1
|
Ludyga S, Gerber M, Herold F, Schwarz A, Looser VN, Hanke M. Cortical hemodynamics and inhibitory processing in preadolescent children with low and high physical activity. Int J Clin Health Psychol 2024; 24:100438. [PMID: 38226004 PMCID: PMC10788801 DOI: 10.1016/j.ijchp.2024.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
Background Preadolescent children undergo developmental changes in inhibitory control. Maintenance of high levels of moderate-to-vigorous-intensity physical activity (MVPA) has been suggested to promote its maturation. We compared inhibitory control between children with low and high MVPA as well as their inhibitory processing stream and changes in cortical hemodynamics. Method 109 participants aged 10 to 13 years wore accelerometers over 7 days. Those with MVPA levels of 30 min/d or less and 60 min/d or more further performed a computerized Stroop Color-Word task. Electroencephalography and functional near-infrared spectroscopy were used to record changes in inhibitory processing and cortical hemodynamics, respectively. Results An interaction of MVPA group and sex indicated better interference in highly-active boys, but the opposite pattern in girls. Independent from sex, the high compared to low MVPA group showed greater P300 and PSW amplitudes, whereas no group differences were found for N200, N450, and changes in cortical hemodynamics. Conclusion Children with high MVPA differ from their less-active peers by a distinct inhibitory processing profile, which is characterized by altered allocation of attentional resources and conflict resolution. However, these alterations do not necessarily translate into better performance, especially since MVPA is linked with higher inhibitory control in boys only.
Collapse
Affiliation(s)
- Sebastian Ludyga
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Markus Gerber
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Fabian Herold
- Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Anja Schwarz
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Vera Nina Looser
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Manuel Hanke
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Falck RS, Hsu CL, Silva NCBS, Li LC, Best JR, Liu-Ambrose T. The independent associations of physical activity and sleep with neural activity during an inhibitory task: cross-sectional results from the MONITOR-OA study. J Sleep Res 2022; 31:e13692. [PMID: 35821379 DOI: 10.1111/jsr.13692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
Sleep and physical activity (PA) are important for the maintenance of executive functions. Whether these lifestyle factors independently contribute to associated neural correlates of executive functions is unknown. We therefore investigated the independent associations of PA and sleep with neural activity during executive performance using task-based functional magnetic resonance imaging (fMRI). Baseline data from a subset of participants (n = 29) enrolled in a randomised trial were used for this cross-sectional analysis. We measured PA, sleep duration and efficiency for 7 days using the SenseWear Mini and examined neural activity underlying response inhibition using the Go/NoGo executive performance task. Brain activation patterns during the NoGo condition were contrasted to activation patterns during the Go condition (i.e., NoGo-Go). We constructed two separate models (controlling for age, sex, and education) to examine the independent associations of (i) PA and sleep duration; and (ii) PA and sleep efficiency with brain activation. Significant clusters were corrected for multiple comparisons (p < 0.05) to determine region-specific activation patterns. The mean (SD) participant age was 61 (9) years, and 79% were female. PA was independently associated with greater task-related blood-oxygen-level dependent (BOLD) signal activity in the left cingulate gyrus; longer sleep duration was independently associated with greater BOLD signal activity in the left putamen. Higher sleep efficiency was independently associated with increased BOLD signal activity in the left hippocampus. PA, sleep duration, and efficiency are each independently associated with greater neural activity underlying response inhibition, which further illustrates that PA and sleep are each uniquely important for brain health.
Collapse
Affiliation(s)
- Ryan Stanley Falck
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Chun Liang Hsu
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Narlon Cassio Boa Sorte Silva
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Linda C Li
- Arthritis Research Canada, University of British Columbia, Vancouver, British Columbia, Canada
| | - John R Best
- Gerontology Research Centre, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Classroom Movement Breaks and Physically Active Learning Are Feasible, Reduce Sedentary Behaviour and Fatigue, and May Increase Focus in University Students: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137775. [PMID: 35805432 PMCID: PMC9265656 DOI: 10.3390/ijerph19137775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
Background: University students are mostly sedentary in tertiary education settings which may be detrimental to their health and learning. This review aimed to examine the feasibility and efficacy of classroom movement breaks (CMB) and physically active learning (PAL) on physical and cognitive outcomes in university students in the tertiary setting. Methods: Five electronic databases (MEDLINE, CINAHL, Embase, PsychINFO, and PubMed) were searched for articles published up until November 2021. Manual searching of reference lists and citation tracking were also completed. Two reviewers independently applied inclusion and exclusion criteria and completed quality assessment. Articles were included if they evaluated CMB or PAL interventions delivered to university students in a tertiary setting. Results: Of the 1691 articles identified, 14 studies with 5997 participants met the inclusion criteria. Average study quality scores were poor for both CMB and PAL studies. CMBs and PAL are feasible in the tertiary setting and increase physical activity, reduce sedentary behaviour, increase wellbeing, and reduce fatigue in university students. In addition, CMBs increased student focus and attention in class and PAL had no detrimental effect on academic performance. Conclusions: University educators should feel confident in introducing CMB and/or PAL interventions into their classes to improve student health and wellbeing.
Collapse
|
4
|
Emerson JR, Scott MW, van Schaik P, Butcher N, Kenny RPW, Eaves DL. A neural signature for combined action observation and motor imagery? An fNIRS study into prefrontal activation, automatic imitation, and self-other perceptions. Brain Behav 2022; 12:e2407. [PMID: 34994997 PMCID: PMC8865155 DOI: 10.1002/brb3.2407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Research indicates that both observed and imagined actions can be represented in the brain as two parallel sensorimotor representations. One proposal is that higher order cognitive processes would align these two hypothetical action simulations. METHODS We investigated this hypothesis using an automatic imitation paradigm, with functional near-infrared spectroscopy recordings over the prefrontal cortex during different motor simulation states. On each trial, participants (n = 14) observed a picture of a rhythmical action (instructed action) followed by a distractor movie showing the same or different action. Participants then executed the instructed action. Distractor actions were manipulated to be fast or slow, and instructions were manipulated during distractor presentation: action observation (AO), combined action observation and motor imagery (AO+MI) and observe to imitate (intentional imitation). A pure motor imagery (MI) condition was also included. RESULTS Kinematic analyses showed that although distractor speed effects were significant under all instructions (shorter mean cycle times in execution for fast compared to slow trials), this imitation bias was significantly stronger for combined AO+MI than both AO and MI, and stronger for intentional imitation than the other three automatic imitation conditions. In the left prefrontal cortex, cerebral oxygenation was significantly greater for combined AO+MI than all other instructions. Participants reported that their representation of the self overlapped with the observed model significantly more during AO+MI than AO. CONCLUSION Left prefrontal activation may therefore be a neural signature of AO+MI, supporting attentional switching between concurrent representations of self (MI, top-down) and other (AO, bottom-up) to increase imitation and perceived closeness.
Collapse
Affiliation(s)
- Jonathan R Emerson
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Matthew W Scott
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.,Department of Psychology, Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, Manchester, UK
| | - Paul van Schaik
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - Natalie Butcher
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - Ryan P W Kenny
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Daniel L Eaves
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.,Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
5
|
Fujihara H, Megumi A, Yasumura A. The acute effect of moderate-intensity exercise on inhibitory control and activation of prefrontal cortex in younger and older adults. Exp Brain Res 2021; 239:1765-1778. [PMID: 33783561 DOI: 10.1007/s00221-021-06086-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Exercise has a significant effect on maintaining the health of inhibitory function, a fundamental cognitive ability that supports daily mental processes. While previous studies have shown that a single bout of exercise, called acute exercise, could improve inhibitory control by stimulating the prefrontal cortex (PFC) and the arousal state, few studies have focused on the differences in the effects of exercise by age. In this study, young and older adults (mean age, 22.7 ± 1.4 and 68.7 ± 5.3 years, respectively) engaged in acute moderate-intensity exercise and inhibitory control. Before and at 5 and 30 min after exercise, the participants were asked to complete the reverse Stroop task, and their arousal state and PFC activity were measured using functional near-infrared spectroscopy. The findings showed that the overall inhibitory control improved immediately after performing acute exercise and remained improved even after 30 min. Particularly, there was a difference in the arousal state and middle PFC activity between the two age groups. Especially, the young adults showed an increase in the arousal state post-exercise, while the older adults tended to show an increase in the middle PFC activity. These results suggested that the acute exercise effects on the arousal state and PFC activity may vary depending on the developmental stage, but not for inhibitory control overtime. When these findings are considered, it is important to note that the exercise impact on cognitive control remained the same throughout the generations despite the observed changes in its impact on internal states.
Collapse
Affiliation(s)
- Hideaki Fujihara
- Graduate School of Education, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan. .,Faculty of Education, Kumamoto University, 2-40-1 Kurokami, Kumamoto, 860-8555, Japan.
| | - Akiko Megumi
- Graduate School of Social and Cultural Sciences, Kumamoto University, 2-40-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Akira Yasumura
- Graduate School of Humanities and Social Sciences, Kumamoto University, 2-40-1 Kurokami, Kumamoto, 860-8555, Japan
| |
Collapse
|
6
|
Comparison of the Effects of Continuous and Intermittent Exercise on Cerebral Oxygenation and Cognitive Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:209-214. [PMID: 31893412 DOI: 10.1007/978-3-030-34461-0_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cognitive function is reported to improve by moderate aerobic exercise. However, the effects of intermittent exercise with rest between the moderate-intensity exercise are unclear. Therefore, this study aimed to compare the effects of continuous and intermittent exercise on cerebral oxygenation and cognitive function. This study included 18 healthy adults. For the continuous exercise protocol, 5 min of rest was followed by 30 min of exercise; 5 min of rest was allowed after each exercise. For the intermittent exercise protocol, 3 sets of 10 min of exercise were completed, with 5 min of rest between the sets. Exercise intensity was 50% of maximum oxygen uptake. Oxyhemoglobin (O2Hb) in the prefrontal cortex (PFC) was measured during each protocol, and cognitive tasks (Stroop test) were performed before and after exercise. O2Hb levels for the left and right PFCs were significantly higher post-exercise than pre-exercise for both exercise protocols (p < 0.01). The average reaction time in the Stroop test was significantly shorter post-exercise than pre-exercise for both protocols (p < 0.01). There was no significant difference in the error rate pre- and post-exercise for both protocols (continuous p = 0.22; intermittent p = 0.44). There was no significant difference between both protocols in all measurement results (O2Hb: p = 0.67; average reaction time p = 0.50; error rate p = 0.24). O2Hb was higher and average reaction time was shorter after exercise than before exercise for both exercise protocols. Intermittent and continuous exercise may improve cognitive function to the same degree after exercise.
Collapse
|
7
|
Bento-Torres J, Bento-Torres NVO, Stillman CM, Grove GA, Huang H, Uyar F, Watt JC, Wollam ME, Erickson KI. Associations between cardiorespiratory fitness, physical activity, intraindividual variability in behavior, and cingulate cortex in younger adults. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:315-324. [PMID: 31333884 PMCID: PMC6620364 DOI: 10.1016/j.jshs.2019.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/10/2018] [Accepted: 11/05/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Higher levels of cardiorespiratory fitness (CRF) and greater amounts of physical activity have been associated with lower intraindividual variability (IIV) in executive function in children and older adults. In the present study, we examined whether CRF, measured as maximal oxygen uptake (VO2max), and daily volume of moderate-to-vigorous intensity physical activity (MVPA) were associated with IIV of reaction time during performance of the incongruent condition of the Stroop task in younger adults. Further, we examined whether the thickness of the cingulate cortex was associated with regulating variability in reaction time performance in the context of CRF or physical activity. METHODS CRF (measured as VO2max), accelerometry-measured MVPA, Stroop performance, and thickness of the rostral anterior cingulate cortex (rACC) derived from magnetic resonance imaging data were collected in 48 younger adults (age = 24.58 ± 4.95 years, mean ± SD). Multiple regression was used to test associations between IIV during the Stroop task and CRF, MVPA, and rACC thickness. Mediation was tested using maximum likelihood estimation with bootstrapping. RESULTS Consistent with our predictions, higher VO2max was associated with greater rACC thickness for the right hemisphere and greater daily amounts of MVPA were associated with greater rACC thickness for both the left and right hemispheres. Greater thickness of the right rACC was associated with lower IIV for the incongruent condition of the Stroop task. CRF and MVPA were not directly associated with IIV. However, we did find that IIV and both CRF and MVPA were indirectly associated via the thickness of the right rACC. CONCLUSION These results indicate that higher CRF and greater daily volume of MVPA may be associated with lower IIV during the Stroop task via structural integrity of the rACC. Randomized controlled trials of MVPA would provide crucial information about the causal relations between these variables.
Collapse
Affiliation(s)
- João Bento-Torres
- Institute of Biological Science, Federal University of Pará, Belém, Pará 66075-110, Brazil
| | | | - Chelsea M. Stillman
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA 15260, USA
| | - George A. Grove
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Haiqing Huang
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Fatma Uyar
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer C. Watt
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mariegold E. Wollam
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kirk I. Erickson
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA 15260, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Corresponding author.
| |
Collapse
|
8
|
Herold F, Wiegel P, Scholkmann F, Müller NG. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise⁻Cognition Science: A Systematic, Methodology-Focused Review. J Clin Med 2018; 7:E466. [PMID: 30469482 PMCID: PMC6306799 DOI: 10.3390/jcm7120466] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
For cognitive processes to function well, it is essential that the brain is optimally supplied with oxygen and blood. In recent years, evidence has emerged suggesting that cerebral oxygenation and hemodynamics can be modified with physical activity. To better understand the relationship between cerebral oxygenation/hemodynamics, physical activity, and cognition, the application of state-of-the art neuroimaging tools is essential. Functional near-infrared spectroscopy (fNIRS) is such a neuroimaging tool especially suitable to investigate the effects of physical activity/exercises on cerebral oxygenation and hemodynamics due to its capability to quantify changes in the concentration of oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) non-invasively in the human brain. However, currently there is no clear standardized procedure regarding the application, data processing, and data analysis of fNIRS, and there is a large heterogeneity regarding how fNIRS is applied in the field of exercise⁻cognition science. Therefore, this review aims to summarize the current methodological knowledge about fNIRS application in studies measuring the cortical hemodynamic responses during cognitive testing (i) prior and after different physical activities interventions, and (ii) in cross-sectional studies accounting for the physical fitness level of their participants. Based on the review of the methodology of 35 as relevant considered publications, we outline recommendations for future fNIRS studies in the field of exercise⁻cognition science.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
| | - Patrick Wiegel
- Department of Sport Science, University of Freiburg, Freiburg 79117, Germany.
- Bernstein Center Freiburg, University of Freiburg, Freiburg 79104, Germany.
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zürich, Zürich 8091, Switzerland.
| | - Notger G Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg 39118, Germany.
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg 39120, Germany.
| |
Collapse
|