1
|
Silva RMGD, Barbosa FC, Santos HH, Granero FO, Figueiredo CCM, Nicolau-Junior N, Hamaguchi A, Silva LP. Antioxidant and anti-glycation activities of Mandevilla velutina extract and effect on parasitemia levels in Trypanosoma cruzi experimental infection: In vivo, in vitro and in silico approaches. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118994. [PMID: 39461387 DOI: 10.1016/j.jep.2024.118994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mandevilla velutina (Mart. Ex Stadelm.) Woodson, known in Brazil as "infalível" and "jalapa", is a medicinal plant native from the Cerrado region (Brazilian Savannah). The underground organ (xylopodium) of this species is prepared as ethanolic extract or infusion and it is commonly used in traditional medicine to treat snake venom. Although, locals and indigenous populations from Cerrado have used M. velutina for the treatment of infection by Trypanosoma cruzi (Chagas' disease). AIM OF THE STUDY This study aimed to evaluate the in vitro antioxidant and anti-glycation activities of the crude hydroethanolic extract of M. velutina xylopodium. Besides, it aimed to evaluate its effect on parasitemia levels in vivo T. cruzi experimental infection. In addition, this study aimed to determine possible interactions between the main compound of the extract and molecular targets associated with survival and virulence of T. cruzi in silico approaches. MATERIALS AND METHODS Determination of total polyphenols, flavonoids and steroidal aglycones content were performed. In addition, high performance liquid chromatography (HPLC) was carried out to identify main compounds of the extract. Antioxidant activity was determined by DPPH radical scavenging, ferric ion reducing power (FRAP), Thiobarbituric acid reactive species (TBARS) and Oxygen Radical Absorbance Capacity (ORAC) methods. Anti-glycation activity was demonstrated through relative mobility in electrophoresis (RME), determination of free amino groups and inhibition of AGEs formation. Determination of the action of extract in parasitemia levels was performed by T. cruzi experimental infection of mice and nitrite levels were measured in the serum of animals evaluated in this study. Molecular docking analyses of the main compound (Velutinol A) with DNA and molecular targets associated with survival and virulence of T. cruzi. RESULTS Phytoconstituents evaluation exhibited the presence polyphenols, flavonoids and steroidal aglycone, and HPLC identified the major presence of Velutinol A. Antioxidant and anti-glycation evaluations showed that the extract present significant activity in all methods evaluated. In addition, extract reduced the number of trypomastigotes and increased the survival of treated animals. The treatment using extract showed an interference in the synthesis of physiological nitric oxide as an immune response to infection. In silico assays demonstrated interaction between Velutinol A and DNA and molecular targets of T. cruzi. CONCLUSIONS The results showed that the hydroethanolic extract of M. velutina xylopodium contains bioactive compounds including polyphenols, flavonoids and steroidal aglycones (mainly Velutinol A) of which may be responsible for the antioxidant, anti-glycation and anti-parasitic activity against T. cruzi. Trypanocidal activity of M. velutina compounds may be linked to their influence on NO synthesis during infection and/or their capacity to bind and inhibit molecules associated to virulence and survival of T. cruzi.
Collapse
Affiliation(s)
- Regildo Márcio Gonçalves da Silva
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Assis, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, Brazil.
| | - Fernando Cesar Barbosa
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Assis, São Paulo, Brazil
| | - Hugo Henrique Santos
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Assis, São Paulo, Brazil
| | | | | | - Nilson Nicolau-Junior
- Federal University of Uberlândia (UFU), Institute of Biotechnology, Laboratory of Molecular Modeling, Uberlândia, Minas Gerais, Brazil
| | - Amélia Hamaguchi
- Federal University of Uberlândia (UFU), Institute of Biotechnology, Uberlândia, Minas Gerais, Brazil
| | | |
Collapse
|
2
|
Santos IFM, Moreira DDS, Costa KF, Ribeiro JM, Murta SMF, Santi AMM. Ascorbate peroxidase modulation confirms key role in Leishmania infantum oxidative defence. Parasit Vectors 2024; 17:472. [PMID: 39558417 PMCID: PMC11575162 DOI: 10.1186/s13071-024-06562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Ascorbate peroxidase (APX) has emerged as a promising target for chemotherapy because of its absence in humans and crucial role in the antioxidant defence of trypanosomatids. APXs, which are class I haeme-containing enzymes, reduces hydrogen peroxide using ascorbate to produce water and monodehydroascorbate, thereby preventing cell damage caused by H2O2. METHODS We aimed to create an APX-knockout L. infantum line using CRISPR/Cas9. Despite unsuccessful attempts at full knockouts, we achieved deletion of chromosomal copies post-APX episomal insertion, yielding LiΔchrAPX::LbAPX parasites. We performed phenotypic characterization to assess the impact of these genetic modifications, which included the determination of APX transcript expression levels using quantitative PCR, drug sensitivity, infectivity, and parasite survival in macrophages. RESULTS Quantitative polymerase chain reaction (PCR) analysis revealed a 10- to 13-fold reduction in APX transcript expression in LiΔchrAPX::LbAPX compared with wild-type (LiWT) and APX-overexpressing (Li::Cas9::LbAPX) parasites, respectively. The episomes in those knockdown parasites remained stable even after 20 drug-free passages in vitro. Li::Cas9::LbAPX parasites showed increased resistance to trivalent antimony (SbIII) and isoniazid, reduced tolerance to H2O2, and unchanged macrophage infectivity compared with LiWT. In contrast, LiΔchrAPX::LbAPX parasites were more sensitive to SbIII and isoniazid, exhibited greater susceptibility to H2O2-induced oxidative stress, and 72 h post-infection, showed fewer infected macrophages and intracellular amastigotes compared with LiWT parasites. CONCLUSIONS Our findings hint at the indispensability of APX in L. infantum and raise the possibility of its potential as a therapeutic target for leishmaniasis.
Collapse
Affiliation(s)
- Isabella Fernandes Martins Santos
- Grupo de Genômica funcional de Parasitos (GFP), Instituto René Rachou IRR, Fundação Oswaldo Cruz - FIOCRUZ/Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil
| | - Douglas de Souza Moreira
- Grupo de Genômica funcional de Parasitos (GFP), Instituto René Rachou IRR, Fundação Oswaldo Cruz - FIOCRUZ/Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil
| | - Karla Ferreira Costa
- Grupo de Genômica funcional de Parasitos (GFP), Instituto René Rachou IRR, Fundação Oswaldo Cruz - FIOCRUZ/Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil
| | - Juliana Martins Ribeiro
- Grupo de Genômica funcional de Parasitos (GFP), Instituto René Rachou IRR, Fundação Oswaldo Cruz - FIOCRUZ/Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil
| | - Silvane Maria Fonseca Murta
- Grupo de Genômica funcional de Parasitos (GFP), Instituto René Rachou IRR, Fundação Oswaldo Cruz - FIOCRUZ/Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil.
| | - Ana Maria Murta Santi
- Grupo de Genômica funcional de Parasitos (GFP), Instituto René Rachou IRR, Fundação Oswaldo Cruz - FIOCRUZ/Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil.
| |
Collapse
|
3
|
Gomez J, Coll M, Guarise C, Cifuente D, Masone D, Tello PF, Piñeyro MD, Robello C, Reta G, Sosa MÁ, Barrera P. New insights into the pro-oxidant mechanism of dehydroleucodine on Trypanosoma cruzi. Sci Rep 2024; 14:18875. [PMID: 39143185 PMCID: PMC11324952 DOI: 10.1038/s41598-024-69201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is one of the most important neglected diseases in Latin America. The limited use of the current nitro-derivative-based chemotherapy highlights the need for alternative drugs and the identification of their molecular targets. In this study, we investigated the trypanocidal effect of the sesquiterpene lactone dehydroleucodine (DhL) and its derivatives, focusing on the antioxidative defense of the parasites. DhL and two derivatives, at lesser extent, displayed antiproliferative effect on the parasites. This effect was blocked by the reducing agent glutathione (GSH). Treated parasites exhibited increased intracellular ROS concentration and trypanothione synthetase activity, accompanied by mitochondrial swelling. Although molecular dynamics studies predicted that GSH would not interact with DhL, 1H-NMR analysis confirmed that GSH could protect parasites by interacting with the lactone. When parasites overexpressing mitochondrial tryparedoxin peroxidase were incubated with DhL, its effect was attenuated. Overexpression of cytosolic tryparedoxin peroxidase also provided some protection against DhL. These findings suggest that DhL induces oxidative imbalance in T. cruzi, offering new insights into potential drug targets against this parasite.
Collapse
Affiliation(s)
- Jessica Gomez
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| | - Mauro Coll
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| | - Carla Guarise
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| | - Diego Cifuente
- Facultad de Química, Bioquímica y Farmacia, Instituto de Investigación en Tecnología Química, INTEQUI-CONICET., Universidad Nacional de San Luis, 5700, San Luis, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
- Facultad de Ingeniería, UNCuyo, 5500, Mendoza, Argentina
| | - Paula Faral- Tello
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - María Dolores Piñeyro
- Laboratorio de Interacciones Hospedero-Patógeno-UBM, Instituto Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero-Patógeno-UBM, Instituto Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay
| | - Guillermo Reta
- Facultad de Química, Bioquímica y Farmacia, Instituto de Investigación en Tecnología Química, INTEQUI-CONICET., Universidad Nacional de San Luis, 5700, San Luis, Argentina
| | - Miguel Ángel Sosa
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, UNCuyo, 5500, Mendoza, Argentina
| | - Patricia Barrera
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina.
- Facultad de Ciencias Exactas y Naturales, UNCuyo, 5500, Mendoza, Argentina.
| |
Collapse
|
4
|
Mahmoud Abd-Alaziz D, Mansour M, Nasr M, Sammour O. Tailored green synthesized silymarin-selenium nanoparticles: Topical nanocarrier of promising antileishmanial activity. Int J Pharm 2024; 660:124275. [PMID: 38797252 DOI: 10.1016/j.ijpharm.2024.124275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Poor drug penetration, emerging drug resistance, and systemic toxicity are among the major obstacles challenging the current treatment of cutaneous leishmaniasis. Hence, developing advanced strategies for effective and targeted delivery of antileishmanial agents is crucial. Several drug delivery carriers have been developed till current date for dermal/transdermal delivery, especially those which are fabricated using eco-friendly synthesis approaches, since they protect the environment from the harmful effects of chemical waste disposal. This work describes the preparation of selenium nanoparticles loaded with silymarin via one-pot green reduction technique, for treatment of cutaneous leishmaniasis. The selected silymarin loaded selenium nanoparticles (SSNs4-0.1) displayed good loading efficiency of 58.22 ± 0.56 %, zeta potential of -30.63 ± 0.40 mV, hydrodynamic diameter of 245.77 ± 11.12 nm, and polydispersity index of 0.19 ± 0.01. It exhibited good physical stability, as well as high ex vivo deposition % in the epidermis (46.98 ± 1.51 %) and dermis (35.23 ± 1.72 %), which was further proven using confocal laser microscopy. It also exhibited significant cytocompatibility and noticeable cellular internalization of 90.02 ± 3.81 % in human fibroblasts, as well as high trypanothione reductase inhibitory effect (97.10 ± 0.30 %). Results of this study confirmed the successful green synthesis of silymarin-loaded selenium nanoparticles; delineating them as one of the promising antileishmanial topical delivery systems.
Collapse
Affiliation(s)
- Dina Mahmoud Abd-Alaziz
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mai Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Omaima Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Batista DDGJ, de Almeida Fiuza LF, Klupsch F, da Costa KN, Batista MM, da Conceição K, Bouafia H, Vergoten G, Millet R, Thuru X, Bailly C, Soeiro MDNC. Activity of pyridyl-pyrazolone derivatives against Trypanosoma cruzi. Exp Parasitol 2024; 262:108787. [PMID: 38759776 DOI: 10.1016/j.exppara.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
New affordable drugs are needed for the treatment of infection with the protozoan parasite Trypanosoma cruzi responsible for the Chagas disease (CD). Only two old drugs are currently available, nifurtimox and benznidazole (Bz) but they exhibit unwanted side effects and display a weak activity in the late chronic phase of the disease. In this context, we evaluated the activity of a series of aryl-pyrazolone derivatives against T cruzi, using both bloodstream trypomastigote and intracellular amastigote forms of the parasite. The test compounds originate from a series of anticancer agents targeting the immune checkpoint ligand PD-L1 and bear an analogy with known anti-trypanosomal pyrazolones. A first group of 6 phenyl-pyrazolones was tested, revealing the activity of a single pyridyl-pyrazolone derivative. Then a second group of 8 compounds with a common pyridyl-pyrazolone core was evaluated. The in vitro testing process led to the identification of two non-cytotoxic and highly potent molecules against the intracellular form of T. cruzi, with an activity comparable to Bz. Moreover, one compound revealed an activity largely superior to that of Bz against bloodstream trypomastigotes, while being non-cytotoxic (selectivity index >1000). Unfortunately, the compound showed little activity in vivo, most likely due to its very limited plasma stability. However, the study opens novel perspectives for the design of new anti-trypanosomal products and the mechanism of action of the compounds is discussed.
Collapse
Affiliation(s)
- Denise da Gama Jaen Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, 210360-040, Brazil
| | | | - Frédérique Klupsch
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, 59000, Lille, France
| | - Krislayne Nunes da Costa
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, 210360-040, Brazil
| | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, 210360-040, Brazil
| | - Ketlym da Conceição
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, 210360-040, Brazil
| | - Hassiba Bouafia
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Gérard Vergoten
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, 59000, Lille, France
| | - Régis Millet
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, 59000, Lille, France
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Christian Bailly
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 59000, Lille, France.
| | - Maria de Nazaré Correia Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, 210360-040, Brazil.
| |
Collapse
|
6
|
Sarkar D, Monzote L, Gille L, Chatterjee M. Natural endoperoxides as promising anti-leishmanials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155640. [PMID: 38714091 DOI: 10.1016/j.phymed.2024.155640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND The discovery of artemisinin, an endoperoxide, encouraged the scientific community to explore endoperoxides as potential anti-parasitic molecules. Although artemisinin derivatives are rapidly evolving as potent anti-malarials, their potential as anti-leishmanials is emerging gradually. The treatment of leishmaniasis, a group of neglected tropical diseases is handicapped by lack of effective vaccines, drug toxicities and drug resistance. The weak antioxidant defense mechanism of the Leishmania parasites due to lack of catalase and a selenium dependent glutathione peroxidase system makes them vulnerable to oxidative stress, and this has been successful exploited by endoperoxides. PURPOSE The study aimed to review the available literature on the anti-leishmanial efficacy of natural endoperoxides with a view to achieve insights into their mode of actions. METHODS We reviewed more around 110 research and review articles restricted to the English language, sourced from electronic bibliographic databases including PubMed, Google, Web of Science, Google scholar etc. RESULTS: Natural endoperoxides could potentially augment the anti-leishmanial drug library, with artemisinin and ascaridole emerging as potential anti-leishmanial agents. Due to higher reactivity of the cyclic peroxide moiety, and exploiting the compromised antioxidant defense of Leishmania, endoperoxides like artemisinin and ascaridole potentiate their leishmanicidal efficacy by creating a redox imbalance. Furthermore, these molecules minimally impair oxidative phosphorylation; instead inhibit glycolytic functions, culminating in depolarization of the mitochondrial membrane and depletion of ATP. Additionally, the carbon-centered free radicals generated from endoperoxides, participate in chain reactions that can generate even more reactive organic radicals that are toxic to macromolecules, including lipids, proteins and DNA, leading to cell cycle arrest and apoptosis of Leishmania parasites. However, the precise target(s) of the toxic free radicals remains open-ended. CONCLUSION In this overview, the spectrum of natural endoperoxide molecules as major anti-leishmanials and their mechanism of action has been delineated. In view of the substantial evidence that natural endoperoxides (e.g., artemisinin, ascaridole) exert a noxious effect on different species of Leishmania, identification and characterization of other natural endoperoxides is a promising therapeutic option worthy of further pharmacological consideration.
Collapse
Affiliation(s)
- Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata-700 020, W.B, India
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine "Pedro Kourí", Havana 10400, Cuba
| | - Lars Gille
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata-700 020, W.B, India.
| |
Collapse
|
7
|
Murta SMF, Lemos Santana PA, Jacques Dit Lapierre TJW, Penteado AB, El Hajje M, Navarro Vinha TC, Liarte DB, de Souza ML, Goulart Trossini GH, de Oliveira Rezende Júnior C, de Oliveira RB, Ferreira RS. New drug discovery strategies for the treatment of benznidazole-resistance in Trypanosoma cruzi, the causative agent of Chagas disease. Expert Opin Drug Discov 2024; 19:741-753. [PMID: 38715393 DOI: 10.1080/17460441.2024.2349155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Benznidazole, the drug of choice for treating Chagas Disease (CD), has significant limitations, such as poor cure efficacy, mainly in the chronic phase of CD, association with side effects, and parasite resistance. Understanding parasite resistance to benznidazole is crucial for developing new drugs to treat CD. AREAS COVERED Here, the authors review the current understanding of the molecular basis of benznidazole resistance. Furthermore, they discuss the state-of-the-art methods and critical outcomes employed to evaluate the efficacy of potential drugs against T. cruzi, aiming to select better compounds likely to succeed in the clinic. Finally, the authors describe the different strategies employed to overcome resistance to benznidazole and find effective new treatments for CD. EXPERT OPINION Resistance to benznidazole is a complex phenomenon that occurs naturally among T. cruzi strains. The combination of compounds that inhibit different metabolic pathways of the parasite is an important strategy for developing a new chemotherapeutic protocol.
Collapse
Affiliation(s)
- Silvane Maria Fonseca Murta
- Grupo de Genômica Funcional de Parasitos - Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Pedro Augusto Lemos Santana
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - André Berndt Penteado
- Departamento de Farmacia, Faculdade de Ciencias Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Marissa El Hajje
- Departamento de Farmacia, Faculdade de Ciencias Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Mariana Laureano de Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
8
|
González-Montero MC, Andrés-Rodríguez J, García-Fernández N, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, García-Estrada C. Targeting Trypanothione Metabolism in Trypanosomatids. Molecules 2024; 29:2214. [PMID: 38792079 PMCID: PMC11124245 DOI: 10.3390/molecules29102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Infectious diseases caused by trypanosomatids, including African trypanosomiasis (sleeping sickness), Chagas disease, and different forms of leishmaniasis, are Neglected Tropical Diseases affecting millions of people worldwide, mainly in vulnerable territories of tropical and subtropical areas. In general, current treatments against these diseases are old-fashioned, showing adverse effects and loss of efficacy due to misuse or overuse, thus leading to the emergence of resistance. For these reasons, searching for new antitrypanosomatid drugs has become an urgent necessity, and different metabolic pathways have been studied as potential drug targets against these parasites. Considering that trypanosomatids possess a unique redox pathway based on the trypanothione molecule absent in the mammalian host, the key enzymes involved in trypanothione metabolism, trypanothione reductase and trypanothione synthetase, have been studied in detail as druggable targets. In this review, we summarize some of the recent findings on the molecules inhibiting these two essential enzymes for Trypanosoma and Leishmania viability.
Collapse
Affiliation(s)
- María-Cristina González-Montero
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Julia Andrés-Rodríguez
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Nerea García-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
9
|
Albalawi AE, Shater AF, Alanazi AD, Almohammed HI. Unveiling of the antileishmanial activities of Linalool loaded zinc oxide nanocomposite through its potent antioxidant and immunomodulatory effects. Acta Trop 2024; 252:107155. [PMID: 38373527 DOI: 10.1016/j.actatropica.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
This study aimed to produce linalool loaded zinc oxide nanocomposite (LZNPs) and assess its in vitro and in vivo antileishmanial effects against Leishmania major. LZNPs was produced through the synthesis of an ethanolic solution containing polyvinyl alcohol. The average size of LZNPs was determined to be 105 nm. The findings indicated that LZNPs displayed significant (p < 0.01) antileishmanial effects on promastigotes and amastigotes. Following exposure of promastigotes to LZNPs, there was a notable rise in the percentage of early and late apoptotic cells from 9.0 to 57.2 %. The gene expression levels of iNOS, IFN-γ, and TNF-α in macrophages were upregulated in a dose-dependent approach following exposure to LZNPs. LZNPs alone and in conjunction with glucantime (Glu) resulted in a reduction in the diameter and parasite load of CL lesions in infected mice. Treatment of the CL-infected mice with LZNPs at 25 and 50 mg/kg mainly in combination with Glu-reduced the tissue level of malondialdehyde (MDA), increased both gene and protein expression of the antioxidant enzymes as well as raised the expression level of IFN-γ and IL-12 cytokines, whereas caused a significant reduction in the expression level of IL-4. The present study shows that LZNPs has potent antileishmanial effects and controls CL in a mice model through its antioxidant and immunomodulatory properties. Further investigation, especially in clinical trials, could explore the potential use of this nanocomposite in managing and treating CL.
Collapse
Affiliation(s)
- Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47912, Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| | - Hamdan I Almohammed
- General Science Department, Deanship of Supportive Studies, Alasala University, P. O. Box 12666, Dammam 31483, Saudi Arabia.
| |
Collapse
|
10
|
Oliveira LS, Rosa LB, Affonso DD, Santos IA, Da Silva JC, Rodrigues GC, Harris M, Jardim ACG, Nakahata DH, Sabino JR, de Carvalho JE, Miguel DC, Ruiz ALTG, Abbehausen C. Novel Bidentate Amine Ligand and the Interplay between Pd(II) and Pt(II) Coordination and Biological Activity. Chembiochem 2024; 25:e202300696. [PMID: 38146865 DOI: 10.1002/cbic.202300696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 12/27/2023]
Abstract
Pt(II) and Pd(II) coordinating N-donor ligands have been extensively studied as anticancer agents after the success of cisplatin. In this work, a novel bidentate N-donor ligand, the N-[[4-(phenylmethoxy)phenyl]methyl]-2-pyridinemethanamine, was designed to explore the antiparasitic, antiviral and antitumor activity of its Pt(II) and Pd(II) complexes. Chemical and spectroscopic characterization confirm the formation of [MLCl2 ] complexes, where M=Pt(II) and Pd(II). Single crystal X-ray diffraction confirmed a square-planar geometry for the Pd(II) complex. Spectroscopic characterization of the Pt(II) complex suggests a similar structure. 1 H NMR, 195 Pt NMR and HR-ESI-MS(+) analysis of DMSO solution of complexes indicated that both compounds exchange the chloride trans to the pyridine for a solvent molecule with different reaction rates. The ligand and the two complexes were tested for in vitro antitumoral, antileishmanial, and antiviral activity. The Pt(II) complex resulted in a GI50 of 10.5 μM against the NCI/ADR-RES (multidrug-resistant ovarian carcinoma) cell line. The ligand and the Pd(II) complex showed good anti-SARS-CoV-2 activity with around 65 % reduction in viral replication at a concentration of 50 μM.
Collapse
Affiliation(s)
- Laiane S Oliveira
- Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, Brazil
| | - Letícia B Rosa
- Institute of Biology, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Daniele D Affonso
- Faculty of Pharmaceutical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Igor A Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, João Naves de Ávila Avenue, 2121 -, Santa Mônica, Uberlândia, Minas Gerais, Brazil
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse, Leeds, LS2 9JT, UK
| | - Jennyfer C Da Silva
- Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, Brazil
| | - Gustavo C Rodrigues
- Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, Brazil
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse, Leeds, LS2 9JT, UK
| | - Ana Carolina G Jardim
- Institute of Biomedical Sciences, Federal University of Uberlândia, João Naves de Ávila Avenue, 2121 -, Santa Mônica, Uberlândia, Minas Gerais, Brazil
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Cristóvão Colombo street, 2265 -, Jardim Nazareth. São José do Rio Preto, São Paulo, Brazil
| | - Douglas H Nakahata
- Institute of Chemistry, Federal University of Goiás, Esperança Avenue, Campus Samambaia., Goiânia, Goiás, Brazil
| | - José R Sabino
- Institute of Physics, Federal University of Goiás, Esperança Avenue, Campus Samambaia., Goiânia, Goiás, Brazil
| | - João E de Carvalho
- Faculty of Pharmaceutical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Institute of Biology, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Ana Lucia T G Ruiz
- Faculty of Pharmaceutical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, Brazil
| |
Collapse
|
11
|
Nawaz A, Priya B, Singh K, Ali V. Unveiling the role of serine o-acetyltransferase in drug resistance and oxidative stress tolerance in Leishmania donovani through the regulation of thiol-based redox metabolism. Free Radic Biol Med 2024; 213:371-393. [PMID: 38272324 DOI: 10.1016/j.freeradbiomed.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Understanding the unique metabolic pathway of L. donovani is crucial for comprehending its biology under oxidative stress conditions. The de novo cysteine biosynthetic pathway of L. donovani is absent in humans and its product, cysteine regulates the downstream components of trypanothione-based thiol metabolism, important for maintaining cellular redox homeostasis. The role of serine o-acetyl transferase (SAT), the first enzyme of this pathway remains unexplored. In order to investigate the role of SAT protein, we cloned SAT gene into pXG-GFP+ vector for episomal expression of SAT in Amphotericin B sensitive L. donovani promastigotes. The SAT overexpression was confirmed by SAT enzymatic assay, GFP fluorescence, immunoblotting and PCR. Our study unveiled an upregulated expression of both LdSAT and LdCS of cysteine biosynthetic pathway and other downstream thiol pathway proteins in LdSAT-OE promastigotes. Additionally, there was an increase in enzymatic activities of LdSAT and LdCS proteins in LdSAT-OE, which was found similar to the Amp B resistant parasites, indicating a potential role of SAT protein in modulating drug resistance. We observed that the overexpression of SAT in Amp B sensitive parasites increases tolerance to drug pressure and oxidative stress via trypanothione-dependent antioxidant mechanism. Moreover, the in vitro J774A.1 macrophage infectivity assessment showed that SAT overexpression augments parasite infectivity. In LdSAT-OE promastigotes, antioxidant enzyme activities like APx and SOD were upregulated, intracellular reactive oxygen species were reduced with a corresponding increase in thiol level, emphasizing SAT's role in stress tolerance and enhanced infectivity. Additionally, the ROS mediated upregulation in the expression of LdSAT, LdCS, LdTryS and LdcTXNPx proteins reveals an essential cross talk between SAT and proteins of thiol metabolism in combating oxidative stress and maintaining redox homeostasis. Taken together, our results provide the first insight into the role of SAT protein in parasite infectivity and survival under drug pressure and oxidative stress.
Collapse
Affiliation(s)
- Afreen Nawaz
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India
| | - Bhawna Priya
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Vahab Ali
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India.
| |
Collapse
|
12
|
Alishvandi M, Bahrami S, Rashidi S, Hatam G. Isoenzyme characterization of Leishmania infantum toward checking the antioxidant activity of superoxide dismutase and glutathione peroxidase. BMC Infect Dis 2024; 24:208. [PMID: 38360592 PMCID: PMC10870465 DOI: 10.1186/s12879-024-09069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Leishmania infantum is the major causative agent of visceral leishmaniasis in Mediterranean regions. Isoenzyme electrophoresis (IE), as a biochemical technique, is applied in the characterization of Leishmania species. The current study attempted to investigate the isoenzyme patterns of logarithmic and stationary promastigotes and axenic amastigotes (amastigote-like) of L. infantum using IE. The antioxidant activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX) was also checked in the aforementioned forms. METHOD After L. infantum cultivation and obtaining logarithmic and stationary promastigotes, axenic amastigotes were achieved by incubation of stationary promastigotes at 37 °C for 48 h. The lysate samples were prepared and examined for six enzymatic systems including glucose-6-phosphate dehydrogenase (G6PD), nucleoside hydrolase 1 (NH1), malate dehydrogenase (MDH), glucose-phosphate isomerase (GPI), malic enzyme (ME), and phosphoglucomutase (PGM). Additionally, the antioxidant activity of SOD and GPX was measured. RESULTS GPI, MDH, NH1, and G6PD enzymatic systems represented different patterns in logarithmic and stationary promastigotes and axenic amastigotes of L. infantum. PGM and ME showed similar patterns in the aforementioned forms of parasite. The highest level of SOD activity was determined in the axenic amastigote form and GPX activity was not detected in different forms of L. infantum. CONCLUSION The characterization of leishmanial-isoenzyme patterns and the measurement of antioxidant activity of crucial antioxidant enzymes, including SOD and GPX, might reveal more information in the biology, pathogenicity, and metabolic pathways of Leishmania parasites and consequently drive to designing novel therapeutic strategies in leishmaniasis treatment.
Collapse
Affiliation(s)
- Mostafa Alishvandi
- ¹Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sajad Rashidi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran.
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Nieto-Meneses R, Castillo R, Hernández-Campos A, Nogueda-Torres B, López-Villegas EO, Moreno-Rodríguez A, Matadamas-Martínez F, Yépez-Mulia L. Characterization of the Effect of N-(2-Methoxyphenyl)-1-methyl-1 H-benzimidazol-2-amine, Compound 8, against Leishmania mexicana and Its In Vivo Leishmanicidal Activity. Int J Mol Sci 2024; 25:659. [PMID: 38203832 PMCID: PMC10779428 DOI: 10.3390/ijms25010659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Chemotherapy currently available for leishmaniasis treatment has many adverse side effects and drug resistance. Therefore, the identification of new targets and the development of new drugs are urgently needed. Previously, we reported the synthesis of a N-(2-methoxyphenyl)-1-methyl-1H-benzimidazol-2-amine, named compound 8, with an IC50 value in the micromolar range against L. mexicana, it also inhibited 68.27% the activity of recombinant L. mexicana arginase. Herein, we report studies carried out to characterize the mechanism of action of compound 8, as well as its in vivo leishmanicidal activity. It was shown in our ultrastructural studies that compound 8 induces several changes, such as membrane blebbing, the presence of autophagosomes, membrane detachment and mitochondrial and kinetoplast disorganization, among others. Compound 8 triggers the production of ROS and parasite apoptosis. It reduced 71% of the parasite load of L. mexicana in an experimental model of cutaneous leishmaniasis in comparison with a control. Altogether, the data obtained suggest the potential use of compound 8 in the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Rocío Nieto-Meneses
- Departamento de Parasitología, ENCB-Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.N.-M.); (B.N.-T.)
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.C.); (A.H.-C.)
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.C.); (A.H.-C.)
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, ENCB-Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.N.-M.); (B.N.-T.)
| | | | - Adriana Moreno-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico;
| | - Félix Matadamas-Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
14
|
Abd-Alaziz DM, Mansour M, Nasr M, Sammour OA. Spanethosomes as a novel topical carrier for silymarin in contrast to conventional spanlastics: Formulation development, in vitro and ex vivo evaluation for potential treatment of leishmaniasis. J Drug Deliv Sci Technol 2023; 88:104887. [DOI: 10.1016/j.jddst.2023.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Telleria J, Tibayrenc M, Del Salto Mendoza M, Seveno M, Costales JA. Comparative proteomic analysis of Trypanosoma cruzi TcI lineage epimastigotes unveils metabolic and phenotypic differences between fast- and slow-dividing strains. Exp Parasitol 2023; 252:108576. [PMID: 37429537 DOI: 10.1016/j.exppara.2023.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is a genetically and phenotypically diverse species, divided into 5 main phylogenetic lineages (TcI to TcVI). TcI is the most widespread lineage in the Americas. Proteomics is a suitable tool to study the global protein expression dynamics in pathogens. Previous proteomic studies have revealed a link between (i) the genetic variability; (ii) the protein expression; and (iii) the biological characteristics of T. cruzi. Here, two-dimensional electrophoresis (2DE) and mass spectrometry were used to characterize the overall protein expression profiles of epimastigotes from four distinct TcI strains displaying different growth kinetics. Ascending hierarchical clustering analysis based on the global 2DE protein expression profiles grouped the strains under study into two clusters that were congruent with their fast or slow growth kinetics. A subset of proteins differentially expressed by the strains in each group were identified by mass spectrometry. Biological differences between the two groups, including use of glucose as an energy source, flagellum length, and metabolic activity, were predicted by proteomic analysis and confirmed by metabolic tests and microscopic measurements performed on the epimastigotes of each strain. Our results show that protein expression profiles are correlated with parasite phenotypes, which may in turn influence the parasite's virulence and transmission capacity.
Collapse
Affiliation(s)
- Jenny Telleria
- Institut de recherche pour le développement, La recherche agronomique pour le développement, 34398, Montpellier, Cedex 05, France
| | - Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique/UM1-UM2, 34394, Montpellier, Cedex 5, France
| | - Michelle Del Salto Mendoza
- Centro de Investigación para la Salud en América Latina, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Martial Seveno
- BCM, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Jaime A Costales
- Centro de Investigación para la Salud en América Latina, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
| |
Collapse
|
16
|
Laureano de Souza M, Lapierre TJWJD, Vitor de Lima Marques G, Ferraz WR, Penteado AB, Henrique Goulart Trossini G, Murta SMF, de Oliveira RB, de Oliveira Rezende C, Ferreira RS. Molecular targets for Chagas disease: validation, challenges and lead compounds for widely exploited targets. Expert Opin Ther Targets 2023; 27:911-925. [PMID: 37772733 DOI: 10.1080/14728222.2023.2264512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/24/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION Chagas disease (CD) imposes social and economic burdens, yet the available treatments have limited efficacy in the disease's chronic phase and cause serious adverse effects. To address this challenge, target-based approaches are a possible strategy to develop new, safe, and active treatments for both phases of the disease. AREAS COVERED This review delves into target-based approaches applied to CD drug discovery, emphasizing the studies from the last five years. We highlight the proteins cruzain (CZ), trypanothione reductase (TR), sterol 14 α-demethylase (CPY51), iron superoxide dismutase (Fe-SOD), proteasome, cytochrome b (Cytb), and cleavage and polyadenylation specificity factor 3 (CPSF3), chosen based on their biological and chemical validation as drug targets. For each, we discuss its biological relevance and validation as a target, currently related challenges, and the status of the most promising inhibitors. EXPERT OPINION Target-based approaches toward developing potential CD therapeutics have yielded promising leads in recent years. We expect a significant advance in this field in the next decade, fueled by the new options for Trypanosoma cruzi genetic manipulation that arose in the past decade, combined with recent advances in computational chemistry and chemical biology.
Collapse
Affiliation(s)
- Mariana Laureano de Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Gabriel Vitor de Lima Marques
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Witor Ribeiro Ferraz
- Departamento de Farmacia, Faculdade de Ciencias Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - André Berndt Penteado
- Departamento de Farmacia, Faculdade de Ciencias Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
17
|
Araújo SAD, Lima ADS, Rocha CQD, Previtalli-Silva H, Hardoim DDJ, Taniwaki NN, Calabrese KDS, Almeida-Souza F, Abreu-Silva AL. In Vitro Antioxidant and Antitrypanosomal Activities of Extract and Fractions of Terminalia catappa. BIOLOGY 2023; 12:895. [PMID: 37508328 PMCID: PMC10376266 DOI: 10.3390/biology12070895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 07/30/2023]
Abstract
Chagas disease is a severe infectious and parasitic disease caused by the protozoan Trypanosoma cruzi and considered a public health problem. Chemotherapeutics are still the main means of control and treatment of the disease, however with some limitations. As an alternative treatment, plants have been pointed out due to their proven pharmacological properties. Many studies carried out with Terminalia catappa have shown several biological activities, but its effect against T. cruzi is still unknown. The objective of this work is to evaluate the therapeutic potential of extracts and fractions obtained from T. catappa on the parasite T. cruzi, in addition to analyzing its antioxidant activity. T. catappa ethyl acetate fraction were produced and submitted the chemical characterization by Liquid Chromatography Coupled to Mass Spectrometry (LC-MS). From all T. catappa extracts and fractions evaluated, the ethyl acetate and the aqueous fraction displayed the best antioxidant activity by the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging method (IC50 of 7.77 ± 1.61 and 5.26 ± 1.26 µg/mL respectively), and by ferric ion reducing (FRAP) method (687.61 ± 0.26 and 1009.32 ± 0.13 µM of Trolox equivalent/mg extract, respectively). The ethyl acetate fraction showed remarkable T. cruzi inhibitory activity with IC50 of 8.86 ± 1.13, 24.91 ± 1.15 and 85.01 ± 1.21 µg/mL against epimastigotes, trypomastigotes and intracellular amastigotes, respectively, and showed no cytotoxicity for Vero cells (CC50 > 1000 µg/mL). The treatment of epimastigotes with the ethyl acetate fraction led to drastic ultrastructural changes such as the loss of cytoplasm organelles, cell disorganization, nucleus damage and the loss of integrity of the parasite. This effect could be due to secondary compounds present in this extract, such as luteolin, kaempferol, quercetin, ellagic acid and derivatives. The ethyl acetate fraction obtained from T. catappa leaves can be an effective alternative in the treatment and control of Chagas disease, and material for further investigations.
Collapse
Affiliation(s)
- Sandra Alves de Araújo
- Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | - Aldilene da Silva Lima
- Laboratório de Química dos Produtos Naturais, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | - Cláudia Quintino da Rocha
- Laboratório de Química dos Produtos Naturais, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | | | - Daiana de Jesus Hardoim
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Noemi Nosomi Taniwaki
- Núcleo de Microscopia Eletrônica, Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Fernando Almeida-Souza
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, RJ, Brazil
- Pós-Graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil
| | - Ana Lucia Abreu-Silva
- Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
- Pós-Graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil
| |
Collapse
|
18
|
Lima DA, Gonçalves LO, Reis-Cunha JL, Guimarães PAS, Ruiz JC, Liarte DB, Murta SMF. Transcriptomic analysis of benznidazole-resistant and susceptible Trypanosoma cruzi populations. Parasit Vectors 2023; 16:167. [PMID: 37217925 DOI: 10.1186/s13071-023-05775-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/16/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Chagas disease (CD), caused by the parasite Trypanosoma cruzi, is a serious public health concern in Latin America. Nifurtimox and benznidazole (BZ), the only two drugs currently approved for the treatment of CD, have very low efficacies in the chronic phase of the disease and several toxic side effects. Trypanosoma cruzi strains that are naturally resistant to both drugs have been reported. We performed a comparative transcriptomic analysis of wild-type and BZ-resistant T. cruzi populations using high-throughput RNA sequencing to elucidate the metabolic pathways related to clinical drug resistance and identify promising molecular targets for the development of new drugs for treating CD. METHODS All complementary DNA (cDNA) libraries were constructed from the epimastigote forms of each line, sequenced and analysed using the Prinseq and Trimmomatic tools for the quality analysis, STAR as the aligner for mapping the reads against the reference genome (T. cruzi Dm28c-2018), the Bioconductor package EdgeR for statistical analysis of differential expression and the Python-based library GOATools for the functional enrichment analysis. RESULTS The analytical pipeline with an adjusted P-value of < 0.05 and fold-change > 1.5 identified 1819 transcripts that were differentially expressed (DE) between wild-type and BZ-resistant T. cruzi populations. Of these, 1522 (83.7%) presented functional annotations and 297 (16.2%) were assigned as hypothetical proteins. In total, 1067 transcripts were upregulated and 752 were downregulated in the BZ-resistant T. cruzi population. Functional enrichment analysis of the DE transcripts identified 10 and 111 functional categories enriched for the up- and downregulated transcripts, respectively. Through functional analysis we identified several biological processes potentially associated with the BZ-resistant phenotype: cellular amino acid metabolic processes, translation, proteolysis, protein phosphorylation, RNA modification, DNA repair, generation of precursor metabolites and energy, oxidation-reduction processes, protein folding, purine nucleotide metabolic processes and lipid biosynthetic processes. CONCLUSIONS The transcriptomic profile of T. cruzi revealed a robust set of genes from different metabolic pathways associated with the BZ-resistant phenotype, proving that T. cruzi resistance mechanisms are multifactorial and complex. Biological processes associated with parasite drug resistance include antioxidant defenses and RNA processing. The identified transcripts, such as ascorbate peroxidase (APX) and iron superoxide dismutase (Fe-SOD), provide important information on the resistant phenotype. These DE transcripts can be further evaluated as molecular targets for new drugs against CD.
Collapse
Affiliation(s)
- Davi Alvarenga Lima
- Genômica Funcional de Parasitos, Instituto René Rachou (IRR/Fiocruz Minas), Av. Augusto de Lima 1715, Belo Horizonte, MG, CEP 30190-002, Brazil
| | - Leilane Oliveira Gonçalves
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | | | - Paul Anderson Souza Guimarães
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | - Jeronimo Conceição Ruiz
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | | | - Silvane Maria Fonseca Murta
- Genômica Funcional de Parasitos, Instituto René Rachou (IRR/Fiocruz Minas), Av. Augusto de Lima 1715, Belo Horizonte, MG, CEP 30190-002, Brazil.
| |
Collapse
|
19
|
Vallières C, Golinelli-Cohen MP, Guittet O, Lepoivre M, Huang ME, Vernis L. Redox-Based Strategies against Infections by Eukaryotic Pathogens. Genes (Basel) 2023; 14:genes14040778. [PMID: 37107536 PMCID: PMC10138290 DOI: 10.3390/genes14040778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Redox homeostasis is an equilibrium between reducing and oxidizing reactions within cells. It is an essential, dynamic process, which allows proper cellular reactions and regulates biological responses. Unbalanced redox homeostasis is the hallmark of many diseases, including cancer or inflammatory responses, and can eventually lead to cell death. Specifically, disrupting redox balance, essentially by increasing pro-oxidative molecules and favouring hyperoxidation, is a smart strategy to eliminate cells and has been used for cancer treatment, for example. Selectivity between cancer and normal cells thus appears crucial to avoid toxicity as much as possible. Redox-based approaches are also employed in the case of infectious diseases to tackle the pathogens specifically, with limited impacts on host cells. In this review, we focus on recent advances in redox-based strategies to fight eukaryotic pathogens, especially fungi and eukaryotic parasites. We report molecules recently described for causing or being associated with compromising redox homeostasis in pathogens and discuss therapeutic possibilities.
Collapse
Affiliation(s)
- Cindy Vallières
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Marie-Pierre Golinelli-Cohen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Olivier Guittet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Michel Lepoivre
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Meng-Er Huang
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Laurence Vernis
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
20
|
Borges BS, Bueno GDP, Tomiotto-Pellissier F, Figueiredo FB, Soares Medeiros LC. In vitro anti- Leishmania activity of triclabendazole and its synergic effect with amphotericin B. Front Cell Infect Microbiol 2023; 12:1044665. [PMID: 36699729 PMCID: PMC9868945 DOI: 10.3389/fcimb.2022.1044665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Leishmaniasis is a neglected tropical disease, with approximately 1 million new cases and 30,000 deaths reported every year worldwide. Given the lack of adequate medication for treating leishmaniasis, drug repositioning is essential to save time and money when searching for new therapeutic approaches. This is particularly important given leishmaniasis's status as a neglected disease. Available treatments are still far from being fully effective for treating the different clinical forms of the disease. They are also administered parenterally, making it challenging to ensure complete treatment, and they are extremely toxic, in some cases, causing death. Triclabendazole (TCBZ) is a benzimidazole used to treat fasciolosis in adults and children. It presents a lower toxicity profile than amphotericin B (AmpB) and is administered orally, making it an attractive candidate for treating other parasitoses. The mechanism of action for TCBZ is not yet well understood, although microtubules or polyamines could potentially act as a pharmacological target. TCBZ has already shown antiproliferative activity against T. cruzi, T. brucei, and L. infantum. However, further investigations are still necessary to elucidate the mechanisms of action of TCBZ. Methods Cytotoxicity assay was performed by MTT assay. Cell inhibition (CI) values were obtained according to the equation CI = (O.D treatment x 100/O.D. negative control). For Infection evaluation, fixated cells were stained with Hoechst and read at Operetta High Content Imaging System (Perkin Elmer). For growth curves, cell culture absorbance was measured daily at 600 nm. For the synergism effect, Fractional Inhibitory Concentrations (FICs) were calculated for the IC50 of the drugs alone or combined. Mitochondrial membrane potential (DYm), cell cycle, and cell death analysis were evaluated by flow cytometry. Reactive oxygen species (ROS) and lipid quantification were also determined by fluorimetry. Treated parasites morphology and ultrastructure were analyzed by electron microscopy. Results The selectivity index (SI = CC50/IC50) of TCBZ was comparable with AmpB in promastigotes and amastigotes of Leishmania amazonensis. Evaluation of the cell cycle showed an increase of up to 13% of cells concentrated in S and G2, and morphological analysis with scanning electron microscopy showed a high frequency of dividing cells. The ultrastructural analysis demonstrated large cytoplasmic lipid accumulation, which could suggest alterations in lipid metabolism. Combined administration of TCBZ and AmpB demonstrated a synergistic effect in vitro against intracellular amastigote forms with cSFICs of 0.25. Conclusions Considering that TCBZ has the advantage of being inexpensive and administrated orally, our results suggest that TCBZ, combined with AmpB, is a promising candidate for treating leishmaniasis with reduced toxicity.
Collapse
Affiliation(s)
| | | | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunopathology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | |
Collapse
|