1
|
Ahidjo N, Maidawa Yaya F, Njamnshi WY, Rissia-Ngo Pambe JC, Ndianteng EW, Nwasike CNC, Kemmo C, Choupo AC, Meka’a Zang LY, Pieme AC, Vecchio L, Ngadjui BT, Njamnshi AK, Seke Etet PF. Therapeutic potential of Garcinia kola against experimental toxoplasmosis in rats. Brain Commun 2024; 6:fcae255. [PMID: 39130514 PMCID: PMC11316209 DOI: 10.1093/braincomms/fcae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/19/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024] Open
Abstract
Cerebral toxoplasmosis, the most common opportunistic infection in immunocompromised individuals, is increasingly reported in immunocompetent individuals due to mutant strains of Toxoplasma gondii, which, furthermore, are reported to be resistant to available treatments. We assessed the therapeutic potential of Garcinia kola, a medicinal plant reported to have antiplasmodial and neuroprotective properties, against experimental toxoplasmosis in rats. Severe toxoplasmosis was induced in male Wistar rats (156.7 ± 4.1 g) by injecting them with 10 million tachyzoites in suspension in 500 µl of saline (intraperitoneal), and exclusive feeding with a low-protein diet [7% protein (weight by weight)]. Then, animals were treated with hexane, dichloromethane, and ethyl acetate fractions of Garcinia kola. Footprints were analysed and open-field and elevated plus maze ethological tests were performed when symptoms of severe disease were observed in the infected controls. After sacrifice, blood samples were processed for Giemsa staining, organs were processed for haematoxylin and eosin staining, and brains were processed for Nissl staining and cell counting. Compared with non-infected animals, the infected control animals had significantly lower body weights (30.27%↓, P = 0.001), higher body temperatures (P = 0.033) during the sacrifice, together with signs of cognitive impairment and neurologic deficits such as lower open-field arena centre entries (P < 0.001), elevated plus maze open-arm time (P = 0.029) and decreased stride lengths and step widths (P < 0.001), as well as neuronal loss in various brain areas. The ethyl acetate fraction of Garcinia kola prevented or mitigated most of these signs. Our data suggest that the ethyl acetate fraction of Garcinia kola has therapeutic potential against cerebral toxoplasmosis.
Collapse
Affiliation(s)
- Nene Ahidjo
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Frederic Maidawa Yaya
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| | - Wepnyu Y Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Judith C Rissia-Ngo Pambe
- Department of Morphological Sciences and Pathological Anatomy, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Ethel W Ndianteng
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Caroline N C Nwasike
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Christelle Kemmo
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Arnaud C Choupo
- Faculty of Medicine and Biomedical Sciences, Laboratory of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Luc Yvan Meka’a Zang
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Anatole C Pieme
- Faculty of Medicine and Biomedical Sciences, Laboratory of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Lorella Vecchio
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| | | | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Paul F Seke Etet
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| |
Collapse
|
2
|
Dámek F, Basso W, Joeres M, Thoumire S, Swart A, Silva AD, Gassama I, Škorič M, Smola J, Schares G, Blaga R, Koudela B. Infection dynamics following experimental challenge of pigs orally dosed with different stages of two archetypal genotypes of Toxoplasma gondii. Vet Parasitol 2024; 330:110222. [PMID: 38878463 DOI: 10.1016/j.vetpar.2024.110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024]
Abstract
Toxoplasma gondii is a food-borne zoonotic parasite widespread in a variety of hosts, including humans. With a majority of infections in Europe estimated to be meat-borne, pork, as one of the most consumed meats worldwide, represents a potential risk for consumers. Therefore, we aimed to investigate the progress of T. gondii infection and tissue tropism in experimentally infected pigs, using different T. gondii isolates and infectious stages, i.e. tissue cysts or oocysts. Twenty-four pigs were allocated to treatment in four groups of six, with each group inoculated orally with an estimated low dose of either 400 oocysts or 10 tissue cysts of two European T. gondii isolates, a type II and a type III isolate. The majority of pigs seroconverted two weeks post-inoculation. Pigs infected with the type III isolate had significantly higher levels of anti-T. gondii antibodies compared to those infected with the type II isolate. Histopathological exams revealed reactive hyperplasia of the lymphatic tissue of all pigs. Additionally, a selected set of nine tissues was collected during necropsy at 50 dpi from each of the remaining 22 pigs for T. gondii DNA detection by quantitative real-time PCR. A positive result was obtained in 29.8 % (59/139) of tested tissues. The brain was identified as the most frequently positive tissue in 63.6 % (14/22) of the animals. In contrast, liver samples tested negative in all animals. The highest mean parasite load, calculated by interpolating the average Cq values on the standard curve made of ten-fold serial dilutions of the genomic DNA, corresponding to 100 to 104 tachyzoites/µL, was observed in shoulder musculature with an estimated concentration of 84.4 [0.0-442.5] parasites per gram of tissue. The study highlights the variability in clinical signs and tissue distribution of T. gondii in pigs based on the combination of parasite stages and strains, with type III isolates, particularly oocysts, causing a stronger antibody response and higher tissue parasite burden. These findings suggest the need for further investigation of type III isolates to better understand their potential risks to humans.
Collapse
Affiliation(s)
- Filip Dámek
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, 22 rue Pierre et Marie Curie, Maisons-Alfort Cedex 94701, France.
| | - Walter Basso
- Institute of Parasitology, Vetsuisse-Faculty, University of Bern, Länggassstrasse 122, Bern CH-3012, Switzerland
| | - Maike Joeres
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Sandra Thoumire
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, 22 rue Pierre et Marie Curie, Maisons-Alfort Cedex 94701, France
| | - Arno Swart
- Centre for Infectious Disease Control-Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, Bilthoven 3720 BA, the Netherlands
| | - Anaëlle da Silva
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, 22 rue Pierre et Marie Curie, Maisons-Alfort Cedex 94701, France
| | - Inés Gassama
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, 22 rue Pierre et Marie Curie, Maisons-Alfort Cedex 94701, France
| | - Miša Škorič
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno Palackého tř. 1946/1, Brno 612 42, Czech Republic
| | - Jiří Smola
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno Palackého tř. 1946/1, Brno 612 42, Czech Republic; Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Palackého tř. 1, Brno 612 42, Czech Republic
| | - Gereon Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Radu Blaga
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, 22 rue Pierre et Marie Curie, Maisons-Alfort Cedex 94701, France; University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, 3-5 Calea Mănăştur Street, Cluj-Napoca 400372, Romania
| | - Břetislav Koudela
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno Palackého tř. 1946/1, Brno 612 42, Czech Republic; Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Palackého tř. 1, Brno 612 42, Czech Republic
| |
Collapse
|
3
|
Barros Oliveira CV, Paulino da Silva ME, de Lima JR, Tavares Moreira AM, Mendes Brito MJ, Coelho Gonçalves CA, Lemos de Barros JE, de Oliveira RM, Kamdem JP, Barros LM, Duarte AE. Correlations between the degree of infection by wild strain of Toxoplasma gondii in vitro and porcine hematological parameters. Exp Parasitol 2024; 261:108754. [PMID: 38636935 DOI: 10.1016/j.exppara.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
The apicomplexa Toxoplasma gondii is capable of actively proliferating in numerous types of nucleated cells, and therefore has a high potential for dissemination and resistance. Thus, the present work aimed to correlate the inoculum concentrations and amount of post-infection parasites with porcine hematological parameters (including biochemistry) through in vitro culture. Porcine blood was incubated with different concentrations of parasites (1.2 × 107, 6/3/1.5 × 106 cells/mL), then the concentrations of red blood cells (RBC) and their morphology, total and differential leukocytes, and free peptides were evaluated. In addition, eight different blood samples analyzed before inoculation, where subsequent multivariate analysis was applied to correlate different variables with trophozoite concentration. The results showed no significant variation (p < 0.05) in the relative levels of free peptides, or the relative percentage of RBC at all the parasite concentrations tested. However, the normalized percentages of leukocytes and neutrophils showed a significant reduction, while those of lymphocytes, eosinophils and monocytes showed the opposite behavior. Semi-automatic processing of images exhibited significant microcytosis and hypochromia. The multivariate analysis revealed a positive correlation between the amount number of protozoa (AP) and the variables: "Red cells" and "Neutrophils", an indifference between the AP and the content of free peptides, and the concentration of monocytes in the samples; and a negative correlation for AP and the percentages of lymphocytes and eosinophils. Our results suggest that specific changes in hematological parameters may be associated with different degrees of parasitemia, demanding a thorough diagnostic process and adequate treatment.
Collapse
Affiliation(s)
| | - Maria Elenilda Paulino da Silva
- Laboratory for Research and Diagnosis of Tropical Diseases - LPDDT, Federal University of Pernambuco - UFPE, Recife, 50670-901, Brazil
| | - Jailson Renato de Lima
- Laboratory of Agricultural Entomology - LEA, Federal University of Cariri, Crato, 63113-140, Ceará, Brazil
| | - Amanda Maria Tavares Moreira
- Laboratory of Biology and Toxicology - BIOTOX, Regional University of Cariri - URCA, Crato, 63105-000, Ceará, Brazil
| | - Maria Jéssica Mendes Brito
- Center for Biological and Health Sciences - CCBS, Department of Biological Sciences, Regional University of Cariri - URCA, 63105-000, Crato, Ceara, Brazil
| | - Cicera Alane Coelho Gonçalves
- Laboratory of Semi-Arid Bioprospecting and Alternative Methods- LABSEMA, Regional University of Cariri - URCA, Crato, 63105-000, Ceará, Brazil
| | - João Eudes Lemos de Barros
- Laboratory of Pharmacology and Molecular Chemistry, Regional University of Cariri - URCA, Crato, 63105-000, Ceará, Brazil
| | | | - Jean Paul Kamdem
- Laboratory of Biology and Toxicology - BIOTOX, Regional University of Cariri - URCA, Crato, 63105-000, Ceará, Brazil
| | - Luiz Marivando Barros
- Laboratory of Plant Ecophysiology - LECOV, Regional University of Cariri - URCA, Crato, 63105-000, Ceará, Brazil
| | - Antonia Eliene Duarte
- Laboratory of Biology and Toxicology - BIOTOX, Regional University of Cariri - URCA, Crato, 63105-000, Ceará, Brazil
| |
Collapse
|
4
|
Ihara F, Kyan H, Takashima Y, Ono F, Hayashi K, Matsuo T, Igarashi M, Nishikawa Y, Hikosaka K, Sakamoto H, Nakamura S, Motooka D, Yamauchi K, Ichikawa-Seki M, Fukumoto S, Sasaki M, Ikadai H, Kusakisako K, Ohari Y, Yoshida A, Sasai M, Grigg ME, Yamamoto M. Far-East Asian Toxoplasma isolates share ancestry with North and South/Central American recombinant lineages. Nat Commun 2024; 15:4278. [PMID: 38778039 PMCID: PMC11111807 DOI: 10.1038/s41467-024-47625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Toxoplasma gondii is a global protozoan pathogen. Clonal lineages predominate in Europe, North America, Africa, and China, whereas highly recombinant parasites are endemic in South/Central America. Far East Asian T. gondii isolates are not included in current global population genetic structure analyses at WGS resolution. Here we report a genome-wide population study that compared eight Japanese and two Chinese isolates against representative worldwide T. gondii genomes using POPSICLE, a novel population structure analyzing software. Also included were 7 genomes resurrected from non-viable isolates by target enrichment sequencing. Visualization of the genome structure by POPSICLE shows a mixture of Chinese haplogroup (HG) 13 haploblocks introgressed within the genomes of Japanese HG2 and North American HG12. Furthermore, two ancestral lineages were identified in the Japanese strains; one lineage shares a common ancestor with HG11 found in both Japanese strains and North American HG12. The other ancestral lineage, found in T. gondii isolates from a small island in Japan, is admixed with genetically diversified South/Central American strains. Taken together, this study suggests multiple ancestral links between Far East Asian and American T. gondii strains and provides insight into the transmission history of this cosmopolitan organism.
Collapse
Affiliation(s)
- Fumiaki Ihara
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hisako Kyan
- Okinawa Prefectural Institute of Health and Environment, Uruma, Okinawa, 904-2241, Japan
| | - Yasuhiro Takashima
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1112, Japan
- Center for One Medicine Translational Research, COMIT, Gifu University, Gifu, 501-1112, Japan
| | - Fumiko Ono
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 794-8555, Japan
| | - Kei Hayashi
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 794-8555, Japan
| | - Tomohide Matsuo
- Joint Faculty of Veterinary Medicine Kagoshima University, Kagoshima, 890-0065, Japan
| | - Makoto Igarashi
- National Research Center for Protozoan Diseases, University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, 260-0856, Japan
| | - Hirokazu Sakamoto
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, 260-0856, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kiyoshi Yamauchi
- Laboratory of Wildlife Management, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Madoka Ichikawa-Seki
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Motoki Sasaki
- Laboratory of Veterinary Anatomy, University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| | - Kodai Kusakisako
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| | - Yuma Ohari
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Ayako Yoshida
- Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2155, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, 889-2155, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, 20892, USA
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Souza JS, Farani PSG, Ferreira BIS, Barbosa HS, Menna-Barreto RFS, Moreira OC, Mariante RM. Establishment of a murine model of congenital toxoplasmosis and validation of a qPCR assay to assess the parasite load in maternal and fetal tissues. Front Microbiol 2023; 14:1124378. [PMID: 36922978 PMCID: PMC10009190 DOI: 10.3389/fmicb.2023.1124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis, a disease that affects warm-blooded animals and one third of the human population worldwide. Pregnant women who have never been exposed to the parasite constitute an important risk group, as infection during pregnancy often leads to congenital toxoplasmosis, the most severe form of the disease. Current therapy for toxoplasmosis is the same as it was 50 years ago and has little or no effect when vertical transmission occurs. Therefore, it is urgent to develop new strategies to prevent mother-to-fetus transmission. The implementation of experimental animal models of congenital toxoplasmosis that reproduces the transmission rates and clinical signs in humans opens an avenue of possibilities to interfere in the progression of the disease. In addition, knowing the parasite load in maternal and fetal tissues after infection, which may be related to organ abnormalities and disease outcome, is another important step in designing a promising intervention strategy. Therefore, we implemented here a murine model of congenital toxoplasmosis with outbred Swiss Webster mice infected intravenously with tachyzoites of the ME49 strain of T. gondii that mimics the frequency of transmission of the parasite, as well as important clinical signs of human congenital toxoplasmosis, such as macrocephaly, in addition to providing a highly sensitive quantitative real-time PCR assay to assess parasite load in mouse tissues. As the disease is not restricted to humans, also affecting several domestic animals, including companion animals and livestock, they can also benefit from the model presented in this study.
Collapse
Affiliation(s)
- Jéssica S Souza
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Priscila S G Farani
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Department of Biological Science, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Beatriz I S Ferreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Helene S Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Otacilio C Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rafael M Mariante
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Calero-Bernal R, Fernández-Escobar M, Katzer F, Su C, Ortega-Mora LM. Unifying Virulence Evaluation in Toxoplasma gondii: A Timely Task. Front Cell Infect Microbiol 2022; 12:868727. [PMID: 35573788 PMCID: PMC9097680 DOI: 10.3389/fcimb.2022.868727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023] Open
Abstract
Toxoplasma gondii, a major zoonotic pathogen, possess a significant genetic and phenotypic diversity that have been proposed to be responsible for the variation in clinical outcomes, mainly related to reproductive failure and ocular and neurological signs. Different T. gondii haplogroups showed strong phenotypic differences in laboratory mouse infections, which provide a suitable model for mimicking acute and chronic infections. In addition, it has been observed that degrees of virulence might be related to the physiological status of the host and its genetic background. Currently, mortality rate (lethality) in outbred laboratory mice is the most significant phenotypic marker, which has been well defined for the three archetypal clonal types (I, II and III) of T. gondii; nevertheless, such a trait seems to be insufficient to discriminate between different degrees of virulence of field isolates. Many other non-lethal parameters, observed both in in vivo and in vitro experimental models, have been suggested as highly informative, yielding promising discriminatory power. Although intra-genotype variations have been observed in phenotypic characteristics, there is no clear picture of the phenotypes circulating worldwide; therefore, a global overview of T. gondii strain mortality in mice is presented here. Molecular characterization has been normalized to some extent, but this is not the case for the phenotypic characterization and definition of virulence. The present paper proposes a baseline (minimum required information) for the phenotypic characterization of T. gondii virulence and intends to highlight the needs for consistent methods when a panel of T. gondii isolates is evaluated for virulence.
Collapse
Affiliation(s)
- Rafael Calero-Bernal
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Rafael Calero-Bernal, ; Luis Miguel Ortega-Mora,
| | - Mercedes Fernández-Escobar
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Frank Katzer
- Disease Control Department, Moredun Research Institute, Edinburgh, United Kingdom
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Rafael Calero-Bernal, ; Luis Miguel Ortega-Mora,
| |
Collapse
|
7
|
Nguyen TT, Kamyingkird K, Phimpraphai W, Inpankaew T. Viability of Toxoplasma gondii tachyzoites in different conditions for parasite transportation. Vet World 2022; 15:198-204. [PMID: 35369589 PMCID: PMC8924386 DOI: 10.14202/vetworld.2022.198-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/31/2021] [Indexed: 11/20/2022] Open
Abstract
Background and Aim Toxoplasma gondii tachyzoite is the infective stage that causes acute infection, leading to severe toxoplasmosis. The tachyzoite stage has been extensively used for several inoculation purposes, including antigen production, immunological studies, nutrition mechanisms, and in vitro drug trials. The use of fresh tachyzoites is required for inoculation in either in vitro or in vivo studies. However, there is a lack of information on preserving live tachyzoites during transportation from laboratories to inoculation sites. Therefore, this study aimed to validate suitable preservative conditions for maintaining live parasites by determining the survival and viability of T. gondii tachyzoites on the basis of different media, temperatures, and incubation times. Materials and Methods The free live T. gondii tachyzoites were evaluated on their viability when maintained in different media without 5% Carbon dioxide (CO2). The purified tachyzoites of the RH and PLK strains were individually suspended in normal saline (NS), phosphate-buffered saline (PBS), minimum essential medium (MEM), and MEM with 10% fetal bovine serum (MEM-FBS) and incubated for 6 h at ice-cold (IC; 3-9°C) and room temperature (RT; 25°C). Parasite survival was measured at the 0, 1st, 2nd, 3rd, 4th, 5th, and 6th h post-incubation using the trypan blue exclusion test. Results The viability was in the range of 85.0%-91.0% for IC using NS and 81.0%-85.1% (IC) and 75.3%-77.5% (RT) using PBS. The viability was approximately 75.0%-83.0% (IC) and 70.0%-79.0% (RT) using MEM and MEM-FBS. There was a significant difference in the viability between the seven periods on the basis of one-way repeated Analysis of variance and Friedman analyses. Parasite survival slightly reduced (20.0%-30.0%) in NS and MEM-FBS at both temperatures during incubation. Notably, PBS could not support tachyzoite viability after 3 h post-incubation. Conclusion NS was a suitable preservative for maintaining purified T. gondii tachyzoites during transportation at IC and RT without 5% CO2 supplementation. This could be a valuable medium for parasite transportation, especially when there is a large distance between the laboratory and inoculation site.
Collapse
Affiliation(s)
- Thi Thuy Nguyen
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Department of Veterinary Medicine, Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Ketsarin Kamyingkird
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Waraphon Phimpraphai
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Tawin Inpankaew
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Silva EMC, Sousa PDS, Carvalho SKGSD, Marques ICL, Costa FB, Costa APD, Santos LSD, Braga MDSCO, Abreu-Silva AL, Machado RZ, Carvalho Neta AVD. High level of infection by Toxoplasma gondii in pigs slaughtered in the city of São Luís, Maranhão. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2021; 30:e008721. [PMID: 34787174 DOI: 10.1590/s1984-29612021086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
A serological, molecular and histopathological study was carried out in order to investigate occurrences of Toxoplasma gondii in pigs slaughtered with and without inspection service. Serum samples were collected from 60 pigs to detect anti-T. gondii antibody by indirect fluorescent antibody (IFAT). Tongue, masseter and diaphragm fragments were also collected for parasite DNA detection by means of the polymerase chain reaction (PCR) and histopathological analysis. The serological results showed that 77% (44/60) of the pigs were positive. Regarding PCR, 66.67% (40/60) were positive for T. gondii. Among the tissues evaluated, the diaphragm was the one with the highest frequency of positivity (40%; 24/60), followed by the masseter (38.33%; 23/60) and tongue (33.3%; 20/60). Histopathological changes were only observed in the diaphragm, which presented inflammatory infiltrates of lymphohistiocytic and neutrophilic types. These results not only show the potential threat of T. gondii to human health, but also demonstrate the dynamic epidemiological situation of toxoplasmosis in pigs in the city of São Luís, providing support for food security regarding pigs and for T. gondii control programs in Brazil.
Collapse
Affiliation(s)
| | - Pablo Dos Santos Sousa
- Programa de Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão - UEMA, São Luís, MA, Brasil
| | | | | | - Francisco Borges Costa
- Programa de Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão - UEMA, São Luís, MA, Brasil
| | - Andrea Pereira da Costa
- Programa de Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão - UEMA, São Luís, MA, Brasil
| | - Larissa Sarmento Dos Santos
- Programa de Pós-graduação Profissional em Defesa Sanitária Animal, Universidade Estadual do Maranhão - UEMA, São Luís, MA, Brasil
| | | | - Ana Lúcia Abreu-Silva
- Programa de Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão - UEMA, São Luís, MA, Brasil
| | - Rosangela Zacarias Machado
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Alcina Vieira de Carvalho Neta
- Programa de Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão - UEMA, São Luís, MA, Brasil.,Programa de Pós-graduação Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Universidade Estadual do Maranhão - UEMA, São Luís, MA, Brasil
| |
Collapse
|
9
|
Ribeiro-Andrade M, de Crasto Souza Carvalho J, Amorim da Silva R, da Conceição Carvalho M, Nascimento Porto WJ, Mota RA. Inter- and intra-genotype differences in induced cystogenesis of recombinant strains of Toxoplasma gondii isolated from chicken and pigs. Exp Parasitol 2019; 207:107775. [PMID: 31628896 DOI: 10.1016/j.exppara.2019.107775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 11/17/2022]
Abstract
The ability to differentiate from the proliferative (tachyzoite) to the latent (bradyzoite) stage of isolates of Toxoplasma gondii recombinant genotypes (I/II/III and I/III) and reference strains from a clonal line (RH and ME49) was investigated in this study. Two isolates from chicken (#114 and #277; ToxoDB) and 3 from pigs (#114; ToxoDB) were the subjects for evaluation. The isolates were grown in cell culture under 2 different conditions: culture medium at pH 7.0 (neutral, without stress induction) or pH 8.0 (alkaline, stress inducing). After 4 days, the cultures were fixed and the events resulting from infection and induction were labeled. T. gondii cysts were labeled using Dolichos biflorus-FITC lectin (DBL-cysts) and free tachyzoites or vacuolar were labeled using an anti-T. gondii polyclonal antibody followed by an Alexa 594-conjugated secondary antibody (DBL-negative structures compatible with parasite structures - lysis plaques or vacuole). Differences in DBL-cysts formation in vitro in response to exogenous stress were observed between recombinant genotype isolates and the typical genotypes. The differences in conversion rates and the patterns of lysis plate production between genotype I/III isolates (#114) indicate that care should be taken when extrapolating the in vitro phenotypic characteristics of parasites from the same genotype.
Collapse
Affiliation(s)
- Müller Ribeiro-Andrade
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil; Department of Veterinary Medicine, Federal University of Roraima, Boa Vista, RR, Brazil.
| | - Jéssica de Crasto Souza Carvalho
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Renato Amorim da Silva
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Maria da Conceição Carvalho
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - Rinaldo Aparecido Mota
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
10
|
A Toxoplasma gondii strain isolated in Okinawa, Japan shows high virulence in Microminipigs. Parasitol Int 2019; 72:101935. [PMID: 31153918 DOI: 10.1016/j.parint.2019.101935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii strains have been isolated all over the world and their virulence has been examined mainly using laboratory mice. However, T. gondii differs in virulence depending on the host animal species. Therefore, to evaluate the virulence of each strain in domestic animals, it is necessary to examine using not only mice but also the concerned animals. We have shown that TgCatJpOk4, a T. gondii strain recently isolated in Okinawa, Japan, has a high virulence against laboratory mice, comparable to highest virulent RH strain in mice; however, the virulence to domestic animals remains unknown. In this study, we examined the virulence using the Microminipig. After infection, four out of five infected pigs showed severe clinical symptoms: inappetence, hypoactivity and tachypnea. Eventually, three out of the five infected pigs succumbed before the end of the observation. Among the three dead pigs, histological analysis revealed that interstitial pneumonia and spotty necrosis in the liver indicating that the TgCatJpOk4 strain has a high virulence not only in laboratory mice, but in pigs as well.
Collapse
|
11
|
Delgado Betancourt E, Hamid B, Fabian BT, Klotz C, Hartmann S, Seeber F. From Entry to Early Dissemination- Toxoplasma gondii's Initial Encounter With Its Host. Front Cell Infect Microbiol 2019; 9:46. [PMID: 30891433 PMCID: PMC6411707 DOI: 10.3389/fcimb.2019.00046] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is a zoonotic intracellular parasite, able to infect any warm-blooded animal via ingestion of infective stages, either contained in tissue cysts or oocysts released into the environment. While immune responses during infection are well-studied, there is still limited knowledge about the very early infection events in the gut tissue after infection via the oral route. Here we briefly discuss differences in host-specific responses following infection with oocyst-derived sporozoites vs. tissue cyst-derived bradyzoites. A focus is given to innate intestinal defense mechanisms and early immune cell events that precede T. gondii's dissemination in the host. We propose stem cell-derived intestinal organoids as a model to study early events of natural host-pathogen interaction. These offer several advantages such as live cell imaging and transcriptomic profiling of the earliest invasion processes. We additionally highlight the necessity of an appropriate large animal model reflecting human infection more closely than conventional infection models, to study the roles of dendritic cells and macrophages during early infection.
Collapse
Affiliation(s)
| | - Benjamin Hamid
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Benedikt T Fabian
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Christian Klotz
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Frank Seeber
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
12
|
Assumção R, Pereira-Sampaio M, Sampaio F, de Souza D. Does a Ureteral Obstruction Affect the Contralateral Kidney Morphology? A Stereological Analysis in a Rodent Model. Urol Int 2018; 100:327-332. [DOI: 10.1159/000486760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/10/2018] [Indexed: 01/05/2023]
|
13
|
Zhou CX, Cong W, Chen XQ, He SY, Elsheikha HM, Zhu XQ. Serum Metabolic Profiling of Oocyst-Induced Toxoplasma gondii Acute and Chronic Infections in Mice Using Mass-Spectrometry. Front Microbiol 2018; 8:2612. [PMID: 29354104 PMCID: PMC5761440 DOI: 10.3389/fmicb.2017.02612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite causing severe diseases in immunocompromised individuals and congenitally infected neonates, such as encephalitis and chorioretinitis. This study aimed to determine whether serum metabolic profiling can (i) identify metabolites associated with oocyst-induced T. gondii infection and (ii) detect systemic metabolic differences between T. gondii-infected mice and controls. We performed the first global metabolomics analysis of mice serum challenged with 100 sporulated T. gondii Pru oocysts (Genotype II). Sera from acutely infected mice (11 days post-infection, dpi), chronically infected mice (33 dpi) and control mice were collected and analyzed using LC-MS/MS platform. Following False Discovery Rate filtering, we identified 3871 and 2825 ions in ESI+ or ESI- mode, respectively. Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) identified metabolomic profiles that clearly differentiated T. gondii-infected and -uninfected serum samples. Acute infection significantly influenced the serum metabolome. Our results identified common and uniquely perturbed metabolites and pathways. Acutely infected mice showed perturbations in metabolites associated with glycerophospholipid metabolism, biosynthesis of amino acid, and tyrosine metabolism. These findings demonstrated that acute T. gondii infection induces a global perturbation of mice serum metabolome, providing new insights into the mechanisms underlying systemic metabolic changes during early stage of T. gondii infection.
Collapse
Affiliation(s)
- Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Wei Cong
- Department of Prevention and Treatment of Animal Diseases, College of Marine Science, Shandong University (Weihai), Weihai, China
| | - Xiao-Qing Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Microbiology and Immunology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shen-Yi He
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
14
|
Kato K, Murata Y, Horiuchi N, Inomata A, Terkawi MA, Ishiwa A, Ogawa Y, Fukumoto S, Matsuhisa F, Koyama K. Dextran sulfate inhibits acute Toxoplama gondii infection in pigs. Parasit Vectors 2016; 9:134. [PMID: 26956033 PMCID: PMC4784389 DOI: 10.1186/s13071-016-1421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/03/2016] [Indexed: 12/03/2022] Open
Abstract
Background Toxoplasma gondii is a highly prevalent protozoan that can infect all warm-blooded animals, including humans. Its definitive hosts are Felidae and its intermediate hosts include various other mammals and birds, including pigs. It is found in the meat of livestock which is a major source of human infection. Hence the control of toxoplasmosis in pigs is important for public health. We previously showed that dextran sulfate (DS), especially DS10 (dextran sulfate MW 10 kDa), is effective against T. gondii infection both in vitro and in mice. In this study, we asked whether DS affects T. gondii infection of pigs, one of the main animal sources of toxoplasmosis transmission to humans. Methods Fourteen-day-old male pigs (n = 10) were infected with T. gondii and then immediately treated with different doses of DS10; clinical, pathological, and immunological analyses were performed 5 days post-infection. Results DS10 had an inhibitory effect on toxoplasmosis in pigs. Intravenous injection of DS10 prevented the symptoms of toxoplasmosis and reduced the parasite burden and inflammation induced by T. gondii infection. High-dose DS10 (500 μg per head) caused reversible hepatocellular degeneration of the liver; middle-dose DS10 (50 μg per head) was effective against toxoplasmosis in pigs without causing this side effect. Conclusions Our data suggest that middle-dose DS10 led to minimal clinical symptoms of T. gondii infection and caused little hepatocellular degeneration in our pig model, thereby demonstrating its potential as a new treatment for toxoplasmosis. These data should be very beneficial to those interested in the control of toxoplasmosis in pigs. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1421-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan. .,Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yuho Murata
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Noriyuki Horiuchi
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Atsuko Inomata
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Akiko Ishiwa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan. .,Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yohsuke Ogawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Fumikazu Matsuhisa
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Kenji Koyama
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|