosis, long COVID, and COVID-19 recovered controls. Exp Brain Res 2024; 242:2125-2136. [PMID: 38970653 DOI: 10.1007/s00221-024-06882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
This study compared brain glucose metabolism using FDG-PET in the caudate nucleus, putamen, globus pallidus, thalamus, and dorsolateral prefrontal cortex (DLPFC) among patients with Long COVID, patients with fatigue, people with multiple sclerosis (PwMS) patients with fatigue, and COVID recovered controls. PwMS exhibited greater hypometabolism compared to long COVID patients with fatigue and the COVID recovered control group in all studied brain areas except the globus pallidus (effect size range 0.7-1.5). The results showed no significant differences in glucose metabolism between patients with Long COVID and the COVID recovered control group in these regions. These findings suggest that long COVID fatigue may involve non-CNS systems, neurotransmitter imbalances, or psychological factors not captured by FDG-PET, while MS-related fatigue is associated with more severe frontal-striatal circuit dysfunction due to demyelination and neurodegeneration. Symmetrical standardized uptake values (SUVs) between hemispheres in all groups imply that fatigue in these conditions may be related to global or network-level alterations rather than hemisphere-specific changes. Future studies should employ fine-grained analysis methods, explore other brain regions, and control for confounding factors to better understand the pathophysiology of fatigue in MS and long COVID. Longitudinal studies tracking brain glucose metabolism in patients with Long COVID could provide insights into the evolution of metabolic patterns as the condition progresses.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, E432 Field House, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
3
|
Zivadinov R, Schweser F, Jakimovski D, Bergsland N, Dwyer MG. Decoding Gray Matter Involvement in Multiple Sclerosis via Imaging. Neuroimaging Clin N Am 2024; 34:453-468. [PMID: 38942527 DOI: 10.1016/j.nic.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Multiple sclerosis (MS) is increasingly understood not only as a white matter disease but also involving both the deep and cortical gray matter (GM). GM pathology in people with MS (pwMS) includes the presence of lesions, leptomeningeal inflammation, atrophy, altered iron concentration, and microstructural changes. Studies using 7T and 3T MR imaging with optimized protocols established that GM damage is a principal driver of disease progression in pwMS. Future work is needed to incorporate the assessment of these GM imaging biomarkers into the clinical workup of pwMS and the assessment of treatment efficacy.
Collapse
Affiliation(s)
- Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Ferdinand Schweser
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
4
|
Murphy AJ, Wilton SD, Aung-Htut MT, McIntosh CS. Down syndrome and DYRK1A overexpression: relationships and future therapeutic directions. Front Mol Neurosci 2024; 17:1391564. [PMID: 39114642 PMCID: PMC11303307 DOI: 10.3389/fnmol.2024.1391564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Down syndrome is a genetic-based disorder that results from the triplication of chromosome 21, leading to an overexpression of many triplicated genes, including the gene encoding Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A). This protein has been observed to regulate numerous cellular processes, including cell proliferation, cell functioning, differentiation, and apoptosis. Consequently, an overexpression of DYRK1A has been reported to result in cognitive impairment, a key phenotype of individuals with Down syndrome. Therefore, downregulating DYRK1A has been explored as a potential therapeutic strategy for Down syndrome, with promising results observed from in vivo mouse models and human clinical trials that administered epigallocatechin gallate. Current DYRK1A inhibitors target the protein function directly, which tends to exhibit low specificity and selectivity, making them unfeasible for clinical or research purposes. On the other hand, antisense oligonucleotides (ASOs) offer a more selective therapeutic strategy to downregulate DYRK1A expression at the gene transcript level. Advances in ASO research have led to the discovery of numerous chemical modifications that increase ASO potency, specificity, and stability. Recently, several ASOs have been approved by the U.S. Food and Drug Administration to address neuromuscular and neurological conditions, laying the foundation for future ASO therapeutics. The limitations of ASOs, including their high production cost and difficulty delivering to target tissues can be overcome by further advances in ASO design. DYRK1A targeted ASOs could be a viable therapeutic approach to improve the quality of life for individuals with Down syndrome and their families.
Collapse
Affiliation(s)
- Aidan J. Murphy
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - May T. Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Craig S. McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
5
|
Bajrami A, Tamanti A, Peloso A, Ziccardi S, Guandalini M, Calderone M, Castellaro M, Pizzini FB, Montemezzi S, Marastoni D, Calabrese M. Ocrelizumab reduces cortical and deep grey matter loss compared to the S1P-receptor modulator in multiple sclerosis. J Neurol 2024; 271:2149-2158. [PMID: 38289534 PMCID: PMC11055717 DOI: 10.1007/s00415-023-12179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Ocrelizumab (OCR) and Fingolimod (FGL) are two high-efficacy treatments in multiple sclerosis which, besides their strong anti-inflammatory activity, may limit neurodegeneration. AIM To compare the effect of OCR and FGL on clinical and MRI endpoints. METHODS 95 relapsing-remitting patients (57 OCR, 38 FGL) clinically followed for 36 months underwent a 3-Tesla MRI at baseline and after 24 months. The annualized relapse rate, EDSS, new cortical/white matter lesions and regional cortical and deep grey matter volume loss were evaluated. RESULTS OCR reduced the relapse rate from 0.48 to 0.04, FGL from 0.32 to 0.05 (both p < 0.001). Compared to FGL, OCR-group experienced fewer new white matter lesions (12% vs 32%, p = 0.005), no differences in new cortical lesions, lower deep grey matter volume loss (- 0.12% vs - 0.66%; p = 0.002, Cohen's d = 0.54), lower global cortical thickness change (- 0.45% vs - 0.70%; p = 0.036; d = 0.42) and reduced cortical thinning/volume loss in several regions of interests, including those of parietal gyrus (d-range = 0.65-0.71), frontal gyrus (d-range = 0.47-0.60), cingulate (d-range = 0.41-0.72), insula (d = 0.36), cerebellum (cortex d = 0.72, white matter d = 0.44), putamen (d = 0.35) and thalamus (d = 0.31). The effect on some regional thickness changes was confirmed in patients without focal lesions. CONCLUSIONS When compared with FGL, patients receiving OCR showed greater suppression of focal MRI lesions accumulation and lower cortical and deep grey matter volume loss.
Collapse
Affiliation(s)
- Albulena Bajrami
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico "G.B. Rossi" Borgo Roma Piazzale L.A. Scuro, 10, 37134, Verona, Italy
- Neurology Unit, Ospedale S. Chiara, Azienda Provinciale per i Servizi Sanitari (APSS), Largo Medaglie d'oro, 9, 38122, Trento, Italy
| | - Agnese Tamanti
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico "G.B. Rossi" Borgo Roma Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Angela Peloso
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico "G.B. Rossi" Borgo Roma Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Stefano Ziccardi
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico "G.B. Rossi" Borgo Roma Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Maddalena Guandalini
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico "G.B. Rossi" Borgo Roma Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Milena Calderone
- Radiology Unit, Cmsr Veneto Medica S.R.L., Altavilla Vicentina, via Vicenza, 204, 36077, Vicenza, Italy
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, Via Giovanni Gradenigo, 6b , 35131, Padua, Italy
| | - Francesca B Pizzini
- Department of Diagnostics and Public Health, University of Verona, Policlinico "G.B. Rossi" Borgo Roma Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Stefania Montemezzi
- Department of Diagnostics and Public Health, University of Verona, Policlinico "G.B. Rossi" Borgo Roma Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Damiano Marastoni
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico "G.B. Rossi" Borgo Roma Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico "G.B. Rossi" Borgo Roma Piazzale L.A. Scuro, 10, 37134, Verona, Italy.
| |
Collapse
|
6
|
Bekkour I, Courtin E, Dulau-Metras C, Duffau P, Kremer L, Mathey G. Defining the course of neurosarcoidosis according to presentation at onset and disease modifying treatment: a cohort study of 84 patients. Ther Adv Neurol Disord 2023; 16:17562864231205954. [PMID: 38143513 PMCID: PMC10748905 DOI: 10.1177/17562864231205954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 12/26/2023] Open
Abstract
Background Neurosarcoidosis is a rare manifestation of sarcoidosis with heterogeneous presentations. Patient management is challenging due to the current lack of knowledge about the long-term disease course. Objective To identify specific disease courses of neurosarcoidosis according to the clinical and paraclinical presentations at onset. Methods We conducted an observational multicenter cohort study by retrospectively collecting data from the medical records of 84 patients diagnosed with definite, probable, or possible neurosarcoidosis in three tertiary referral centers in France (Nancy, Strasbourg, and Bordeaux). We collected demographic characteristics, clinical and paraclinical data at the beginning of patient management, and during follow-up under the different treatment lines. Two expert neurologists determined disease course profiles. Results The mean follow-up was 6.6 years. Almost every patient (96.4%) received steroids at some point of their follow-up. Tumor Necrosis Factor-alpha blockers were given in 10.7% as first-line treatment and in 33.3% during follow-up. Every patient presented with a relapsing disease, often monophasic (75%) and sometimes polyphasic with the recurrence of identical manifestations (11.9%). Patients developing new neurological symptoms during follow-up were a minority (13.1%). No patients exhibited a progressive course. Patients with isolated cranial nerves injury or aseptic meningitis always exhibited a monophasic course, and 62.5-75% of them had a full recovery after first-line treatments. This proportion was 15.6% in other forms of the disease. Those with peripheral presentations were more likely to present a polyphasic course than patients with other forms of neurosarcoidosis. Spinal cord presentations were monophasic, but resulted in sequelae and exhibited poor response to first-line treatments despite frequent use of TNF-alpha blockers. Conclusion Identification of these disease course profiles, based on the initial clinical and paraclinical presentation, could guide the clinician to select the optimal therapeutic approach and follow-up modalities for their patients with neurosarcoidosis.
Collapse
Affiliation(s)
- Inès Bekkour
- Department of Neurology, Nancy University Hospital, Nancy, France
| | - Edouard Courtin
- Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | | | - Pierre Duffau
- Department of Internal Medicine and Clinical Immunology, Bordeaux University Hospital, Bordeaux, France
- CNRS, ImmunoConcEpT, UMR 5164, University of Bordeaux, Bordeaux, France
| | - Laurent Kremer
- Department of Neurology, Strasbourg University Hospital, Strasbourg, France
- INSERM U1119, Strasbourg, France
| | - Guillaume Mathey
- Service de Neurologie, Hopital Central, CHRU de Nancy, 1 Avenue du Maréchal de Lattre de Tassigny, Nancy 54000, France
- Department of Neurology, Nancy University Hospital, Nancy, France
- CIC-Epidémiologie Clinique, Nancy University Hospital, INSERM, Université de Lorraine, Nancy, France
| |
Collapse
|
7
|
Gill AJ, Schorr EM, Gadani SP, Calabresi PA. Emerging imaging and liquid biomarkers in multiple sclerosis. Eur J Immunol 2023; 53:e2250228. [PMID: 37194443 PMCID: PMC10524168 DOI: 10.1002/eji.202250228] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
The advent of highly effective disease modifying therapy has transformed the landscape of multiple sclerosis (MS) care over the last two decades. However, there remains a critical, unmet need for sensitive and specific biomarkers to aid in diagnosis, prognosis, treatment monitoring, and the development of new interventions, particularly for people with progressive disease. This review evaluates the current data for several emerging imaging and liquid biomarkers in people with MS. MRI findings such as the central vein sign and paramagnetic rim lesions may improve MS diagnostic accuracy and evaluation of therapy efficacy in progressive disease. Serum and cerebrospinal fluid levels of several neuroglial proteins, such as neurofilament light chain and glial fibrillary acidic protein, show potential to be sensitive biomarkers of pathologic processes such as neuro-axonal injury or glial-inflammation. Additional promising biomarkers, including optical coherence tomography, cytokines and chemokines, microRNAs, and extracellular vesicles/exosomes, are also reviewed, among others. Beyond their potential integration into MS clinical care and interventional trials, several of these biomarkers may be informative of MS pathogenesis and help elucidate novel targets for treatment strategies.
Collapse
Affiliation(s)
- Alexander J. Gill
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Emily M. Schorr
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Sachin P. Gadani
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Peter A. Calabresi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
- Department of Neuroscience, Baltimore, MD, US
- Department of Ophthalmology, Baltimore, MD, US
| |
Collapse
|
8
|
de Caneda MAG, Rizzo MRL, Furlin G, Kupske A, Valentini BB, Ortiz RF, Silva CBDO, de Vecino MCA. Interrater reliability for the detection of cortical lesions on phase-sensitive inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Radiol Bras 2023; 56:187-194. [PMID: 37829590 PMCID: PMC10567094 DOI: 10.1590/0100-3984.2022.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 10/14/2023] Open
Abstract
Objective To assess the reliability of phase-sensitive inversion recovery (PSIR) magnetic resonance imaging (MRI) and its accuracy for determining the topography of demyelinating cortical lesions in patients with multiple sclerosis (MS). Materials and Methods This was a cross-sectional study conducted at a tertiary referral center for MS and other demyelinating disorders. We assessed the agreement among three raters for the detection and topographic classification of cortical lesions on fluid-attenuated inversion recovery (FLAIR) and PSIR sequences in patients with MS. Results We recruited 71 patients with MS. The PSIR sequences detected 50% more lesions than did the FLAIR sequences. For detecting cortical lesions, the level of interrater agreement was satisfactory, with a mean free-response kappa (κFR) coefficient of 0.60, whereas the mean κFR for the topographic reclassification of the lesions was 0.57. On PSIR sequences, the raters reclassified 366 lesions (20% of the lesions detected on FLAIR sequences), with excellent interrater agreement. There was a significant correlation between the total number of lesions detected on PSIR sequences and the Expanded Disability Status Scale score (ρ = 0.35; p < 0.001). Conclusion It seems that PSIR sequences perform better than do FLAIR sequences, with clinically satisfactory interrater agreement, for the detection and topographic classification of cortical lesions. In our sample of patients with MS, the PSIR MRI findings were significantly associated with the disability status, which could influence decisions regarding the treatment of such patients.
Collapse
|
9
|
Kalinowska-Lyszczarz A, Tillema JM, Tobin WO, Guo Y, Weigand SD, Metz I, Brück W, Lassmann H, Giraldo-Chica M, Port JD, Lucchinetti CF. Long-term clinical, imaging and cognitive outcomes association with MS immunopathology. Ann Clin Transl Neurol 2023; 10:339-352. [PMID: 36759436 PMCID: PMC10014012 DOI: 10.1002/acn3.51723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE In this observational study on a cohort of biopsy-proven central nervous system demyelinating disease consistent with MS, we examined the relationship between early-active demyelinating lesion immunopattern (IP) with subsequent clinical course, radiographic progression, and cognitive function. METHODS Seventy-five patients had at least one early-active lesion on biopsy and were pathologically classified into three immunopatterns based on published criteria. The median time from biopsy at follow-up was 11 years, median age at biopsy - 41, EDSS - 4.0. At last follow-up, the median age was 50, EDSS - 3.0. Clinical examination, cognitive assessment (CogState battery), and 3-Tesla-MRI (MPRAGE/FLAIR/T2/DIR/PSIR/DTI) were obtained. RESULTS IP-I was identified in 14/75 (19%), IP-II was identified in 41/75 (56%), and IP-III was identified in 18/75 (25%) patients. Patients did not differ significantly by immunopattern in clinical measures at onset or last follow-up. The proportions of disease courses after a median of 11 years were similar across immunopatterns, relapsing-remitting being most common (63%), followed by monophasic (32%). No differences in volumetric or DTI measures were found. CogState performance was similar for most tasks. A slight yet statistically significant difference was identified for episodic memory scores, with IP-III patients recalling one word less on average. INTERPRETATION In this study, immunopathological heterogeneity of early-active MS lesions identified at biopsy does not correlate with different long-term clinical, neuroimaging or cognitive outcomes. This could be explained by the fact that while active white matter lesions are pathological substrates for relapses, MS progression is driven by mechanisms converging across immunopatterns, regardless of pathogenic mechanisms driving the acute demyelinated plaque.
Collapse
Affiliation(s)
- Alicja Kalinowska-Lyszczarz
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Imke Metz
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Wien, Austria
| | - Monica Giraldo-Chica
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John D Port
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
10
|
Straub S, El-Sanosy E, Emmerich J, Sandig FL, Ladd ME, Schlemmer HP. Quantitative magnetic resonance imaging biomarkers for cortical pathology in multiple sclerosis at 7 T. NMR IN BIOMEDICINE 2023; 36:e4847. [PMID: 36259249 DOI: 10.1002/nbm.4847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Substantial cortical gray matter tissue damage, which correlates with clinical disease severity, has been revealed in multiple sclerosis (MS) using advanced magnetic resonance imaging (MRI) methods at 3 T and the use of ultra-high field, as well as in histopathology studies. While clinical assessment mainly focuses on lesions using T 1 - and T 2 -weighted MRI, quantitative MRI (qMRI) methods are capable of uncovering subtle microstructural changes. The aim of this ultra-high field study is to extract possible future MR biomarkers for the quantitative evaluation of regional cortical pathology. Because of their sensitivity to iron, myelin, and in part specifically to cortical demyelination, T 1 , T 2 , R 2 * , and susceptibility mapping were performed including two novel susceptibility markers; in addition, cortical thickness as well as the volumes of 34 cortical regions were computed. Data were acquired in 20 patients and 16 age- and sex-matched healthy controls. In 18 cortical regions, large to very large effect sizes (Cohen's d ≥ 1) and statistically significant differences in qMRI values between patients and controls were revealed compared with only four regions when using more standard MR measures, namely, volume and cortical thickness. Moreover, a decrease in all susceptibility contrasts ( χ , χ + , χ - ) and R 2 * values indicates that the role of cortical demyelination might outweigh inflammatory processes in the form of iron accumulation in cortical MS pathology, and might also indicate iron loss. A significant association between susceptibility contrasts as well as R 2 * of the caudal middle frontal gyrus and disease duration was found (adjusted R2 : 0.602, p = 0.0011). Quantitative MRI parameters might be more sensitive towards regional cortical pathology compared with the use of conventional markers only and therefore may play a role in early detection of tissue damage in MS in the future.
Collapse
Affiliation(s)
- Sina Straub
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Edris El-Sanosy
- Division Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian Emmerich
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik L Sandig
- Division Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
11
|
Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022; 17:34. [PMID: 35526004 PMCID: PMC9077942 DOI: 10.1186/s13024-022-00538-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
The dietary consumption of cuprizone – a copper chelator – has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action ‘intrinsic cell damage’. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells – neutrophils or T-cells. We term this mode of action ‘extrinsic cellular damage’. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.
Collapse
Affiliation(s)
- Martin Zirngibl
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Peggy Assinck
- Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anastasia Sizov
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - Jason R Plemel
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada. .,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
12
|
The effect of gadolinium-based contrast-agents on automated brain atrophy measurements by FreeSurfer in patients with multiple sclerosis. Eur Radiol 2022; 32:3576-3587. [PMID: 34978580 PMCID: PMC9038813 DOI: 10.1007/s00330-021-08405-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine whether reliable brain atrophy measures can be obtained from post-contrast 3D T1-weighted images in patients with multiple sclerosis (MS) using FreeSurfer. METHODS Twenty-two patients with MS were included, in which 3D T1-weighted MR images were obtained during the same scanner visit, with the same acquisition protocol, before and after administration of gadolinium-based contrast agents (GBCAs). Two FreeSurfer versions (v.6.0.1 and v.7.1.1.) were applied to calculate grey matter (GM) and white matter (WM) volumes and global and regional cortical thickness. The consistency between measures obtained in pre- and post-contrast images was assessed by intra-class correlation coefficient (ICC), the difference was investigated by paired t-tests, and the mean percentage increase or decrease was calculated for total WM and GM matter volume, total deep GM and thalamus volume, and mean cortical thickness. RESULTS Good to excellent reliability was found between all investigated measures, with ICC ranging from 0.926 to 0.996, all p values < 0.001. GM volumes and cortical thickness measurements were significantly higher in post-contrast images by 3.1 to 17.4%, while total WM volume decreased significantly by 1.7% (all p values < 0.001). CONCLUSION The consistency between values obtained from pre- and post-contrast images was excellent, suggesting it may be possible to extract reliable brain atrophy measurements from T1-weighted images acquired after administration of GBCAs, using FreeSurfer. However, absolute values were systematically different between pre- and post-contrast images, meaning that such images should not be compared directly. Potential systematic effects, possibly dependent on GBCA dose or the delay time after contrast injection, should be investigated. TRIAL REGISTRATION Clinical trials.gov. identifier: NCT00360906. KEY POINTS • The influence of gadolinium-based contrast agents (GBCAs) on atrophy measurements is still largely unknown and challenges the use of a considerable source of historical and prospective real-world data. • In 22 patients with multiple sclerosis, the consistency between brain atrophy measurements obtained from pre- and post-contrast images was excellent, suggesting it may be possible to extract reliable atrophy measurements in T1-weighted images acquired after administration of GBCAs, using FreeSurfer. • Absolute values were systematically different between pre- and post-contrast images, meaning that such images should not be compared directly, and measurements extracted from certain regions (e.g., the temporal pole) should be interpreted with caution.
Collapse
|
13
|
Gray Matter Atrophy in the Cortico-Striatal-Thalamic Network and Sensorimotor Network in Relapsing-Remitting and Primary Progressive Multiple Sclerosis. Neuropsychol Rev 2021; 31:703-720. [PMID: 33582965 DOI: 10.1007/s11065-021-09479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023]
Abstract
Gray matter atrophy in multiple sclerosis (MS) is thought to be associated with disability and cognitive impairment, but previous studies have sometimes had discordant results, and the atrophy patterns of relapsing-remitting multiple sclerosis (RRMS) and primary progressive multiple sclerosis (PPMS) remain to be clarified. We conducted a meta-analysis using anisotropic effect-size-based algorithms (AES-SDM) to identify consistent findings from whole-brain voxel-based morphometry (VBM) studies of gray matter volume (GMV) in 924 RRMS patients and 204 PPMS patients. This study is registered with PROSPERO (number CRD42019121319). Compared with healthy controls, RRMS and PPMS patients showed gray matter atrophy in the cortico-striatal-thalamic network, sensorimotor network, and bilateral insula. RRMS patients had a larger GMV in the left insula, cerebellum, right precentral gyrus, and bilateral putamen as well as a smaller GMV in the bilateral cingulate, caudate nucleus, right thalamus, superior temporal gyrus and left postcentral gyrus than PPMS patients. The disease duration, Expanded Disability Status Scale score, Paced Auditory Serial Addition Test z-score, and T2-weighted lesion load were associated with specific gray matter regions in RRMS or PPMS. Alterations in the cortico-striatal-thalamic networks, sensorimotor network, and insula may be involved in the common pathogenesis of RRMS and PPMS. The deficits in the cingulate gyrus and caudate nucleus are more apparent in RRMS than in PPMS. The more severe cerebellum atrophy in PPMS may be a brain feature associated with its neurological manifestations. These imaging biomarkers provide morphological evidence for the pathophysiology of MS and should be verified in future research.
Collapse
|
14
|
Lorefice L, Carta E, Frau J, Contu F, Casaglia E, Coghe G, Barracciu MA, Cocco E, Fenu G. The impact of deep grey matter volume on cognition in multiple sclerosis. Mult Scler Relat Disord 2020; 45:102351. [PMID: 32731200 DOI: 10.1016/j.msard.2020.102351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cognitive dysfunctions are very frequent in people living with multiple sclerosis (MS). Several studies have previously indicated grey matter (GM) atrophy as useful predictor of patients' cognitive impairment. However, considerable uncertainty exists about the possible impact of deep grey matter volumes on cognition. This study aimed to evaluate the relationship of the subcortical (sc) GM volumes with the presence and severity of global and selective cognitive impairment in MS. METHODS A group of MS patients with relapsing remitting course were enrolled. Patients underwent a neuropsychological evaluation by using the Brief Repeatable Battery of Neuropsychological Tests (BRBN) and the Delis-Kaplan Executive Function System Sorting Test (D-KEFST); z scores were estimated and items with z score below 2 standard deviation were considered failed. Thus, brain MRIs images were acquired and measurements of whole brain (WB), white matter (WM), and cortical grey matter (GM) were obtained by SIENAX. After FIRST tool segmentation, volumes of subcortical GM structures were also estimated. RESULTS The sample included 50 MS patients, of which 16/50 (32%) subjects were cognitively impaired. Multiple regression analyses found a significant association of severity of cognitive impairment, defined as number of failed neuropsychological tests, with lower volumes of cortex (p=0.003), thalamus (p=0.009), caudate (p=0.011), putamen (p=0.020), pallidus (p=0.012) and hippocampus (p=0.045), independently from other MS features. In addition, an association between accumbens volume and D-KEFS ST FSC and D-KEFS ST FSD z scores was observed (p<0.03). CONCLUSIONS Our results indicated that volumes of several scGM structures, and in particular of thalamus, contribute to determine cognitive dysfunctions in MS, mainly influencing the executive functioning. Further investigations in larger MS cohorts with cognitive impairment are necessary to better understand the structural brain damage underlying this "invisible disability".
Collapse
Affiliation(s)
- L Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, via Is Guadazzonis 2, 09126, Cagliari, Italy.
| | - E Carta
- Multiple Sclerosis Center, Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - J Frau
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, via Is Guadazzonis 2, 09126, Cagliari, Italy
| | - F Contu
- Radiology Unit, Binaghi Hospital, ATS Sardegna, Cagliari, Italy
| | - E Casaglia
- Multiple Sclerosis Center, Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - G Coghe
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, via Is Guadazzonis 2, 09126, Cagliari, Italy
| | - M A Barracciu
- Radiology Unit, Binaghi Hospital, ATS Sardegna, Cagliari, Italy
| | - E Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, via Is Guadazzonis 2, 09126, Cagliari, Italy; Multiple Sclerosis Center, Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - G Fenu
- Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, via Is Guadazzonis 2, 09126, Cagliari, Italy
| |
Collapse
|
15
|
Bruno A, Dolcetti E, Rizzo FR, Fresegna D, Musella A, Gentile A, De Vito F, Caioli S, Guadalupi L, Bullitta S, Vanni V, Balletta S, Sanna K, Buttari F, Stampanoni Bassi M, Centonze D, Mandolesi G. Inflammation-Associated Synaptic Alterations as Shared Threads in Depression and Multiple Sclerosis. Front Cell Neurosci 2020; 14:169. [PMID: 32655374 PMCID: PMC7324636 DOI: 10.3389/fncel.2020.00169] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
In the past years, several theories have been advanced to explain the pathogenesis of Major Depressive Disorder (MDD), a neuropsychiatric disease that causes disability in general population. Several theories have been proposed to define the MDD pathophysiology such as the classic "monoamine-theory" or the "glutamate hypothesis." All these theories have been recently integrated by evidence highlighting inflammation as a pivotal player in developing depressive symptoms. Proinflammatory cytokines have been indeed claimed to contribute to stress-induced mood disturbances and to major depression, indicating a widespread role of classical mediators of inflammation in emotional control. Moreover, during systemic inflammatory diseases, peripherally released cytokines circulate in the blood, reach the brain and cause anxiety, anhedonia, social withdrawal, fatigue, and sleep disturbances. Accordingly, chronic inflammatory disorders, such as the inflammatory autoimmune disease multiple sclerosis (MS), have been associated to higher risk of MDD, in comparison with overall population. Importantly, in both MS patients and in its experimental mouse model, Experimental Autoimmune Encephalomyelitis (EAE), the notion that depressive symptoms are reactive epiphenomenon to the MS pathology has been recently challenged by the evidence of their early manifestation, even before the onset of the disease. Furthermore, in association to such mood disturbance, inflammatory-dependent synaptic dysfunctions in several areas of MS/EAE brain have been observed independently of brain lesions and demyelination. This evidence suggests that a fine interplay between the immune and nervous systems can have a huge impact on several neurological functions, including depressive symptoms, in different pathological conditions. The aim of the present review is to shed light on common traits between MDD and MS, by looking at inflammatory-dependent synaptic alterations associated with depression in both diseases.
Collapse
Affiliation(s)
- Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| | | | - Francesca De Vito
- Unit of Neurology, Mediterranean Neurological Institute IRCCS Neuromed, Pozzilli, Italy
| | - Silvia Caioli
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sara Balletta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Krizia Sanna
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, Mediterranean Neurological Institute IRCCS Neuromed, Pozzilli, Italy
| | | | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- Unit of Neurology, Mediterranean Neurological Institute IRCCS Neuromed, Pozzilli, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| |
Collapse
|
16
|
Tavazzi E, Zivadinov R, Dwyer MG, Jakimovski D, Singhal T, Weinstock-Guttman B, Bergsland N. MRI biomarkers of disease progression and conversion to secondary-progressive multiple sclerosis. Expert Rev Neurother 2020; 20:821-834. [PMID: 32306772 DOI: 10.1080/14737175.2020.1757435] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Conventional imaging measures remain a key clinical tool for the diagnosis multiple sclerosis (MS) and monitoring of patients. However, most measures used in the clinic show unsatisfactory performance in predicting disease progression and conversion to secondary progressive MS. AREAS COVERED Sophisticated imaging techniques have facilitated the identification of imaging biomarkers associated with disease progression, such as global and regional brain volume measures, and with conversion to secondary progressive MS, such as leptomeningeal contrast enhancement and chronic inflammation. The relevance of emerging imaging approaches partially overcoming intrinsic limitations of traditional techniques is also discussed. EXPERT OPINION Imaging biomarkers capable of detecting tissue damage early on in the disease, with the potential to be applied in multicenter trials and at an individual level in clinical settings, are strongly needed. Several measures have been proposed, which exploit advanced imaging acquisitions and/or incorporate sophisticated post-processing, can quantify irreversible tissue damage. The progressively wider use of high-strength field MRI and the development of more advanced imaging techniques will help capture the missing pieces of the MS puzzle. The ability to more reliably identify those at risk for disability progression will allow for earlier intervention with the aim to favorably alter the disease course.
Collapse
Affiliation(s)
- Eleonora Tavazzi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA.,Translational Imaging Center, Clinical and Translational Science Institute, University at Buffalo, The State University of New York , Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Tarun Singhal
- PET Imaging Program in Neurologic Diseases and Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA.,IRCCS, Fondazione Don Carlo Gnocchi , Milan, Italy
| |
Collapse
|
17
|
de la Peña MJ, Peña IC, García PGP, Gavilán ML, Malpica N, Rubio M, González RA, de Vega VM. Early perfusion changes in multiple sclerosis patients as assessed by MRI using arterial spin labeling. Acta Radiol Open 2019; 8:2058460119894214. [PMID: 32002192 PMCID: PMC6964247 DOI: 10.1177/2058460119894214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023] Open
Abstract
Background Gadolinium-perfusion magnetic resonance (MR) identifies gray matter abnormalities in early multiple sclerosis (MS), even in the absence of structural differences. These perfusion changes could be related to the cognitive disability of these patients, especially in the working memory. Arterial spin labeling (ASL) is a relatively recent perfusion technique that does not require intravenous contrast, making the technique especially attractive for clinical research. Purpose To verify the perfusion alterations in early MS, even in the absence of cerebral volume changes. To introduce the ASL sequence as a suitable non-invasive method in the monitoring of these patients. Material and Methods Nineteen healthy controls and 28 patients were included. The neuropsychological test EDSS and SDMT were evaluated. Cerebral blood flow and bolus arrival time were collected from the ASL study. Cerebral volume and cortical thickness were obtained from the volumetric T1 sequence. Spearman's correlation analyzed the correlation between EDSS and SDMT tests and perfusion data. Differences were considered significant at a level of P < 0.05. Results Reduction of the cerebral blood flow and an increase in the bolus arrival time were found in patients compared to controls. A negative correlation between EDSS and thalamus transit time, and between EDSS and cerebral blood flow in the frontal cortex, was found. Conclusion ASL perfusion might detect changes in MS patients even in absent structural volumetric changes. More longitudinal studies are needed, but perfusion parameters could be biomarkers for monitoring these patients.
Collapse
Affiliation(s)
| | | | | | | | - Norberto Malpica
- Faculty of Biomedical Imaging, Universidad Rey Juan Carlos, Madrid, Spain
| | - Margarita Rubio
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | | |
Collapse
|
18
|
Affiliation(s)
- John D Port
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, 200 First St SW, Mayo West 2, Rochester, MN 55905
| |
Collapse
|
19
|
Manca R, Mitolo M, Stabile MR, Bevilacqua F, Sharrack B, Venneri A. Multiple brain networks support processing speed abilities of patients with multiple sclerosis. Postgrad Med 2019; 131:523-532. [PMID: 31478421 DOI: 10.1080/00325481.2019.1663706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: Many people affected by multiple sclerosis (MS) experience cognitive impairment, especially decreases in information processing speed (PS). Neural disconnection is thought to represent the neural marker of this symptom, although the role played by alterations of specific functional brain networks still remains unclear. The aim is to investigate and compare patterns of association between PS-demanding cognitive performance and functional connectivity across two MS phenotypes. Methods: Forty patients with relapsing-remitting MS (RRMS) and 25 with secondary progressive MS (SPMS) had neuropsychological and MRI assessments. Multiple regression models were used to investigate the relationship between performance on tests of visuomotor and verbal PS, and on the verbal fluency tests, and functional connectivity of four cognitive networks, i.e. left and right frontoparietal, salience and default-mode, and two control networks, i.e. visual and sensorimotor. Results: Patients with SPMS were older and had longer disease history than patients with RRMS and presented with worse overall clinical conditions: higher disease severity, total lesion volume, and cognitive impairment rates. However, in both patient samples, cognitive performance across tests was negatively correlated with functional connectivity of the salience and default-mode networks, and positively with connectivity of the left frontoparietal network. Only the visuomotor PS scores of the RRMS group were also associated with connectivity of the sensorimotor network. Conclusions: PS-demanding cognitive performance in patients with MS appears mainly associated with strength of functional connectivity of frontal networks involved in the evaluation and manipulation of information, as well as the default mode network. These results are in line with the hypothesis that multiple neural networks are needed to support normal cognitive performance across MS phenotypes. However, different PS measures showed partially different patterns of association with functional connectivity. Therefore, further investigations are needed to clarify the contribution of inter-network communication to specific cognitive deficits due to MS.
Collapse
Affiliation(s)
- Riccardo Manca
- Department of Neuroscience, University of Sheffield , Sheffield , UK
| | - Micaela Mitolo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Diagnostica Funzionale Neuroradiologica , Bologna , Italy
| | | | | | - Basil Sharrack
- Academic Department of Neuroscience, Sheffield Teaching Hospital, NHS Foundation Trust , Sheffield , UK
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield , Sheffield , UK
| |
Collapse
|
20
|
Kalatha T, Arnaoutoglou M, Koukoulidis T, Hatzifilippou E, Bouras E, Baloyannis S, Koutsouraki E. Does cognitive dysfunction correlate with neurofilament light polypeptide levels in the CSF of patients with multiple sclerosis? J Int Med Res 2019; 47:2187-2198. [PMID: 30982375 PMCID: PMC6567748 DOI: 10.1177/0300060519840550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate whether neurofilament light polypeptide (NfL) level in cerebrospinal fluid (CSF), currently a prognostic biomarker of neurodegeneration in patients with multiple sclerosis (MS), may be a potential biomarker of cognitive dysfunction in MS. Methods This observational case–control study included patients with MS. CSF levels of NfL were determined using enzyme-linked immunosorbent assay. Cognitive function was measured with the Brief International Cognitive Assessment for MS (BICAMS) battery and Paced Auditory Serial Addition Test (PASAT3), standardized to the Greek population. Results Of 39 patients enrolled (aged 42.7 ± 13.6 years), 36% were classified as cognitively impaired according to BICAMS z-scores (–0.34 ± 1.13). Relapsing MS was significantly better than progressive forms regarding BICAMS z-score (mean difference [MD] 1.39; 95% confidence interval [CI] 0.54, 2.24), Symbol Digit Modality Test score (MD 1.73; 95% CI 0.46, 3.0) and Greek Verbal Learning Test (MD 1.77; 95% CI 0.82, 2.72). An inversely proportional association between CSF NfL levels and BICAMS z-scores was found in progressive forms of MS (rp = –0.944). Conclusions This study provides preliminary evidence for an association between CSF NfL levels and cognition in progressive forms of MS, which requires validation in larger samples.
Collapse
Affiliation(s)
- Thaleia Kalatha
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marianthi Arnaoutoglou
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Koukoulidis
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Hatzifilippou
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emmanouil Bouras
- 2 Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavros Baloyannis
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Effrosyni Koutsouraki
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
21
|
Brown JWL, Chowdhury A, Kanber B, Prados Carrasco F, Eshaghi A, Sudre CH, Pardini M, Samson RS, van de Pavert SHP, Wheeler-Kingshott CG, Chard DT. Magnetisation transfer ratio abnormalities in primary and secondary progressive multiple sclerosis. Mult Scler 2019; 26:679-687. [DOI: 10.1177/1352458519841810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: In relapse-onset multiple sclerosis (MS), tissue abnormality – as assessed with magnetisation transfer ratio (MTR) imaging – is greater in the outer cortical and inner periventricular layers. The cause of this remains unknown but meningeal inflammation has been implicated, particularly lymphoid follicles, which are seen in secondary progressive (SP) but not primary progressive (PP) MS. Cortical and periventricular MTR gradients might, therefore, differ in PPMS and SPMS if these follicles are responsible. Objective: We assessed cortical and periventricular MTR gradients in PPMS, and compared gradients between people with PPMS and SPMS. Methods: Using an optimised processing pipeline, periventricular normal-appearing white matter and cortical grey-matter MTR gradients were compared between 51 healthy controls and 63 people with progressive MS (28 PPMS, 35 SPMS). Results: The periventricular gradient was significantly shallower in healthy controls (0.122 percentage units (pu)/band) compared to PPMS (0.952 pu/band, p < 0.0001) and SPMS (1.360 pu/band, p < 0.0001). The cortical gradient was also significantly shallower in healthy controls (−2.860 pu/band) compared to PPMS (−3.214 pu/band, p = 0.038) and SPMS (−3.328 pu/band, p = 0.016). Conclusion: Abnormal periventricular and cortical MTR gradients occur in both PPMS and SPMS, suggesting comparable underlying pathological processes.
Collapse
Affiliation(s)
- James William L Brown
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, UK/Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Azmain Chowdhury
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Baris Kanber
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, UK/Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, UK/National Institute for Health Research (NIHR) Biomedical Research Centre, University College London Hospitals (UCLH), London, UK/Department of Clinical and Experimental Epilepsy, UCL Queen Square
| | - Ferran Prados Carrasco
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, UK/Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, UK/eHealth Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Arman Eshaghi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Carole H Sudre
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, UK/Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK/School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Matteo Pardini
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, UK/Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Rebecca S Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Steven HP van de Pavert
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Claudia Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, UK/Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy/Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Declan T Chard
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, UK/National Institute for Health Research (NIHR) Biomedical Research Centre, University College London Hospitals (UCLH), London, UK
| |
Collapse
|
22
|
Saad M, Bilal M, Gabr W, Elnaby AA. The Diagnostic Role of Brain MRI in Detection of Multiple Sclerosis Related Cognitive Impairment. JOURNAL OF BEHAVIORAL AND BRAIN SCIENCE 2019; 09:313-324. [DOI: 10.4236/jbbs.2019.98023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Magliozzi R, Reynolds R, Calabrese M. MRI of cortical lesions and its use in studying their role in MS pathogenesis and disease course. Brain Pathol 2018; 28:735-742. [PMID: 30020563 PMCID: PMC8028295 DOI: 10.1111/bpa.12642] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 02/01/2023] Open
Abstract
Cortical grey matter (GM) demyelination is present from the earliest stages of multiple sclerosis (MS) and is associated with physical deficits and cognitive impairment. In particular, the rate of disability progression in MS, both in the relapsing and progressive phases, appears to be strictly associated with degenerative GM demyelination and diffuse cortical atrophy. In the last decade, several histopathological studies and advanced radiological methodologies have contributed to better identify the exact involvement/load of cortical pathology in MS, even if the specific inflammatory features and the precise cell and molecular mechanisms of GM demyelination and neurodegeneration in MS remain still not fully understood. It has been proposed that a combined neuropathology, imaging and molecular approach may help to define a more detailed characterization and precise assessment of the heterogeneous features of GM injury and inflammation in MS. This, in turn, will possibly identify specific imaging and biohumoral (cerebrospinal fluid/serum) correlates of cortical pathology that may have an important role in predicting and monitor the disease evolution.
Collapse
Affiliation(s)
- R. Magliozzi
- Neurology BDepartment of Neurological and Movement SciencesUniversity of VeronaVeronaItaly
- Division of Brain SciencesDepartment of MedicineImperial College LondonLondonUnited Kingdom
| | - R. Reynolds
- Division of Brain SciencesDepartment of MedicineImperial College LondonLondonUnited Kingdom
| | - M. Calabrese
- Neurology BDepartment of Neurological and Movement SciencesUniversity of VeronaVeronaItaly
| |
Collapse
|
24
|
Pitteri M, Magliozzi R, Bajrami A, Camera V, Calabrese M. Potential neuroprotective effect of Fingolimod in multiple sclerosis and its association with clinical variables. Expert Opin Pharmacother 2018; 19:387-395. [PMID: 29397790 DOI: 10.1080/14656566.2018.1434143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory, demyelinating disease of the central nervous system affecting both white matter and grey matter in the earliest phases of its course. The crucial role of neurodegeneration in disability progression in MS, regardless of white matter damage, has been confirmed by several imaging and neuropathological studies. Fingolimod is an effective immunomodulator of the sphingosine 1-phosphate receptor, approved in relapsing remitting MS and able to cross the blood-brain barrier and to slow disability progression and brain volume loss. However, it remains unclear whether this neuroprotective action is due to a peripheral anti-inflammatory effect and/or to a direct effect on neuronal cells. AREAS COVERED In this review, the authors summarize the published preclinical and clinical studies on the effect of Fingolimod in limiting the focal and diffuse grey matter damage in MS. EXPERT OPINION Fingolimod might have a significant neuroprotective effect on relapsing remitting MS based on its modulatory effect on oligodendroglial cells and astrocytes, and on its direct effect on cortical neurons. Future clinical studies including measures of grey matter damage are required to confirm in vivo such neuroprotective effect.
Collapse
Affiliation(s)
- Marco Pitteri
- a Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences , University of Verona , Verona , Italy
| | - Roberta Magliozzi
- a Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences , University of Verona , Verona , Italy.,b Division of Brain Sciences, Imperial College Faculty of Medicine , Hammersmith Hospital , London , UK
| | - Albulena Bajrami
- a Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences , University of Verona , Verona , Italy
| | - Valentina Camera
- c Department of Biomedical, Metabolic and Neurosciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Massimiliano Calabrese
- a Neurology Section, Department of Neurosciences, Biomedicine and Movement Sciences , University of Verona , Verona , Italy
| |
Collapse
|
25
|
Cocozza S, Petracca M, Mormina E, Buyukturkoglu K, Podranski K, Heinig MM, Pontillo G, Russo C, Tedeschi E, Russo CV, Costabile T, Lanzillo R, Harel A, Klineova S, Miller A, Brunetti A, Morra VB, Lublin F, Inglese M. Cerebellar lobule atrophy and disability in progressive MS. J Neurol Neurosurg Psychiatry 2017; 88:1065-1072. [PMID: 28844067 DOI: 10.1136/jnnp-2017-316448] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/10/2017] [Accepted: 07/23/2017] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To investigate global and lobular cerebellar volumetries in patients with progressive multiple sclerosis (MS), testing the contribution of cerebellar lobular atrophy to both motor and cognitive performances. METHODS Eighty-two patients with progressive MS and 46 healthy controls (HC) were enrolled in this cross-sectional study. Clinical evaluation included motor and cognitive testing: Expanded Disability Status Scale, cerebellar Functional System score, Timed 25-Foot Walk Test, 9-Hole Peg Test (9-HPT), Symbol Digit Modalities Test (SDMT), Brief Visuospatial Memory Test-Revised (BVMT) and California Verbal Learning Test II (CVLT). Cerebellar volumes were automatically obtained using the Spatially Unbiased Infratentorial Toolbox. A hierarchical multiple linear regression analysis was performed to assess the relationship between MRI variables of supratentorial and cerebellar damage (grey matter fraction, T2 lesion volume, metrics of cerebellar atrophy and cerebellar lesion volume) and motor/cognitive scores. RESULTS Patients with MS exhibited lower cerebellar volumes compared with HC. Regression analysis showed that cerebellar metrics accounted for extra variance in both motor and cognitive performances, with cerebellar lesion volume, cerebellar Lobules VI, Crus I and VIIIa atrophy being independent predictors of 9-HPT, SDMT, BVMT and CVLT performances. CONCLUSIONS Atrophy of specific cerebellar lobules explains different aspects of motor and cognitive disability in patients with progressive MS. Investigation of cerebellar involvement provides further insight into the pathophysiological basis of clinical disability in progressive MS.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Neurosciences, Reproductive and Odonto-stomatological Sciences, University 'Federico II', Naples, Italy
| | - Enricomaria Mormina
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Kornelius Podranski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Monika M Heinig
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Camilla Russo
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Cinzia Valeria Russo
- Department of Neurosciences, Reproductive and Odonto-stomatological Sciences, University 'Federico II', Naples, Italy
| | - Teresa Costabile
- Department of Neurosciences, Reproductive and Odonto-stomatological Sciences, University 'Federico II', Naples, Italy
| | - Roberta Lanzillo
- Department of Neurosciences, Reproductive and Odonto-stomatological Sciences, University 'Federico II', Naples, Italy
| | - Asaff Harel
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sylvia Klineova
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Aaron Miller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive and Odonto-stomatological Sciences, University 'Federico II', Naples, Italy
| | - Fred Lublin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Matilde Inglese
- Departments of Neurology, Radiology and Neuroscience, Icahn School of Medicine, New York, USA.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Perinatal Sciences, University of Genoa, Genova, Italy.,IRCCS Azienda Ospedale Università San Martino-IST, Genova, Italy
| |
Collapse
|
26
|
Mousavi Majd A, Ebrahim Tabar F, Afghani A, Ashrafpour S, Dehghan S, Gol M, Ashrafpour M, Pourabdolhossein F. Inhibition of GABA A receptor improved spatial memory impairment in the local model of demyelination in rat hippocampus. Behav Brain Res 2017; 336:111-121. [PMID: 28866129 DOI: 10.1016/j.bbr.2017.08.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022]
Abstract
Cognitive impairment and memory deficit are common features in multiple Sclerosis patients. The mechanism of memory impairment in MS is unknown, but neuroimaging studies suggest that hippocampal demyelination is involved. Here, we investigate the role of GABA A receptor on spatial memory in the local model of hippocampal demyelination. Demyelination was induced in male Wistar rats by bilaterally injection of lysophosphatidylcholine (LPC) 1% into the CA1 region of the hippocampus. The treatment groups were received daily intraventricular injection of bicuculline (0.025, 0.05μg/2μl/animal) or muscimol (0.1, 0.2μg/2μl/animal) 5days after LPC injection. Morris Water Maze was used to evaluate learning and memory in rats. We used Luxol fast blue staining and qPCR to assess demyelination extention and MBP expression level respectively. Immunohistochemistry (IHC) for CD45 and H&E staining were performed to assess inflammatory cells infiltration. Behavioral study revealed that LPC injection in the hippocampus impaired learning and memory function. Animals treated with both doses of bicuculline improved spatial learning and memory function; however, muscimol treatment had no effect. Histological and MBP expression studies confirmed that demylination in LPC group was maximal. Bicuculline treatment significantly reduced demyelination extension and increased the level of MBP expression. H&E and IHC results showed that bicuculline reduced inflammatory cell infiltration in the lesion site. Bicuculline improved learning and memory and decreased demyelination extention in the LPC-induced hippocampal demyelination model. We conclude that disruption of GABAergic homeostasis in hippocampal demyelination context may be involved in memory impairment with the implications for both pathophysiology and therapy.
Collapse
Affiliation(s)
- Alireza Mousavi Majd
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Forough Ebrahim Tabar
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Arghavan Afghani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahand Ashrafpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Samaneh Dehghan
- Physiology Departments, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Gol
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Manouchehr Ashrafpour
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Physiology Departments, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fereshteh Pourabdolhossein
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Physiology Departments, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
27
|
Dayan M, Hurtado Rúa SM, Monohan E, Fujimoto K, Pandya S, LoCastro EM, Vartanian T, Nguyen TD, Raj A, Gauthier SA. MRI Analysis of White Matter Myelin Water Content in Multiple Sclerosis: A Novel Approach Applied to Finding Correlates of Cortical Thinning. Front Neurosci 2017; 11:284. [PMID: 28603479 PMCID: PMC5445177 DOI: 10.3389/fnins.2017.00284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
A novel lesion-mask free method based on a gamma mixture model was applied to myelin water fraction (MWF) maps to estimate the association between cortical thickness and myelin content, and how it differs between relapsing-remitting (RRMS) and secondary-progressive multiple sclerosis (SPMS) groups (135 and 23 patients, respectively). It was compared to an approach based on lesion masks. The gamma mixture distribution of whole brain, white matter (WM) MWF was characterized with three variables: the mode (most frequent value) m1 of the gamma component shown to relate to lesion, the mode m2 of the component shown to be associated with normal appearing (NA) WM, and the mixing ratio (λ) between the two distributions. The lesion-mask approach relied on the mean MWF within lesion and within NAWM. A multivariate regression analysis was carried out to find the best predictors of cortical thickness for each group and for each approach. The gamma-mixture method was shown to outperform the lesion-mask approach in terms of adjusted R2, both for the RRMS and SPMS groups. The predictors of the final gamma-mixture models were found to be m1 (β = 1.56, p < 0.005), λ (β = −0.30, p < 0.0005) and age (β = −0.0031, p < 0.005) for the RRMS group (adjusted R2 = 0.16), and m2 (β = 4.72, p < 0.0005) for the SPMS group (adjusted R2 = 0.45). Further, a DICE coefficient analysis demonstrated that the lesion mask had more overlap to an ROI associated with m1, than to an ROI associated with m2 (p < 0.00001), and vice versa for the NAWM mask (p < 0.00001). These results suggest that during the relapsing phase, focal WM damage is associated with cortical thinning, yet in SPMS patients, global WM deterioration has a much stronger influence on secondary degeneration. Through these findings, we demonstrate the potential contribution of myelin loss on neuronal degeneration at different disease stages and the usefulness of our statistical reduction technique which is not affected by the typical bias associated with approaches based on lesion masks.
Collapse
Affiliation(s)
- Michael Dayan
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States.,Pattern Analysis and Computer Vision, Istituto Italiano di TecnologiaGenova, Italy
| | - Sandra M Hurtado Rúa
- Department of Mathematics, Cleveland State UniversityCleveland, OH, United States
| | - Elizabeth Monohan
- Department of Neurology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Kyoko Fujimoto
- Department of Neurology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Sneha Pandya
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Eve M LoCastro
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Tim Vartanian
- Department of Neurology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States.,Brain and Mind Institute, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Ashish Raj
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States.,Brain and Mind Institute, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| |
Collapse
|
28
|
Ontaneda D, Thompson AJ, Fox RJ, Cohen JA. Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet 2017; 389:1357-1366. [PMID: 27889191 DOI: 10.1016/s0140-6736(16)31320-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis is a major cause of neurological disability, which accrues predominantly during progressive forms of the disease. Although development of multifocal inflammatory lesions is the underlying pathological process in relapsing-remitting multiple sclerosis, the gradual accumulation of disability that characterises progressive multiple sclerosis seems to result more from diffuse immune mechanisms and neurodegeneration. As a result, the 14 anti-inflammatory drugs that have regulatory approval for treatment of relapsing-remitting multiple sclerosis have little or no efficacy in progressive multiple sclerosis without inflammatory lesion activity. Effective therapies for progressive multiple sclerosis that prevent worsening, reverse damage, and restore function are a major unmet need. In this Series paper we summarise the current status of therapy for progressive multiple sclerosis and outline prospects for the future.
Collapse
Affiliation(s)
- Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alan J Thompson
- Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, Faculty of Brain Sciences, London, UK
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffrey A Cohen
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
29
|
Amato N, Cursi M, Rodegher M, Moiola L, Colombo B, Falautano M, Possa F, Comi G, Martinelli V, Leocani L. Stroop event-related potentials as a bioelectrical correlate of frontal lobe dysfunction in multiple sclerosis. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40893-016-0007-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Fielding J, Clough M, Beh S, Millist L, Sears D, Frohman AN, Lizak N, Lim J, Kolbe S, Rennaker RL, Frohman TC, White OB, Frohman EM. Ocular motor signatures of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol 2015; 11:637-45. [PMID: 26369516 DOI: 10.1038/nrneurol.2015.174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The anatomical and functional overlap between ocular motor command circuitry and the higher-order networks that form the scaffolding for cognition makes for a compelling hypothesis that measures of ocular motility could provide a means to sensitively interrogate cognitive dysfunction in people with multiple sclerosis (MS). Such an approach may ultimately provide objective and reproducible measures of cognitive dysfunction that offer an innovative capability to refine diagnosis, improve prognostication, and more accurately codify disease burden. A further dividend may be the validation and application of biomarkers that can be used in studies aimed at identifying and monitoring preventative, protective and even restorative properties of novel neurotherapeutics in MS. This Review discusses the utility of ocular motor measures in patients with MS to characterize disruption to wide-ranging networks that support cognitive function.
Collapse
Affiliation(s)
- Joanne Fielding
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia.,Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3050, Australia
| | - Meaghan Clough
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Shin Beh
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lynette Millist
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3050, Australia
| | - Derek Sears
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ashley N Frohman
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nathaniel Lizak
- Monash School of Medicine, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Jayne Lim
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3050, Australia
| | - Scott Kolbe
- Department of Anatomy and Neuroscience, Medical Building, University of Melbourne, Parkville, VIC 3010, Australia
| | - Robert L Rennaker
- Department of Bioengineering and Computer Science, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Teresa C Frohman
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Owen B White
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3050, Australia
| | - Elliot M Frohman
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,Department of Bioengineering and Computer Science, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
31
|
Wattjes MP, Rovira À, Miller D, Yousry TA, Sormani MP, de Stefano MP, Tintoré M, Auger C, Tur C, Filippi M, Rocca MA, Fazekas F, Kappos L, Polman C, Frederik Barkhof, Xavier Montalban. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis--establishing disease prognosis and monitoring patients. Nat Rev Neurol 2015; 11:597-606. [PMID: 26369511 DOI: 10.1038/nrneurol.2015.157] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The role of MRI in the assessment of multiple sclerosis (MS) goes far beyond the diagnostic process. MRI techniques can be used as regular monitoring to help stage patients with MS and measure disease progression. MRI can also be used to measure lesion burden, thus providing useful information for the prediction of long-term disability. With the introduction of a new generation of immunomodulatory and/or immunosuppressive drugs for the treatment of MS, MRI also makes an important contribution to the monitoring of treatment, and can be used to determine baseline tissue damage and detect subsequent repair. This use of MRI can help predict treatment response and assess the efficacy and safety of new therapies. In the second part of the MAGNIMS (Magnetic Resonance Imaging in MS) network's guidelines on the use of MRI in MS, we focus on the implementation of this technique in prognostic and monitoring tasks. We present recommendations on how and when to use MRI for disease monitoring, and discuss some promising MRI approaches that may be introduced into clinical practice in the near future.
Collapse
|
32
|
Harrison DM, Roy S, Oh J, Izbudak I, Pham D, Courtney S, Caffo B, Jones CK, van Zijl P, Calabresi PA. Association of Cortical Lesion Burden on 7-T Magnetic Resonance Imaging With Cognition and Disability in Multiple Sclerosis. JAMA Neurol 2015; 72:1004-12. [PMID: 26192316 PMCID: PMC4620027 DOI: 10.1001/jamaneurol.2015.1241] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Cortical lesions (CLs) contribute to physical and cognitive disability in multiple sclerosis (MS). Accurate methods for visualization of CLs are necessary for future clinical studies and therapeutic trials in MS. OBJECTIVE To evaluate the clinical relevance of measures of CL burden derived from high-field magnetic resonance imaging (MRI) in MS. DESIGN, SETTING, AND PARTICIPANTS An observational clinical imaging study was conducted at an academic MS center. Participants included 36 individuals with MS (30 relapsing-remitting, 6 secondary or primary progressive) and 15 healthy individuals serving as controls. The study was conducted from March 10, 2010, to November 23, 2012, and analysis was performed from June 1, 2011, to September 30, 2014. Seven-Tesla MRI of the brain was performed with 0.5-mm isotropic resolution magnetization-prepared rapid acquisition gradient echo (MPRAGE) and whole-brain, 3-dimensional, 1.0-mm isotropic resolution magnetization-prepared, fluid-attenuated inversion recovery (MPFLAIR). Cortical lesions, seen as hypointensities on MPRAGE, were manually segmented. Lesions were classified as leukocortical, intracortical, or subpial. Images were segmented using the Lesion-TOADS (Topology-Preserving Anatomical Segmentation) algorithm, and brain structure volumes and white matter (WM) lesion volume were reported. Volumes were normalized to intracranial volume. MAIN OUTCOMES AND MEASURES Physical disability was measured by the Expanded Disability Status Scale (EDSS). Cognitive disability was measured with the Minimal Assessment of Cognitive Function in MS battery. RESULTS Cortical lesions were noted in 35 of 36 participants (97%), with a median of 16 lesions per participant (range, 0-99). Leukocortical lesion volume correlated with WM lesion volume (ρ = 0.50; P = .003) but not with cortical volume; subpial lesion volume inversely correlated with cortical volume (ρ = -0.36; P = .04) but not with WM lesion volume. Total CL count and volume, measured as median (range), were significantly increased in participants with EDSS scores of 5.0 or more vs those with scores less than 5.0 (count: 29 [11-99] vs 13 [0-51]; volume: 2.81 × 10-4 [1.30 × 10-4 to 7.90 × 10-4] vs 1.50 × 10-4 [0 to 1.01 × 10-3]) and in cognitively impaired vs unimpaired individuals (count: 21 [0-99] vs 13 [1-54]; volume: 3.51 × 10-4 [0 to 1.01 × 10-4] vs 1.19 × 10-4 [0 to 7.17 × 10-4]). Cortical lesion volume correlated with EDSS scores more robustly than did WM lesion volume (ρ = 0.59 vs 0.36). Increasing log[CL volume] conferred a 3-fold increase in the odds of cognitive impairment (odds ratio [OR], 3.36; 95% CI, 1.07-10.59; P = .04) after adjustment for age and sex and a 14-fold increase in odds after adjustment for WM lesion volume and atrophy (OR, 14.26; 95% CI, 1.06-192.37; P = .045). Leukocortical lesions had the greatest effect on cognition (OR for log [leukocortical lesion volume], 9.65; 95% CI, 1.70-54.59, P = .01). CONCLUSIONS AND RELEVANCE This study provides in vivo evidence that CLs are associated with cognitive and physical disability in MS and that leukocortical and subpial lesion subtypes have differing clinical relevance. Quantitative assessments of CL burden on high-field MRI may further our understanding of the development of disability and progression in MS and lead to more effective treatments.
Collapse
Affiliation(s)
- Daniel M Harrison
- Department of Neurology, School of Medicine, University of Maryland, Baltimore2Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Snehashis Roy
- Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, Maryland
| | - Jiwon Oh
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland4Department of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Izlem Izbudak
- Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Dzung Pham
- Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, Maryland
| | - Susan Courtney
- Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, Maryland
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Craig K Jones
- Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, Maryland8F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Peter van Zijl
- Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, Maryland8F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Peter A Calabresi
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
33
|
Freeman L, Garcia-Lorenzo D, Bottin L, Leroy C, Louapre C, Bodini B, Papeix C, Assouad R, Granger B, Tourbah A, Dollé F, Lubetzki C, Bottlaender M, Stankoff B. The neuronal component of gray matter damage in multiple sclerosis: A [(11) C]flumazenil positron emission tomography study. Ann Neurol 2015; 78:554-67. [PMID: 26292991 DOI: 10.1002/ana.24468] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 06/27/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Using positron emission tomography (PET) with [(11) C]flumazenil ([(11) C]FMZ), an antagonist of the central benzodiazepine site located within the GABAA receptor, we quantified and mapped neuronal damage in the gray matter (GM) of patients with multiple sclerosis (MS) at distinct disease stages. We investigated the relationship between neuronal damage and white matter (WM) lesions and evaluated the clinical relevance of this neuronal PET metric. METHODS A cohort of 18 MS patients (9 progressive and 9 relapsing-remitting) was compared to healthy controls and underwent neurological and cognitive evaluations, high-resolution dynamic [(11) C]FMZ PET imaging and brain magnetic resonance imaging. [(11) C]FMZ binding was estimated using the partial saturation protocol providing voxel-wise absolute quantification of GABAA receptor concentration. PET data were evaluated using a region of interest (ROI) approach as well as on a vertex-by-vertex basis. RESULTS [(11) C]FMZ binding was significantly decreased in the cortical GM of MS patients, compared to controls (-10%). Cortical mapping of benzodiazepine receptor concentration ([(11) C]FMZ Bmax) revealed significant intergroup differences in the bilateral parietal cortices and right frontal areas. ROI analyses taking into account GM volume changes showed extensive decrease in [(11) C]FMZ binding in bilateral parietal, cingulate, and insular cortices as well as in the thalami, amygdalae, and hippocampi. These changes were significant in both progressive and relapsing-remitting forms of the disease and correlated with WM T2-weighted lesion load. [(11) C]FMZ cortical binding correlated with cognitive performance. INTERPRETATION This pilot study showed that PET with [(11) C]FMZ could be a promising and sensitive quantitative marker to assess and map the neuronal substrate of GM pathology in MS.
Collapse
Affiliation(s)
- Léorah Freeman
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France.,Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX
| | - Daniel Garcia-Lorenzo
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,Institut des Neurosciences translationnelles de Paris (IHU-A-ICM), Paris, France
| | - Laure Bottin
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| | - Claire Leroy
- Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| | - Céline Louapre
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France
| | - Benedetta Bodini
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| | - Caroline Papeix
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France
| | - Rana Assouad
- AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France
| | - Benjamin Granger
- AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France
| | - Ayman Tourbah
- Centre Hospitalo-Universitaire de Reims, Université Champagne Ardennes, Reims, France
| | - Frédéric Dollé
- Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| | - Catherine Lubetzki
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France.,Institut des Neurosciences translationnelles de Paris (IHU-A-ICM), Paris, France
| | | | - Bruno Stankoff
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| |
Collapse
|
34
|
Mattioli F, Stampatori C, Bellomi F, Scarpazza C, Capra R. Natalizumab Significantly Improves Cognitive Impairment over Three Years in MS: Pattern of Disability Progression and Preliminary MRI Findings. PLoS One 2015; 10:e0131803. [PMID: 26148120 PMCID: PMC4492934 DOI: 10.1371/journal.pone.0131803] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/07/2015] [Indexed: 11/18/2022] Open
Abstract
Previous studies reported that Multiple Sclerosis (MS) patients treated with natalizumab for one or two years exhibit a significant reduction in relapse rate and in cognitive impairment, but the long term effects on cognitive performance are unknown. This study aimed to evaluate the effects of natalizumab on cognitive impairment in a cohort of 24 consecutive patients with relapsing remitting MS treated for 3 years. The neuropsychological tests, as well as relapse number and EDSS, were assessed at baseline and yearly for three years. The impact on cortical atrophy was also considered in a subgroup of them, and are thus to be considered as preliminary. Results showed a significant reduction in the number of impaired neuropsychological tests after three years, a significant decrease in annualized relapse rate at each time points compared to baseline and a stable EDSS. In the neuropsychological assessment, a significant improvement in memory, attention and executive function test scores was detected. Preliminary MRI data show that, while GM volume did not change at 3 years, a significantly greater parahippocampal and prefrontal gray matter density was noticed, the former correlating with neuropsychological improvement in a memory test. This study showed that therapy with Natalizumab is helpful in improving cognitive performance, and is likely to have a protective role on grey matter, over a three years follow-up.
Collapse
Affiliation(s)
- Flavia Mattioli
- Neuropsychology Unit, Spedali Civili of Brescia, Brescia, Italy
| | | | - Fabio Bellomi
- Neuropsychology Unit, Spedali Civili of Brescia, Brescia, Italy
| | | | - Ruggero Capra
- Multiple Sclerosis Center of the Spedali Civili of Brescia, Montichiari, Italy
| |
Collapse
|
35
|
Clough M, Mitchell L, Millist L, Lizak N, Beh S, Frohman TC, Frohman EM, White OB, Fielding J. Ocular motor measures of cognitive dysfunction in multiple sclerosis II: working memory. J Neurol 2015; 262:1138-47. [PMID: 25851742 DOI: 10.1007/s00415-015-7644-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/10/2015] [Accepted: 01/11/2015] [Indexed: 11/24/2022]
Abstract
Our companion paper documents pervasive inhibitory deficits in multiple sclerosis (MS) using ocular motor (OM) measures. Here we investigated the utility of an OM working memory (WMem) task in characterising WMem deficits in these patients as a function of disease status and disease duration. 22 patients with CIS, 22 early clinically definite MS patients (CDMS: <7 years of diagnosis), 22 late CDMS patients (>7 years from diagnosis), and 22 healthy controls participated. All participants completed the ocular motor WMem task, the paced auditory serial addition test (PASAT), and the symbol digit modalities test (SDMT). Clinical disability was characterised in CDMS patients using the Expanded Disability Severity Scale (EDSS). WMem performance was measured as proportion of errors (WMem errors), saccade latency, and relative sensitivity to WMem loading (WMem effect), an indicator of WMem capacity. All patient groups performed more WMem errors than controls with proportion of WMem errors, and degree of WMem effect increasing with increasing disease duration. A larger WMem effect, reflecting poorer WMem capacity, corresponded to poorer performance on neuropsychological measures, and a higher disability score for CDMS patients with the longest disease duration; an observation that suggests wider implication of WMem executive processes with advancing disease. Conspicuously, performance decrements on standard neuropsychological testing did not similarly increase commensurate with disease duration. The ocular motor WMem task appears to meaningfully dissociate WMem deficit from healthy individuals as well as a function of increasing disease duration. Potentially, this task represents a highly informative and objective method by which to ascertain progressive WMem changes from the earliest inception of MS.
Collapse
Affiliation(s)
- Meaghan Clough
- School of Psychological Sciences, Monash University, Clayton, 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Barnett Y, Sutton IJ, Ghadiri M, Masters L, Zivadinov R, Barnett MH. Conventional and advanced imaging in neuromyelitis optica. AJNR Am J Neuroradiol 2014; 35:1458-66. [PMID: 23764723 PMCID: PMC7964440 DOI: 10.3174/ajnr.a3592] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Myelitis and optic neuritis are prototypic clinical presentations of both multiple sclerosis and neuromyelitis optica. Once considered a subtype of multiple sclerosis, neuromyelitis optica, is now known to have a discrete pathogenesis in which antibodies to the water channel, aquaporin 4, play a critical role. Timely differentiation of neuromyelitis optica from MS is imperative, determining both prognosis and treatment strategy. Early, aggressive immunosuppression is required to prevent the accrual of severe disability in neuromyelitis optica; conversely, MS-specific therapies may exacerbate the disease. The diagnosis of neuromyelitis optica requires the integration of clinical, MR imaging, and laboratory data, but current criteria are insensitive and exclude patients with limited clinical syndromes. Failure to recognize the expanding spectrum of cerebral MR imaging patterns associated with aquaporin 4 antibody seropositivity adds to diagnostic uncertainty in some patients. We present the state of the art in conventional and nonconventional MR imaging in neuromyelitis optica and review the place of neuroimaging in the diagnosis, management, and research of the condition.
Collapse
Affiliation(s)
- Y Barnett
- From the Sydney Neuroimaging Analysis Centre (Y.B., M.H.B.), Sydney, AustraliaBrain and Mind Research Institute (Y.B., M.G., L.M., M.H.B.), University of Sydney, Sydney, AustraliaDepartment of Medical Imaging and Neurology (Y.B., I.J.S.), St Vincent's Hospital, Sydney, Australia
| | - I J Sutton
- Department of Medical Imaging and Neurology (Y.B., I.J.S.), St Vincent's Hospital, Sydney, Australia
| | - M Ghadiri
- Brain and Mind Research Institute (Y.B., M.G., L.M., M.H.B.), University of Sydney, Sydney, Australia
| | - L Masters
- Brain and Mind Research Institute (Y.B., M.G., L.M., M.H.B.), University of Sydney, Sydney, Australia
| | - R Zivadinov
- Buffalo Neuroimaging Analysis Center (R.Z.), Department of Neurology, University of Buffalo, Buffalo, New York
| | - M H Barnett
- From the Sydney Neuroimaging Analysis Centre (Y.B., M.H.B.), Sydney, AustraliaBrain and Mind Research Institute (Y.B., M.G., L.M., M.H.B.), University of Sydney, Sydney, Australia
| |
Collapse
|
37
|
De Stefano N, Airas L, Grigoriadis N, Mattle HP, O'Riordan J, Oreja-Guevara C, Sellebjerg F, Stankoff B, Walczak A, Wiendl H, Kieseier BC. Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs 2014; 28:147-56. [PMID: 24446248 DOI: 10.1007/s40263-014-0140-z] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multiple sclerosis (MS) is a chronic disease with an inflammatory and neurodegenerative pathology. Axonal loss and neurodegeneration occurs early in the disease course and may lead to irreversible neurological impairment. Changes in brain volume, observed from the earliest stage of MS and proceeding throughout the disease course, may be an accurate measure of neurodegeneration and tissue damage. There are a number of magnetic resonance imaging-based methods for determining global or regional brain volume, including cross-sectional (e.g. brain parenchymal fraction) and longitudinal techniques (e.g. SIENA [Structural Image Evaluation using Normalization of Atrophy]). Although these methods are sensitive and reproducible, caution must be exercised when interpreting brain volume data, as numerous factors (e.g. pseudoatrophy) may have a confounding effect on measurements, especially in a disease with complex pathological substrates such as MS. Brain volume loss has been correlated with disability progression and cognitive impairment in MS, with the loss of grey matter volume more closely correlated with clinical measures than loss of white matter volume. Preventing brain volume loss may therefore have important clinical implications affecting treatment decisions, with several clinical trials now demonstrating an effect of disease-modifying treatments (DMTs) on reducing brain volume loss. In clinical practice, it may therefore be important to consider the potential impact of a therapy on reducing the rate of brain volume loss. This article reviews the measurement of brain volume in clinical trials and practice, the effect of DMTs on brain volume change across trials and the clinical relevance of brain volume loss in MS.
Collapse
Affiliation(s)
- Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, Siena, 53100, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Carr SE, das Nair R, Schwartz AF, Lincoln NB. Group memory rehabilitation for people with multiple sclerosis: a feasibility randomized controlled trial. Clin Rehabil 2014; 28:552-61. [DOI: 10.1177/0269215513512336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/13/2013] [Indexed: 11/17/2022]
Abstract
Objective: To assess the feasibility and effectiveness of a group memory rehabilitation programme combining compensation and restitution strategies. Design: Randomized controlled trial. Setting: Community. Participants: People with multiple sclerosis who reported memory difficulties were recruited. Interventions: A group memory rehabilitation programme, comprising ten 1.5-hour sessions, was compared with a waiting list control. Main measures: The primary outcome was the Everyday Memory Questionnaire. Secondary outcomes included the General Health Questionnaire 28 and MS Impact Scale administered four and eight months after randomization. In addition, those in the intervention group gave feedback about the intervention. Results: Forty-eight participants were recruited. They were aged 34–72 years (mean 54.3, SD 11.0) and 33 (69%) were women. There were no significant differences between the two groups on the Everyday Memory Questionnaire or MS Impact Scale ( P > 0.05) at four or eight months after randomization. However, the intervention group reported significantly better mood than controls on the GHQ-28 at eight months ( P = 0.04). Participants showed minimal benefit from the memory rehabilitation programme on quantitative measures but the intervention was well received, as indicated by positive feedback at the end of the intervention. Conclusions: There was no significant effect of the intervention on memory but there was a significant effect on mood. The results suggest a larger scale study is justified.
Collapse
Affiliation(s)
- Sara E Carr
- Central Surrey Health, The Poplars, Epsom, UK
| | | | | | | |
Collapse
|
39
|
Abstract
Objective Accurate identification and localization of cortical gray matter (CGM) lesions in MS is important when determining their clinical relevance. Double inversion recovery (DIR) scans have been widely used to detect MS CGM lesions. Phase sensitive inversion recovery (PSIR) scans have a higher signal to noise, and can therefore be obtained at a higher resolution within clinically acceptable times. This enables detection of more CGM lesions depicting a clearer cortical and juxtacortical anatomy. In this study, we systematically investigated if the use of high resolution PSIR scans changes the classification of CGM lesions, when compared with standard resolution DIR scans. Methods 60 patients [30 RR(Relapsing remitting) and 15 each with PP(Primary progressive) and SP(Secondary progressive) MS] were scanned on a 3T Philips Achieva MRI scanner. Images acquired included DIR (1×1×3 mm resolution) and PSIR (0.5×0.5×2 mm). CGM lesions were detected and classified on DIR as intracortical (IC) or leucocortical (LC). We then examined these lesions on corresponding slices of the high resolution PSIR scans and categorized them as IC, LC, Juxtacortical white matter (JC-WM, abutting but not entering cortex) and other white matter (WM, not juxtacortical). Classifications using both scans were noted. Results 282 IC and 483 LC were identified on DIR. Of the IC lesions, 61% were confirmed as IC on PSIR, 35.5% were reclassified as LC and 3.5% as JC-WM or other WM only. Of the LC DIR lesions, 43.9% were confirmed at LC on PSIR, 16.1% were reclassified as IC and 40% as JC-WM or other WM only. Overall, 50% (381/765) of CGM lesions seen on DIR were reclassified, and 26.5% (203/765) affected WM only. Conclusions When compared with higher resolution PSIR, a significant proportion of lesions classified as involving CGM on DIR appear to either contain more white matter than expected or to not involve CGM at all.
Collapse
|
40
|
Sethi V, Yousry TA, Muhlert N, Tozer D, Ron M, Golay X, Wheeler–Kingshott C, Miller DH, Chard DT. LOBAR DISTRIBUTION OF CORTICAL GREY MATTER LESIONS IN MULTIPLE SCLEROSIS CLINICAL SUBGROUPS. Journal of Neurology, Neurosurgery and Psychiatry 2013. [DOI: 10.1136/jnnp-2013-306573.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
|
42
|
Leone C, D'Amico E, Cilia S, Nicoletti A, Di Pino L, Patti F. Cognitive impairment and "invisible symptoms" are not associated with CCSVI in MS. BMC Neurol 2013; 13:97. [PMID: 23889853 PMCID: PMC3734156 DOI: 10.1186/1471-2377-13-97] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We investigated the association between chronic cerebrospinal venous insufficiency (CCSVI) and cognitive impairment (CI) in multiple sclerosis (MS). Moreover, we evaluated the association between CCSVI and other frequent self-reported MS symptoms. METHODS We looked at the presence of CI in incident MS patients with CCVSI in a population-based cohort of Catania, Italy. All subjects were group-matched by age, sex, disease duration and EDSS score with MS patients without CCSVI, serving as controls. CI was assessed with the Brief Repeatable Battery (BRB) and the Stroop Test (ST) and it was defined by the presence of at least three impaired tests. Fatigue and depressive symptoms were assessed with Fatigue Severity Scale (FSS) and Hamilton Depressive Rating Scale (HDRS), respectively. Bladder and sexual symptoms were assessed with the respective items of the Italian version of Guy's Neurological Disability Scale (GNDS). Quality of life was evaluated with Multiple Sclerosis Quality of Life-54 Instrument (MSQOL-54). RESULTS Out of 61 MS patients enrolled in the study, 27 were CCSVI positive and 34 were CCSVI negative. Of them, 43 were women (70.5%); the mean age was 43.9 ± 11.8 years; the mean disease duration was 159.7 ± 113.7 months; mean EDSS was 3.0 ± 2.6. Of them, 36 (59.0%) were classified relapsing-remitting (RR), 12 (19.7%) secondary progressive (SP), seven (11.5%) primary progressive (PP) and six (9.3%) Clinically Isolated Syndrome (CIS). Overall, CI was detected in 29/61 (47.5%) MS patients; particularly 13/27 (48.1%) in the CCSVI positive group and 16/34 (47.0%) in the CCSVI negative group. Presence of CCSVI was not significantly associated with the presence of CI (OR 1.04; 95% CI 0.37-2.87; p-value = 0.9). Not significant differences were found between the two groups regarding the other MS symptoms investigated. CONCLUSIONS Our findings suggest a lack of association between CCSVI and CI in MS patients. Fatigue, depressive, bladder/sexual symptoms and self-reported quality of life are not associated with CCSVI.
Collapse
|
43
|
Gray Matter Pathology in MS: Neuroimaging and Clinical Correlations. Mult Scler Int 2013; 2013:627870. [PMID: 23878736 PMCID: PMC3708448 DOI: 10.1155/2013/627870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/28/2013] [Indexed: 12/23/2022] Open
Abstract
It is abundantly clear that there is extensive gray matter pathology occurring in multiple sclerosis. While attention to gray matter pathology was initially limited to studies of autopsy specimens and biopsies, the development of new MRI techniques has allowed assessment of gray matter pathology in vivo. Current MRI techniques allow the direct visualization of gray matter demyelinating lesions, the quantification of diffuse damage to normal appearing gray matter, and the direct measurement of gray matter atrophy. Gray matter demyelination (both focal and diffuse) and gray matter atrophy are found in the very earliest stages of multiple sclerosis and are progressive over time. Accumulation of gray matter damage has substantial impact on the lives of multiple sclerosis patients; a growing body of the literature demonstrates correlations between gray matter pathology and various measures of both clinical disability and cognitive impairment. The effect of disease modifying therapies on the rate accumulation of gray matter pathology in MS has been investigated. This review focuses on the neuroimaging of gray matter pathology in MS, the effect of the accumulation of gray matter pathology on clinical and cognitive disability, and the effect of disease-modifying agents on various measures of gray matter damage.
Collapse
|
44
|
Jehna M, Langkammer C, Khalil M, Fuchs S, Reishofer G, Fazekas F, Ebner F, Enzinger C. An exploratory study on the spatial relationship between regional cortical volume changes and white matter integrity in multiple sclerosis. Brain Connect 2013; 3:255-64. [PMID: 23573900 DOI: 10.1089/brain.2012.0108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory central nervous system disorder with a neurodegenerative component. While in the past, MS has been predominantly viewed as a white matter (WM) disease, gray matter (GM) pathology receives increasing attention in MS research. In this study, we tested hypothesis-free for a possible spatial relationship between cortical volume changes and disturbed integrity of projecting WM tracts. We used voxel-based morphometry (VBM), lesion probability maps (LPM), and probabilistic tractography to compare brain magnetic resonance imaging (MRI) scans obtained at 3 Tesla of 15 low disabled MS patients with 15 matched healthy controls (HCs). Areas of decreased cortical volume in the patients identified by VBM were used as seeds for tractography. Volume in two cortical areas in the left inferior frontal gyrus (IFG) and the left lateral occipital cortex (LOC) was reduced in patients compared to HCs. Starting from the IFG-region, tractography suggested impaired connections between left and right portions of the frontal lobe in the patients. Using the LOC as a seed, in patients, the left inferior longitudinal and fronto-occipital pathways appeared disintegrated compared to HCs. Swapping the seeds to homologous contralateral areas showed similar results for frontal, but different results for occipital brain areas. This at least partly could be explained by differential interference with WM lesions. These findings suggest a regional dependence between cortical GM and WM tract alterations in MS patients. While confirmation in larger and more heterogenic samples is needed, this study indicates that combining several MRI methods (VBM, LPM, and Probabilistic Tractography) may provide important insights into interacting processes related to the fiber tract and GM changes in MS.
Collapse
Affiliation(s)
- Margit Jehna
- Division of Neuroradiology, Department of Radiology, Medical University of Graz, Graz, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bir LS, Degirmenci E, Erdogan C. Lack of Visual Habituation in Multiple Sclerosis: An Electrophysiological Study. Neuroophthalmology 2013; 37:7-11. [PMID: 28163749 DOI: 10.3109/01658107.2012.753911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 11/13/2022] Open
Abstract
In this study, we aimed to investigate habituation of pattern-reversal visually evoked potentials (VEPs) in patients with relapsing remitting (RR) multiple sclerosis (MS). Twenty-one patients with this diagnosis and with a history of optic neuritis (ON), 29 such patients without a history of ON, and 25 normal controls were enrolled to study. One eye of each patient in the group with a history of ON and one eye of each subject in the control group was randomly selected. In the group with a past history of ON, the affected eye of the patients was selected in unilateral cases and the eye in which showed the greater latency delay of the P100 component in bilateral cases. P100 amplitudes were determined by visual inspection in 10 blocks of 512 responses and habituation was analysed as the percentage amplitude change between the 1st and 2nd-10th blocks. Amplitude of the P100 component of the VEP showed a significant clear-cut habituation after the first block in the control group but neither patient group showed a significant decrease in P100 amplitude. We conclude that our electrophysiological study has shown a lack of habituation in patients suffering from RR MS. This result could be important for the evaluation of visual system involvement in patients with MS, with or without a previous history of ON.
Collapse
Affiliation(s)
- Levent Sinan Bir
- Medical Faculty, Department of Neurology, Pamukkale University Denizli Turkey
| | - Eylem Degirmenci
- Medical Faculty, Department of Neurology, Pamukkale University Denizli Turkey
| | - Cagdas Erdogan
- Medical Faculty, Department of Neurology, Pamukkale University Denizli Turkey
| |
Collapse
|
46
|
Shriver LP, Plummer EM, Thomas DM, Ho S, Manchester M. Localization of gadolinium-loaded CPMV to sites of inflammation during central nervous system autoimmunity. J Mater Chem B 2013; 1:5256-5263. [DOI: 10.1039/c3tb20521e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Narayana PA, Govindarajan KA, Goel P, Datta S, Lincoln JA, Cofield SS, Cutter GR, Lublin FD, Wolinsky JS. Regional cortical thickness in relapsing remitting multiple sclerosis: A multi-center study. Neuroimage Clin 2012; 2:120-31. [PMID: 24179765 PMCID: PMC3777814 DOI: 10.1016/j.nicl.2012.11.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/12/2012] [Accepted: 11/19/2012] [Indexed: 11/24/2022]
Abstract
A comprehensive analysis of the global and regional values of cortical thickness based on 3D magnetic resonance images was performed on 250 relapsing remitting multiple sclerosis (MS) patients who participated in a multi-center, randomized, phase III clinical trial (the CombiRx Trial) and 125 normal controls. The MS cohort was characterized by relatively low clinical disability and short disease duration. An automatic pipeline was developed for identifying images with poor quality and artifacts. The global and regional cortical thicknesses were determined using FreeSurfer software. Our results indicate significant cortical thinning in multiple regions in the MS patient cohort relative to the controls. Both global cortical thinning and regional cortical thinning were more prominent in the left hemisphere relative to the right hemisphere. Modest correlation was observed between cortical thickness and clinical measures that included the extended disability status scale and disease duration. Modest correlation was also observed between cortical thickness and T1-hypointense and T2-hyperintense lesions. These correlations were very similar at 1.5 T and 3 T field strengths. A much weaker inverse correlation between cortical thickness and age was observed among the MS subjects compared to normal controls. This age-dependent correlation was also stronger in males than in females. The values of cortical thickness were very similar at 1.5 T and 3 T field strengths. However, the age-dependent changes in both global and regional cortical thicknesses were observed to be stronger at 3 T relative to 1.5 T.
Collapse
Affiliation(s)
- Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | - Koushik A. Govindarajan
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | - Priya Goel
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | - Sushmita Datta
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | - John A. Lincoln
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | - Stacy S. Cofield
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gary R. Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fred D. Lublin
- The Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jerry S. Wolinsky
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | | |
Collapse
|
48
|
Neuropathologic Correlates of Magnetic Resonance Imaging in Multiple Sclerosis. J Neuropathol Exp Neurol 2012; 71:762-78. [DOI: 10.1097/nen.0b013e3182676388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
49
|
Mannie MD, Blanchfield JL, Islam SMT, Abbott DJ. Cytokine-neuroantigen fusion proteins as a new class of tolerogenic, therapeutic vaccines for treatment of inflammatory demyelinating disease in rodent models of multiple sclerosis. Front Immunol 2012; 3:255. [PMID: 22934095 PMCID: PMC3422719 DOI: 10.3389/fimmu.2012.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/30/2012] [Indexed: 11/13/2022] Open
Abstract
Myelin-specific induction of tolerance represents a promising means to modify the course of autoimmune inflammatory demyelinating diseases such as multiple sclerosis (MS). Our laboratory has focused on a novel preclinical strategy for the induction of tolerance to the major encephalitogenic epitopes of myelin that cause experimental autoimmune encephalomyelitis (EAE) in rats and mice. This novel approach is based on the use of cytokine-NAg (neuroantigen) fusion proteins comprised of the native cytokine fused either with or without a linker to a NAg domain. Several single-chain cytokine-NAg fusion proteins were tested including GMCSF-NAg, IFNbeta-NAg, NAgIL16, and IL2-NAg. These cytokine-NAg vaccines were tolerogenic, therapeutic vaccines that had tolerogenic activity when given as pre-treatments before encephalitogenic immunization and also were effective as therapeutic interventions during the effector phase of EAE. The rank order of inhibitory activity was as follows: GMCSF-NAg, IFNbeta-NAg > NAgIL16 > IL2-NAg > MCSF-NAg, IL4-NAg, IL-13-NAg, IL1RA-NAg, and NAg. Several cytokine-NAg fusion proteins exhibited antigen-targeting activity. High affinity binding of the cytokine domain to specific cytokine receptors on particular subsets of APC resulted in the concentrated uptake of the NAg domain by those APC which in turn facilitated the enhanced processing and presentation of the NAg domain on cell surface MHC class II glycoproteins. For most cytokine-NAg vaccines, the covalent linkage of the cytokine domain and NAg domain was required for inhibition of EAE, thereby indicating that antigenic targeting of the NAg domain to APC was also required in vivo for tolerogenic activity. Overall, these studies introduced a new concept of cytokine-NAg fusion proteins as a means to induce tolerance and to inhibit the effector phase of autoimmune disease. The approach has broad application for suppressive vaccination as a therapy for autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Mark D. Mannie
- Department of Microbiology and Immunology, East Carolina UniversityGreenville, NC, USA
| | | | - S. M. Touhidul Islam
- Department of Microbiology and Immunology, East Carolina UniversityGreenville, NC, USA
| | - Derek J. Abbott
- Department of Microbiology and Immunology, East Carolina UniversityGreenville, NC, USA
| |
Collapse
|
50
|
Patti F. Treatment of cognitive impairment in patients with multiple sclerosis. Expert Opin Investig Drugs 2012; 21:1679-99. [DOI: 10.1517/13543784.2012.716036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|