1
|
Liu Y, Li J, Guo H, Fang C, Yang Q, Qin W, Wang H, Xian Y, Yan X, Yin B, Zhang K. Nanomaterials for stroke diagnosis and treatment. iScience 2024; 27:111112. [PMID: 39502285 PMCID: PMC11536039 DOI: 10.1016/j.isci.2024.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Nanomaterials and nanotechnology innovations possess unique physicochemical properties that present new opportunities in the realm of stroke detection, diagnosis, and treatment. This comprehensive review explores the utilization of nanomaterials in the diagnosis and treatment of strokes, encompassing recent advancements in computed tomography (CT), magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), as well as groundbreaking applications of nanomaterials and bionanomaterials in drug delivery systems and brain tissue repair. Additionally, this review meticulously examines significant challenges such as biocompatibility toxicity and long-term safety, proposing potential strategies to surmount these obstacles. Moreover, this review delves into the application of nanomaterials to improve the clinical diagnosis of stroke patients, elucidates the potential of nanotechnology in post-stroke therapy, and identifies future research directions and potential clinical applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Junying Li
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, No. 18 Jinfeng Road, Zhuhai 519087, Guangdong Province, China
| | - Huaijuan Guo
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Chao Fang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Qiaoling Yang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Wen Qin
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Hai Wang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Yong Xian
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Xuebing Yan
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People’s Hospital, Affiliated Hospital of Xuzhou Medical University, Suining 221200, China
| | - Binxu Yin
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Kun Zhang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| |
Collapse
|
2
|
He X, Wang Z, Ge Q, Sun S, Li R, Wang B. Lactylation of nuclear receptor coactivator 4 promotes ferritinophagy and glycolysis of neuronal cells after cerebral ischemic injury. Neuroreport 2024; 35:895-903. [PMID: 39166386 DOI: 10.1097/wnr.0000000000002080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Ischemic stroke remains a major cause of disability and mortality. Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy is involved in cerebral ischemic injury. Additionally, lactylation regulates the progression of ischemia injury. This study aimed to investigate the impact of NCOA4 on ferritinophagy and glycolysis of hippocampal neuron cells and its lactylation modification. Middle cerebral artery occlusion (MCAO) mouse and oxygen-glucose deprivation (OGD)-treated HT22 cell models were generated. Ferritinophagy was evaluated via detecting ferrous iron (Fe 2+ ), glutathione, malondialdehyde, and protein levels. Glycolysis was assessed by examining the glucose consumption, lactate production, and extracellular acidification rate. The lactylation was evaluated using immunoprecipitation and immunoblotting. Brain injury in vivo was analyzed by measuring brain infarct and neurological function. The results showed that NCOA4 expression was increased in the blood of patients with acute ischemia stroke, the peri-infarct region of the brain in MCAO mice (increased percentage: 142.11%) and OGD-treated cells (increased percentage: 114.70%). Knockdown of NCOA4 inhibited ferritinophagy and glycolysis of HT22 cells induced by OGD. Moreover, OGD promoted the lactylation of NCOA4 at lysine (K)450 sites, which enhanced NCOA4 protein stability. Additionally, interfering with NCOA4 attenuated brain infarction and neurological dysfunction in MCAO mice. Lactylation of NCOA4 at K450 sites promotes ferritinophagy and glycolysis of hippocampal neuron cells, thereby accelerating cerebral ischemic injury. These findings suggest a novel pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyin He
- Department of Neurology, The Air Force Hospital of Southern Theater Command, PLA, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
3
|
Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med 2021; 49:15. [PMID: 34878154 PMCID: PMC8711586 DOI: 10.3892/ijmm.2021.5070] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Stroke is the leading cause of disabilities and cognitive deficits, accounting for 5.2% of all mortalities worldwide. Transient or permanent occlusion of cerebral vessels leads to ischemic strokes, which constitutes the majority of strokes. Ischemic strokes induce brain infarcts, along with cerebral tissue death and focal neuronal damage. The infarct size and neurological severity after ischemic stroke episodes depends on the time period since occurrence, the severity of ischemia, systemic blood pressure, vein systems and location of infarcts, amongst others. Ischemic stroke is a complex disease, and neuronal injuries after ischemic strokes have been the focus of current studies. The present review will provide a basic pathological background of ischemic stroke and cerebral infarcts. Moreover, the major mechanisms underlying ischemic stroke and neuronal injuries are summarized. This review will also briefly summarize some representative clinical trials and up-to-date treatments that have been applied to stroke and brain infarcts.
Collapse
Affiliation(s)
- Yunfei Zhao
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xiaojing Zhang
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| | - Xinye Chen
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| | - Yun Wei
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| |
Collapse
|
5
|
Saxena V, Gacchina Johnson C, Negussie AH, Sharma KV, Dreher MR, Wood BJ. Temperature-sensitive liposome-mediated delivery of thrombolytic agents. Int J Hyperthermia 2015; 31:67-73. [PMID: 25766387 DOI: 10.3109/02656736.2014.991428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Clinical efficacy of thrombolytic drugs is limited by lack of specific delivery and requires large therapeutic doses which increase toxicity. Encapsulating these drugs in temperature-sensitive liposomes and applying hyperthermia to deliver thrombolytic agents locally to thrombus might theoretically favourably alter the therapeutic window. The objectives of this study were to formulate liposomes encapsulating thrombolytics and assess thrombolytic activity following hyperthermia. METHODS Three liposome formulations were investigated: temperature-sensitive liposome (TSL, DPPC:DSPE-PEG2000 (mol% 95:5)), low temperature-sensitive liposome (LTSL, DPPC:MSPC:DSPE-PEG2000 (mol% 85.3:9.7:5)), and traditional temperature-sensitive liposome (TTSL, DPPC:HSPC:Chol:DSPE-PEG2000 (mol% 55:25:15:5)). To characterise temperature-dependent release of high molecular weight cargo from each formulation, fluorescein-conjugated dextrans (70 kDa) were loaded and release was quantified via spectrophotometry. Staphylokinase (SAK), urokinase, and tissue-type plasminogen activator were also loaded individually into each liposome formulation. Leakage at 37 °C and release at 38-44 °C were quantified via chromogenic enzymatic activity assay. Clot lysis was evaluated by measuring mass of blood clots before and after thrombolytic liposome treatment. RESULTS The LTSL formulation had optimal release characteristics with maximum release at 41.3 °C. Release of dextrans from LTSLs was observed to be 11.5 ± 1.5%, 79.7 ± 1.6%, and 93.6 ± 3.7% after 15 min in plasma at 37°, 39°, and 41.3 °C, respectively. The SAK LTSL had the highest release/leakage ratio and demonstrated greater clot lysis. CONCLUSIONS The SAK LTSL achieves significant clot lysis in vitro. When combined with local hyperthermia, the SAK LTSL potentially produces sufficient thrombolysis while minimising systemic side effects.
Collapse
Affiliation(s)
- Vishal Saxena
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Centre, National Cancer Institute, National Institutes of Health, Bethesda , Maryland , USA
| | | | | | | | | | | |
Collapse
|