1
|
Oliveira ALMB, Rodrigues GD, Rohan PDA, Gonçalves TR, Soares PPDS. The Relationship between Inspiratory Muscle Strength and Cycling Performance: Insights from Hypoxia and Inspiratory Muscle Warm-Up. J Funct Morphol Kinesiol 2024; 9:97. [PMID: 38921633 PMCID: PMC11205061 DOI: 10.3390/jfmk9020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Hypoxia increases inspiratory muscle work and consequently contributes to a reduction in exercise performance. We evaluate the effects of inspiratory muscle warm-up (IMW) on a 10 km cycling time trial in normoxia (NOR) and hypoxia (HYP). Eight cyclists performed four time trial sessions, two in HYP (FiO2: 0.145) and two in NOR (FiO2: 0.209), of which one was with IMW (set at 40% of maximal inspiratory pressure-MIP) and the other was with the placebo effect (PLA: set at 15% MIP). Time trials were unchanged by IMW (NORIMW: 893.8 ± 31.5 vs. NORPLA: 925.5 ± 51.0 s; HYPIMW: 976.8 ± 34.2 vs. HYPPLA: 1008.3 ± 56.0 s; p > 0.05), while ventilation was higher in HYPIMW (107.7 ± 18.3) than HYPPLA (100.1 ± 18.9 L.min-1; p ≤ 0.05), and SpO2 was lower (HYPIMW: 73 ± 6 vs. HYPPLA: 76 ± 6%; p ≤ 0.05). A post-exercise-induced reduction in inspiratory strength was correlated with exercise elapsed time during IMW sessions (HYPIMW: r = -0.79; p ≤ 0.05; NORIMW: r = -0.70; p ≤ 0.05). IMW did not improve the 10 km time trial performance under normoxia and hypoxia.
Collapse
Affiliation(s)
- André Luiz Musmanno Branco Oliveira
- Department of Physiology and Pharmacology, Fluminense Federal University, Rua Prof. Hernani Pires de Melo 101, Bloco E-217, Niterói 24210-130, RJ, Brazil; (A.L.M.B.O.); (P.d.A.R.); (T.R.G.); (P.P.d.S.S.)
| | - Gabriel Dias Rodrigues
- Department of Physiology and Pharmacology, Fluminense Federal University, Rua Prof. Hernani Pires de Melo 101, Bloco E-217, Niterói 24210-130, RJ, Brazil; (A.L.M.B.O.); (P.d.A.R.); (T.R.G.); (P.P.d.S.S.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Philippe de Azeredo Rohan
- Department of Physiology and Pharmacology, Fluminense Federal University, Rua Prof. Hernani Pires de Melo 101, Bloco E-217, Niterói 24210-130, RJ, Brazil; (A.L.M.B.O.); (P.d.A.R.); (T.R.G.); (P.P.d.S.S.)
| | - Thiago Rodrigues Gonçalves
- Department of Physiology and Pharmacology, Fluminense Federal University, Rua Prof. Hernani Pires de Melo 101, Bloco E-217, Niterói 24210-130, RJ, Brazil; (A.L.M.B.O.); (P.d.A.R.); (T.R.G.); (P.P.d.S.S.)
| | - Pedro Paulo da Silva Soares
- Department of Physiology and Pharmacology, Fluminense Federal University, Rua Prof. Hernani Pires de Melo 101, Bloco E-217, Niterói 24210-130, RJ, Brazil; (A.L.M.B.O.); (P.d.A.R.); (T.R.G.); (P.P.d.S.S.)
| |
Collapse
|
2
|
Soares de Araujo L, Marostegan AB, Menezes Scariot PP, Bordon Orsi J, Cirino C, Papoti M, Gobatto CA, Manchado-Gobatto FB. Inspiratory muscles pre-activation in young swimmers submitted to a tethered swimming test: effects on mechanical, physiological, and skin temperature parameters. Sci Rep 2024; 14:5975. [PMID: 38472356 DOI: 10.1038/s41598-024-52312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/17/2024] [Indexed: 03/14/2024] Open
Abstract
Inspiratory muscles pre-activation (IMPA) has been studied to improve subsequent performance in swimming. However, the effects of IMPA on various parameters in swimmers are still unknown. Therefore, this study aimed to investigate the effects of IMPA on the mechanical parameters, physiological responses, and their possible correlations with swimming performance. A total of 14 young swimmers (aged 16 ± 0 years) underwent a 30-s all-out tethered swimming test, preceded or not by IMPA, a load of 40% of the maximal inspiratory pressure (MIP), and with a volume of 2 sets of 15 repetitions. The mechanical (strength, impulse, and fatigue index) and physiological parameters (skin temperature and lactatemia) and the assessment of perceived exertion and dyspnea were monitored in both protocols. The IMPA used did not increase the swimming force, and skin temperature, decrease blood lactate concentration, or subjective perception of exertion and dyspnea after the high-intensity tethered swimming exercises. Positive correlations were found between mean force and blood lactate (without IMPA: r = 0.62, P = 0.02; with IMPA: r = 0.65, P = 0.01). The impulse was positively correlated with blood lactate (without IMPA: r = 0.71, P < 0.01; with IMPA: r = 0.56, P = 0.03). Our results suggest that new IMPA protocols, possibly with increased volume, should be developed in order to improve the performance of young swimmers.
Collapse
Affiliation(s)
- Lara Soares de Araujo
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP, 13484-350, Brazil
| | - Anita Brum Marostegan
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP, 13484-350, Brazil
| | - Pedro Paulo Menezes Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP, 13484-350, Brazil
| | - Juan Bordon Orsi
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP, 13484-350, Brazil
| | - Carolina Cirino
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP, 13484-350, Brazil
| | - Marcelo Papoti
- Study and Research Group in Physiological Sciences and Exercise, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP, 13484-350, Brazil
| | - Fúlvia Barros Manchado-Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP, 13484-350, Brazil.
| |
Collapse
|
3
|
Effects of Inspiratory Muscle Warm-Up on Physical Exercise: A Systematic Review. BIOLOGY 2023; 12:biology12020333. [PMID: 36829608 PMCID: PMC9953131 DOI: 10.3390/biology12020333] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
This study aimed to systematically review the literature to examine the effects of inspiratory-muscle warm-up (IMW) on the inspiratory, metabolic, respiratory and performance parameters of a main exercise performed by athletes and healthy and active individuals. Methods: This systematic review included randomized studies in English based on the criteria of the PICOS model. The exclusion criteria adopted were studies that applied inspiratory exercise to: i. promote long-term adaptations through inspiratory training (chronic responses); ii. obtain acute responses to inspiratory load (overload) during and in breaks from physical effort and in an inspiratory-exercise session (acute training effect); iii. evaluate the effects of IMW on participants with cardiorespiratory and/or metabolic disease. Data Sources: PubMed, Embase, MedLine, Scopus, SPORTDiscus and Google Scholar (until 17 January 2023). Results: Thirty-one studies were selected. The performance and respiratory parameters were the most investigated (77% and 74%, respectively). Positive effects of IMW were reported by 88% of the studies that investigated inspiratory parameters and 45% of those that evaluated performance parameters. Conclusions: The analyzed protocols mainly had positive effects on the inspiratory and performance parameters of the physical exercises. These positive effects of IMW are possibly associated with the contractile and biochemical properties of inspiratory muscles.
Collapse
|
4
|
Effects of different inspiratory muscle warm-up loads on mechanical, physiological and muscle oxygenation responses during high-intensity running and recovery. Sci Rep 2022; 12:11223. [PMID: 35780133 PMCID: PMC9250525 DOI: 10.1038/s41598-022-14616-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Inspiratory muscle warm-up (IMW) has been used as a resource to enhance exercises and sports performance. However, there is a lack of studies in the literature addressing the effects of different IMW loads (especially in combination with a shorter and applicable protocol) on high-intensity running and recovery phase. Thus, this study aimed to investigate the effects of three different IMW loads using a shorter protocol on mechanical, physiological and muscle oxygenation responses during and after high-intensity running exercise. Sixteen physically active men, randomly performed four trials 30 s all-out run, preceded by the shorter IMW protocol (2 × 15 breaths with a 1-min rest interval between sets, accomplished 2 min before the 30 s all-out run). Here, three IMW load conditions were used: 15%, 40%, and 60% of maximal inspiratory pressure (MIP), plus a control session (CON) without the IMW. The force, velocity and running power were measured (1000 Hz). Two near-infrared spectroscopy (NIRS) devices measured (10 Hz) the muscle’s oxygenation responses in biceps brachii (BB) and vastus lateralis (VL). Additionally, heart rate (HR) and blood lactate ([Lac]) were also monitored. IMW loads applied with a shorter protocol promoted a significant increase in mean and minimum running power as well as in peak and minimum force compared to CON. In addition, specific IMW loads led to higher values of peak power, mean velocity (60% of MIP) and mean force (40 and 60% of MIP) in relation to CON. Physiological responses (HR and muscles oxygenation) were not modified by any IMW during exercise, as well as HR and [Lac] in the recovery phase. On the other hand, 40% of MIP presented a higher tissue saturation index (TSI) for BB during recovery phase. In conclusion, the use of different loads of IMW may improve the performance of a physically active individual in a 30 s all-out run, as verified by the increased peak, mean and minimum mechanical values, but not in performance assessed second by second. In addition, 40% of the MIP improves TSI of the BB during the recovery phase, which can indicate greater availability of O2 for lactate clearance.
Collapse
|
5
|
Cirino C, Gobatto CA, Pinto AS, Torres RS, Hartz CS, Azevedo PHSM, Moreno MA, Manchado-Gobatto FB. Complex network model indicates a positive effect of inspiratory muscles pre-activation on performance parameters in a judo match. Sci Rep 2021; 11:11148. [PMID: 34045508 PMCID: PMC8160163 DOI: 10.1038/s41598-021-90394-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
This study investigated the effects of inspiratory muscle pre-activation (IMPA) on the interactions among the technical-tactical, physical, physiological, and psychophysiological parameters in a simulated judo match, based on the centrality metrics by complex network model. Ten male athletes performed 4 experimental sessions. Firstly, anthropometric measurements, maximal inspiratory pressure (MIP) and global strenght of the inspiratory muscles were determined. In the following days, all athletes performed four-minute video-recorded judo matches, under three conditions: without IMPA (CON), after IMPA at 15% (IMPA15), and at 40% (IMPA40) of MIP using an exerciser device. Blood lactate, heart rate and rating of perceived exertion were monitored, and the technical-tactical parameters during the match were related to offensive actions and the time-motion. Based on the complex network, graphs were constructed for each scenario (CON, IMPA15, and IMPA40) to investigate the Degree and Pagerank centrality metrics. IMPA40 increased the connectivity of the physical and technical-tactical parameters in complex network and highlighted the combat frequency and average combat time in top-five ranked nodes. IMPA15 also favoured the interactions among the psychophysiological, physical, and physiological parameters. Our results suggest the positive effects of the IMPA, indicating this strategy to prepare the organism (IMPA15) and to improve performance (IMPA40) in judo match.
Collapse
Affiliation(s)
- Carolina Cirino
- grid.411087.b0000 0001 0723 2494Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria St, Limeira, Sao Paulo 13484-350 Brazil
| | - Claudio A. Gobatto
- grid.411087.b0000 0001 0723 2494Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria St, Limeira, Sao Paulo 13484-350 Brazil
| | - Allan S. Pinto
- grid.411087.b0000 0001 0723 2494Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria St, Limeira, Sao Paulo 13484-350 Brazil
| | - Ricardo S. Torres
- grid.5947.f0000 0001 1516 2393Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Ålesund, Norway
| | - Charlini S. Hartz
- grid.412397.a0000 0001 0271 5964Postgraduate Program in Human Movement Sciences, Methodist University of Piracicaba, Piracicaba, Sao Paulo Brazil
| | - Paulo H. S. M. Azevedo
- grid.411249.b0000 0001 0514 7202Department of Human Movement Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Marlene A. Moreno
- grid.412397.a0000 0001 0271 5964Postgraduate Program in Human Movement Sciences, Methodist University of Piracicaba, Piracicaba, Sao Paulo Brazil
| | - Fúlvia B. Manchado-Gobatto
- grid.411087.b0000 0001 0723 2494Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria St, Limeira, Sao Paulo 13484-350 Brazil
| |
Collapse
|
6
|
Bostancı Ö, Kabadayı M, Mayda MH, Yılmaz AK, Yılmaz C. The differential impact of several types of sports on pulmonary functions and respiratory muscle strength in boys aged 8–12. ISOKINET EXERC SCI 2019. [DOI: 10.3233/ies-192105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Özgür Bostancı
- Department of Sport Science, Ondokuz Mayıs University Performance Laboratory, Ondokuz Mayıs University, Samsun, Turkey
| | - Menderes Kabadayı
- Department of Sport Science, Ondokuz Mayıs University Performance Laboratory, Ondokuz Mayıs University, Samsun, Turkey
| | - Muhammet Hakan Mayda
- Department of Physical Education and Sport, Ondokuz Mayıs University Performance Laboratory, Ondokuz Mayıs University, Samsun, Turkey
| | - Ali Kerim Yılmaz
- Department of Sport Science, Ondokuz Mayıs University Performance Laboratory, Ondokuz Mayıs University, Samsun, Turkey
| | - Coşkun Yılmaz
- Department of Sport Science, Ondokuz Mayıs University Performance Laboratory, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
7
|
Richard P, Billaut F. Effects of inspiratory muscle warm-up on locomotor muscle oxygenation in elite speed skaters during 3000 m time trials. Eur J Appl Physiol 2018; 119:191-200. [PMID: 30350154 DOI: 10.1007/s00421-018-4015-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE It has been shown that an inspiratory muscle warm-up (IMW) could enhance performance. IMW may also improve the near-infrared spectroscopy (NIRS)-derived tissue oxygen saturation index (TSI) during cycling. However, there exists contradictory data about the effect of this conditioning strategy on performance and muscle oxygenation. We examined the effect of IMW on speed skating performance and studied the underpinning physiological mechanisms related to muscle oxygenation. METHODS In a crossover, randomized, single-blind study, eight elite speed skaters performed 3000 m on-ice time trials, preceded by either IMW (2 × 30 breaths, 40% maximal inspiratory pressure) or SHAM (2 × 30 breaths, 15% maximal inspiratory pressure). Changes in TSI, oxyhemoglobin-oxymyoglobin ([O2HbMb]), deoxyhemoglobin-deoxymyoglobin ([HHbMb]), total hemoglobin-myoglobin ([THbMb]) and HHbMbdiff ([O2HbMb]-[HHbMb]) in the right vastus lateralis muscle were monitored by NIRS. All variables were compared at different time points of the race simulation with repeated-measures analysis of variance. Differences between IMW and SHAM were also analyzed using Cohen's effect size (ES) ± 90% confidence limits, and magnitude-based inferences. RESULTS Compared with SHAM, IMW had no clear impact on skating time (IMW 262.88 ± 17.62 s vs. SHAM 264.05 ± 21.12 s, effect size (ES) 0.05; 90% confidence limits, - 0.22, 0.32, p = 0.7366), TSI, HbMbdiff, [THbMb], [O2HbMb] and perceptual responses. CONCLUSIONS IMW did not modify skating time during a 3000 m time trial in speed skaters, in the conditions of our study. The unchanged [THbMb] and TSI demonstrate that the mechanisms by which IMW could possibly exert an effect on performance were unaffected by this intervention.
Collapse
Affiliation(s)
- Philippe Richard
- Département de kinésiologie, Université Laval, 2300, rue de la Terrasse, Quebec, QC, G1V 0A6, Canada
| | - François Billaut
- Département de kinésiologie, Université Laval, 2300, rue de la Terrasse, Quebec, QC, G1V 0A6, Canada.
| |
Collapse
|
8
|
Yilmaz ÖF, Özdal M. Acute, chronic, and combined pulmonary responses to swimming in competitive swimmers. Respir Physiol Neurobiol 2018; 259:129-135. [PMID: 30217724 DOI: 10.1016/j.resp.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/10/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
Abstract
The combined effects of swimming on the inspiratory muscles and pulmonary functions are not well known. The aim of the present study was to determine the acute, chronic, and combined effects of swimming on the pulmonary functions and respiratory muscles of competitive swimmers. Thirty males (15 in the experimental group [EG] and 15 in the control group [CG]) participated in this study. The EG subjects participated in an 8-week swim training program and performed 1 day before and after an 8-week 100-m swimming event. Pulmonary functions and respiratory muscle strength were measured immediately before and after the swimming event in the EG and before and after an 8-week period in the CG. The obtained data were analyzed using repeated measures one-way analysis of variance, least significant difference, and independent- and paired-sample t-tests. Swimming exerted negative acute effects (p < 0.05) and positive chronic effects (p < 0.05) on respiratory muscle strength and pulmonary functions. Further, the negative acute effects decreased the combined effects of the chronic and acute effects of swimming on respiratory muscle strength and pulmonary functions (p < 0.05). The results indicated that swimming exerts negative acute, positive chronic, and combined effects on respiratory muscle strength and pulmonary functions.
Collapse
Affiliation(s)
- Ömer Faruk Yilmaz
- Department of Physical Education and Sport, Institution of Gaziantep University, Lab of Gaziantep University Performance Laboratory, Turkey.
| | - Mustafa Özdal
- Department of Physical Education and Sport, Institution of Gaziantep University, Lab of Gaziantep University Performance Laboratory, Turkey.
| |
Collapse
|
9
|
Özdal M, Bostanci Ö. Influence of inspiratory muscle warm-up on aerobic performance during incremental exercise. ISOKINET EXERC SCI 2018. [DOI: 10.3233/ies-172188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mustafa Özdal
- Department of Physical Education and Sport, Gaziantep University Performance Laboratory, Gaziantep University, Gaziantep, Turkey
| | - Özgür Bostanci
- Sport Science Faculty, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
10
|
Richard P, Billaut F. Combining Chronic Ischemic Preconditioning and Inspiratory Muscle Warm-Up to Enhance On-Ice Time-Trial Performance in Elite Speed Skaters. Front Physiol 2018; 9:1036. [PMID: 30108521 PMCID: PMC6079196 DOI: 10.3389/fphys.2018.01036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/12/2018] [Indexed: 02/02/2023] Open
Abstract
Elite athletes in varied sports typically combine ergogenic strategies in the hope of enhancing physiological responses and competitive performance, but the scientific evidence for such practices is very scarce. The peculiar characteristics of speed skating contribute to impede blood flow and exacerbate deoxygenation in the lower limbs (especially the right leg). We investigated whether combining preconditioning strategies could modify muscular oxygenation and improve performance in that sport. Using a randomized, single-blind, placebo-controlled, crossover design, seven male elite long-track speed skaters performed on-ice 600-m time trials, preceded by either a combination of preconditioning strategies (COMBO) or a placebo condition (SHAM). COMBO involved performing remote ischemic preconditioning (RIPC) of the upper limbs (3 × 5-min compression at 180 mmHg and 5-min reperfusion) over 3 days (including an acute treatment before trials), with the addition of an inspiratory muscle warm-up [IMW: 2 × 30 inspirations at 40% maximal inspiratory pressure (MIP)] on the day of testing. SHAM followed the same protocol with lower intensities (10 mmHg for RIPC and 15% MIP). Changes in tissue saturation index (TSI), oxyhemoglobin–oxymyoglobin ([O2HbMb]), deoxyhemoglobin–deoxymyoglobin ([HHbMb]), and total hemoglobin–myoglobin ([THbMb]) in the right vastus lateralis muscle were monitored by near-infrared spectroscopy (NIRS). Differences between COMBO and SHAM were analyzed using Cohen’s effect size (ES) and magnitude-based inferences. Compared with SHAM, COMBO had no worthwhile effect on performance time while mean Δ[HHbMb] (2.7%, ES 0.48; -0.07, 1.03) and peak Δ[HHbMb] (1.8%, ES 0.23; -0.10, 0.57) were respectively likely and possibly higher in the last section of the race. These results indicate that combining ischemic preconditioning and IMW has no practical ergogenic impact on 600-m speed-skating performance in elite skaters. The low-sitting position in this sport might render difficult enhancing these physiological responses.
Collapse
Affiliation(s)
- Philippe Richard
- Département de kinésiologie, Université Laval, Quebec, QC, Canada
| | - François Billaut
- Département de kinésiologie, Université Laval, Quebec, QC, Canada
| |
Collapse
|