1
|
do Carmo Neto JR, Braga YLL, Franco PIR, de Oliveira JF, Trevisan RO, Mendes KM, de Oliveira MAP, Celes MRN, Silva ACA, Machado JR, da Silva MV. Achieving the Optimal AgO Concentrations to Modulate the Anti- Trypanosoma cruzi Activity of Ag-ZnO/AgO Nanocomposites: In Vivo Investigations. Pharmaceutics 2024; 16:1415. [PMID: 39598539 PMCID: PMC11597568 DOI: 10.3390/pharmaceutics16111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: For the development of new treatments, the acute phase of Chagas disease (CD) in experimental models acts as a filter to screen out potentially effective interventions. Therefore, the aim of this study was to evaluate ZnO nanocrystals and Ag-ZnO/AgO nanocomposites containing different proportions of silver (ZnO:5Ag, ZnO:9Ag and ZnO:11Ag) in an experimental model of the acute phase of CD. Methods: C57Bl/6 mice were infected with 1000 forms of the Colombian strain of T. cruzi. The treatment was carried out by gavage with 5 mg/kg/d for 7 consecutive days from the first detection of parasitemia. Weight, parasitemia and survival were assessed during treatment and up to the day of euthanasia. After euthanasia, the cardiac and intestinal parasitism, inflammatory infiltrate, collagen deposition and cytokine dosages were analyzed. Results: It was observed that the nanocomposites ZnO:9Ag and ZnO:11Ag were the most effective in reducing parasitemia and increasing the survival of the infected animals. However, pure ZnO induced the maintenance of parasitemia and reduced their survival. The ZnO:9Ag and ZnO:11Ag nanocomposites were able to reduce the number of cardiac amastigote nests. In addition, they were responsible for reducing TNF-α and IL-6 in situ. ZnO:9Ag and ZnO:11Ag induced a reduction in the intestinal inflammatory infiltrate and neuronal protection in the myenteric plexus, as well as reducing TNF-α in situ. Conclusions: Based on these results, it is suggested that there is an ideal concentration in terms of the proportion of Ag/AgO and ZnO in nanocomposites for use against CD. Thus, ZnO:9Ag or ZnO:11Ag nanomaterials are potential candidates for the development of new biotechnological products for the therapy of CD.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
| | - Pablo Igor Ribeiro Franco
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
| | - Jordana Fernandes de Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
| | - Rafael Obata Trevisan
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (R.O.T.); (K.M.M.)
| | - Karen Martins Mendes
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (R.O.T.); (K.M.M.)
| | - Milton Adriano Pelli de Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
| | - Mara Rúbia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió 57072-900, AL, Brazil;
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (R.O.T.); (K.M.M.)
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil;
| |
Collapse
|
2
|
Olivo-Freites C, Sy H, Cardenas-Alvarez J, Vega-Batista F, Henao-Martínez AF. Trypanosoma cruzi Central Nervous System Infection-Pathogenesis, Clinical Manifestations, Diagnosis, and Treatment. CURRENT TROPICAL MEDICINE REPORTS 2023; 10:186-198. [PMID: 38983718 PMCID: PMC11233130 DOI: 10.1007/s40475-023-00300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 07/11/2024]
Abstract
Purpose of Review Chagas disease (CD) is a neglected tropical disease from the American continent that commonly causes cardiovascular disease. Some patients develop neurological manifestations. We discuss and summarize the pathogenesis, clinical characteristics, diagnosis, and treatment of the central nervous system manifestations of CD. Recent Findings Cerebrospinal fluid quantitative polymerase chain reaction tests and next-generation sequencing in tissue samples have facilitated disease diagnosis and follow-up. Novel presentations, including retinitis, are now reported. A new MRI sign called "Bunch of açai berries appearance"-multiple hypointense nodular lesions-has been described recently. Treatment with benznidazole at higher doses and the role of therapeutic drug monitoring need to be further studied in this setting. Summary A high suspicion index is paramount to diagnosing Chagas' central nervous system involvement. Standardized molecular diagnostics can aid in the initial workup. Future development of new therapeutic drugs is crucial because of the toxicity profile of the currently available medications.
Collapse
Affiliation(s)
| | - Hendrik Sy
- Division of Infectious Disease, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jorge Cardenas-Alvarez
- Department of Medicine, Division of Infectious Disease, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Andrés F Henao-Martínez
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO, USA
| |
Collapse
|
3
|
Useche Y, Pérez AR, de Meis J, Bonomo A, Savino W. Central nervous system commitment in Chagas disease. Front Immunol 2022; 13:975106. [PMID: 36439149 PMCID: PMC9685529 DOI: 10.3389/fimmu.2022.975106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/21/2022] [Indexed: 10/28/2023] Open
Abstract
The involvement of the central nervous system (CNS) during human acute and chronic Chagas disease (CD) has been largely reported. Meningoencephalitis is a frequent finding during the acute infection, while during chronic phase the CNS involvement is often accompanied by behavioral and cognitive impairments. In the same vein, several studies have shown that rodents infected with Trypanosoma cruzi (T. cruzi) display behavior abnormalities, accompanied by brain inflammation, in situ production of pro-inflammatory cytokines and parasitism in diverse cerebral areas, with involvement of microglia, macrophages, astrocytes, and neurons. However, the mechanisms used by the parasite to reach the brain remain now largely unknown. Herein we discuss the evidence unravelling the CNS involvement and complexity of neuroimmune interactions that take place in acute and chronic CD. Also, we provide some clues to hypothesize brain infections routes in human and experimental acute CD following oral infection by T. cruzi, an infection route that became a major CD related public health issue in Brazil.
Collapse
Affiliation(s)
- Yerly Useche
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Rosa Pérez
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET UNR), Rosario, Argentina
- Center for Research and Production of Biological Reagents (CIPReB), Faculty of Medical Sciences National University of Rosario, Rosario, Argentina
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Borghi SM, Fattori V, Carvalho TT, Tatakihara VLH, Zaninelli TH, Pinho-Ribeiro FA, Ferraz CR, Staurengo-Ferrari L, Casagrande R, Pavanelli WR, Cunha FQ, Cunha TM, Pinge-Filho P, Verri WA. Experimental Trypanosoma cruzi Infection Induces Pain in Mice Dependent on Early Spinal Cord Glial Cells and NFκB Activation and Cytokine Production. Front Immunol 2021; 11:539086. [PMID: 33574810 PMCID: PMC7870690 DOI: 10.3389/fimmu.2020.539086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
The neglected tropical infirmity Chagas disease (CD) presents high mortality. Its etiological agent T. cruzi is transmitted by infected hematophagous insects. Symptoms of the acute phase of the infection include fever, fatigue, body aches, and headache, making diagnosis difficult as they are present in other illnesses as well. Thus, in endemic areas, individuals with undetermined pain may be considered for CD. Although pain is a characteristic symptom of CD, its cellular and molecular mechanisms are unknown except for demonstration of a role for peripheral TNF-α in CD pain. In this study, we evaluate the role of spinal cord glial cells in experimental T. cruzi infection in the context of pain using C57BL/6 mice. Pain, parasitemia, survival, and glial and neuronal function as well as NFκB activation and cytokine/chemokine production were assessed. T. cruzi infection induced chronic mechanical and thermal hyperalgesia. Systemic TNF-α and IL-1β peaked 14 days postinfection (p.i.). Infected mice presented increased spinal gliosis and NFκB activation compared to uninfected mice at 7 days p.i. Glial and NFκB inhibitors limited T. cruzi–induced pain. Nuclear phosphorylated NFκB was detected surrounded by glia markers, and glial inhibitors reduced its detection. T. cruzi–induced spinal cord production of cytokines/chemokines was also diminished by glial inhibitors. Dorsal root ganglia (DRG) neurons presented increased activity in infected mice, and the production of inflammatory mediators was counteracted by glial/NFκB inhibitors. The present study unveils the contribution of DRG and spinal cord cellular and molecular events leading to pain in T. cruzi infection, contributing to a better understanding of CD pathology.
Collapse
Affiliation(s)
- Sergio M Borghi
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil.,Center for Research in Health Science, University of Northern Paraná-Unopar, Londrina, Brazil
| | - Victor Fattori
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Vera L H Tatakihara
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Tiago H Zaninelli
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Camila R Ferraz
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Rubia Casagrande
- Departament of Pharmaceutical Sciences, Health Sciences Center, University Hospital, Londrina State University, Londrina, Brazil
| | - Wander R Pavanelli
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Phileno Pinge-Filho
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Center of Biological Science, State University of Londrina, Londrina, Brazil
| |
Collapse
|
5
|
Ricci MF, Béla SR, Moraes MM, Bahia MT, Mazzeti AL, Oliveira ACS, Andrade LO, Radí R, Piacenza L, Arantes RME. Neuronal Parasitism, Early Myenteric Neurons Depopulation and Continuous Axonal Networking Damage as Underlying Mechanisms of the Experimental Intestinal Chagas' Disease. Front Cell Infect Microbiol 2020; 10:583899. [PMID: 33178632 PMCID: PMC7597600 DOI: 10.3389/fcimb.2020.583899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
There is a growing consensus that the balance between the persistence of infection and the host immune response is crucial for chronification of Chagas heart disease. Extrapolation for chagasic megacolon is hampered because research in humans and animal models that reproduce intestinal pathology is lacking. The parasite-host relationship and its consequence to the disease are not well-known. Our model describes the temporal changes in the mice intestine wall throughout the infection, parasitism, and the development of megacolon. It also presents the consequence of the infection of primary myenteric neurons in culture with Trypanosoma cruzi (T. cruzi). Oxidative neuronal damage, involving reactive nitrogen species induced by parasite infection and cytokine production, results in the denervation of the myenteric ganglia in the acute phase. The long-term inflammation induced by the parasite's DNA causes intramuscular axonal damage, smooth muscle hypertrophy, and inconsistent innervation, affecting contractility. Acute phase neuronal loss may be irreversible. However, the dynamics of the damages revealed herein indicate that neuroprotection interventions in acute and chronic phases may help to eradicate the parasite and control the inflammatory-induced increase of the intestinal wall thickness and axonal loss. Our model is a powerful approach to integrate the acute and chronic events triggered by T. cruzi, leading to megacolon.
Collapse
Affiliation(s)
- Mayra Fernanda Ricci
- Departament of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Samantha Ribeiro Béla
- Departament of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Departament of Biological and Exact Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Michele Macedo Moraes
- Departament of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Terezinha Bahia
- Departament of Biological and Exact Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Ana Lia Mazzeti
- Departament of Biological and Exact Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | | | | | - Rafael Radí
- Departament of Bioquímica, Facultad de Medicina, Center for Free Radical and Biomedical Research, Universidad de La Republica Montevideo, Montevideo, Uruguay
| | - Lucía Piacenza
- Departament of Bioquímica, Facultad de Medicina, Center for Free Radical and Biomedical Research, Universidad de La Republica Montevideo, Montevideo, Uruguay
| | | |
Collapse
|
6
|
Barbosa JL, Béla SR, Ricci MF, Noviello MDLM, Cartelle CT, Pinheiro BV, Vitor RWDA, Arantes RME. Spontaneous T. gondii neuronal encystment induces structural neuritic network impairment associated with changes of tyrosine hydroxilase expression. Neurosci Lett 2019; 718:134721. [PMID: 31891758 DOI: 10.1016/j.neulet.2019.134721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 01/08/2023]
Abstract
Two billion people are chronically infected with Toxoplasma gondii worldwide with unknown consequences. Important neurological diseases have been associated to the brain infection, making essential to understand the neurophysiological changes associated with the neuronal encystment. T. gondii may subvert neuronal functions modifying neurotransmitter concentration in chronically infected mice but the molecular mechanisms involved are still unclear. Parasites were observed inside neuronal cells in cultures from 24-192 hs. The rate of infection increased with time. Neurite density decreased affecting network functionality. Neuronal survival was affected and we detected the presence of cysts inside neuronal bodies and dilated portions of neurites in association with a relative increase of TH-positive neuritic area without noticeable changes in DA immunofluorescence pattern. These results advance our knowledge of the interaction between T. gondii and the neuronal network of the host.
Collapse
Affiliation(s)
- Joana Lobato Barbosa
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samantha Ribeiro Béla
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Mayra Fernanda Ricci
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Christiane Teixeira Cartelle
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Veloso Pinheiro
- Departament of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Wagner de Almeida Vitor
- Departament of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rosa Maria Esteves Arantes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Lucchetti BFC, Boaretto N, Lopes FNC, Malvezi AD, Lovo-Martins MI, Tatakihara VLH, Fattori V, Pereira RS, Verri WA, de Almeida Araujo EJ, Pinge-Filho P, Martins-Pinge MC. Metabolic syndrome agravates cardiovascular, oxidative and inflammatory dysfunction during the acute phase of Trypanosoma cruzi infection in mice. Sci Rep 2019; 9:18885. [PMID: 31827186 PMCID: PMC6906468 DOI: 10.1038/s41598-019-55363-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
We evaluated the influence of metabolic syndrome (MS) on acute Trypanosoma cruzi infection. Obese Swiss mice, 70 days of age, were subjected to intraperitoneal infection with 5 × 102 trypomastigotes of the Y strain. Cardiovascular, oxidative, inflammatory, and metabolic parameters were evaluated in infected and non-infected mice. We observed higher parasitaemia in the infected obese group (IOG) than in the infected control group (ICG) 13 and 15 days post-infection. All IOG animals died by 19 days post-infection (dpi), whereas 87.5% of the ICG survived to 30 days. Increased plasma nitrite levels in adipose tissue and the aorta were observed in the IOG. Higher INF-γ and MCP-1 concentrations and lower IL-10 concentrations were observed in the IOG compared to those in the ICG. Decreased insulin sensitivity was observed in obese animals, which was accentuated after infection. Higher parasitic loads were found in adipose and hepatic tissue, and increases in oxidative stress in cardiac, hepatic, and adipose tissues were characteristics of the IOG group. Thus, MS exacerbates experimental Chagas disease, resulting in greater damage and decreased survival in infected animals, and might be a warning sign that MS can influence other pathologies.
Collapse
Affiliation(s)
- Bruno Fernando Cruz Lucchetti
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Department of Physiotherapy, University Center of Araguaia Valley, Barra do Garças, MT, Brazil
| | - Natalia Boaretto
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Fernanda Novi Cortegoso Lopes
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Aparecida Donizette Malvezi
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Maria Isabel Lovo-Martins
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Vera Lúcia Hideko Tatakihara
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Victor Fattori
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Rito Santo Pereira
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Phileno Pinge-Filho
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Marli Cardoso Martins-Pinge
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
8
|
Assemblages A and B of Giardia duodenalis reduce enteric glial cells in the small intestine in mice. Parasitol Res 2018; 117:2025-2033. [PMID: 29728828 DOI: 10.1007/s00436-018-5853-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Infection of Giardia duodenalis is one of the most common human parasitic disease worldwide. This infection may be related to important changes in the enteric nervous system. The objective of this study was to evaluate the myenteric and submucosal plexuses, the intestinal muscle layer, and gastrointestinal transit in mice infected with assemblages A and B of G. duodenalis. Swiss albino mice (Mus musculus) were infected with assemblages A and B of G. duodenalis for 15 days. Gastrointestinal transit time was evaluated before euthanasia. Duodenum and jejunum were removed for histological and immunohistochemical analyses. It was observed a reduction in the enteric glial cell count and a decrease in the ratio of enteric glial cells to neurons. The number of neurons did not change, but morphological changes were observed in the duodenum and jejunum in both plexuses, including an increase in the nuclear area and a reduction of cell bodies in the myenteric plexus and a decrease in the nuclear area in the submucosal plexus. A reduction of the thickness of the muscle layer was observed in the duodenum, with no significant differences in the gastrointestinal transit times. Assemblages A and B of G. duodenalis decrease the number of enteric glial cells in the myenteric and submucosal plexuses, decrease the thickness of the muscle layer, and change the morphology of neurons. Graphical abstract ᅟ.
Collapse
|