1
|
Verhasselt V, Marchant A, Kollmann TR. Per Os to Protection - Targeting the Oral Route to Enhance Immune-mediated Protection from Disease of the Human Newborn. J Mol Biol 2024; 436:168718. [PMID: 39094783 DOI: 10.1016/j.jmb.2024.168718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Valerie Verhasselt
- Larsson-Rosenquist Foundation Centre for Immunology and Breastfeeding, School of Medicine, University of Western Australia, Perth, WA, Australia; Immunology and Breastfeeding Team, Telethon Kids Institute, Perth, WA, Australia
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Tobias R Kollmann
- Dalhousie University, Department of Microbiology & Immunology, Pediatric Infectious Diseases, Canada.
| |
Collapse
|
2
|
Khan S, Pawar V, Vyawahare C, Mukhida S. Adult Tuberculosis Vaccination: Time to Flip the Coin. Asia Pac J Public Health 2024; 36:650-651. [PMID: 39126358 DOI: 10.1177/10105395241273113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Affiliation(s)
- Sameena Khan
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Vishal Pawar
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Chanda Vyawahare
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Sahjid Mukhida
- Department of Microbiology, GMERS Medical College, Junagadh, India
| |
Collapse
|
3
|
Greenblatt CL, Lathe R. Vaccines and Dementia: Part I. Non-Specific Immune Boosting with BCG: History, Ligands, and Receptors. J Alzheimers Dis 2024; 98:343-360. [PMID: 38393912 DOI: 10.3233/jad-231315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Vaccines such as Bacille Calmette-Guérin (BCG) can apparently defer dementia onset with an efficacy better than all drugs known to date, as initially reported by Gofrit et al. (PLoS One14, e0224433), now confirmed by other studies. Understanding how and why is of immense importance because it could represent a sea-change in how we manage patients with mild cognitive impairment through to dementia. Given that infection and/or inflammation are likely to contribute to the development of dementias such as Alzheimer's disease (Part II of this work), we provide a historical and molecular background to how vaccines, adjuvants, and their component molecules can elicit broad-spectrum protective effects against diverse agents. We review early studies in which poxvirus, herpes virus, and tuberculosis (TB) infections afford cross-protection against unrelated pathogens, a concept known as 'trained immunity'. We then focus on the attenuated TB vaccine, BCG, that was introduced to protect against the causative agent of TB, Mycobacterium tuberculosis. We trace the development of BCG in the 1920 s through to the discovery, by Freund and McDermott in the 1940 s, that extracts of mycobacteria can themselves exert potent immunostimulating (adjuvant) activity; Freund's complete adjuvant based on mycobacteria remains the most potent immunopotentiator reported to date. We then discuss whether the beneficial effects of BCG require long-term persistence of live bacteria, before focusing on the specific mycobacterial molecules, notably muramyl dipeptides, that mediate immunopotentiation, as well as the receptors involved. Part II addresses evidence that immunopotentiation by BCG and other vaccines can protect against dementia development.
Collapse
Affiliation(s)
- Charles L Greenblatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
| |
Collapse
|
4
|
Kim H, Choi HG, Shin SJ. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front Immunol 2023; 14:1193058. [PMID: 37638056 PMCID: PMC10451085 DOI: 10.3389/fimmu.2023.1193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Although tuberculosis (TB) remains one of the leading causes of death from an infectious disease worldwide, the development of vaccines more effective than bacille Calmette-Guérin (BCG), the only licensed TB vaccine, has progressed slowly even in the context of the tremendous global impact of TB. Most vaccine candidates have been developed to strongly induce interferon-γ (IFN-γ)-producing T-helper type 1 (Th1) cell responses; however, accumulating evidence has suggested that other immune factors are required for optimal protection against Mycobacterium tuberculosis (Mtb) infection. In this review, we briefly describe the five hurdles that must be overcome to develop more effective TB vaccines, including those with various purposes and tested in recent promising clinical trials. In addition, we discuss the current knowledge gaps between preclinical experiments and clinical studies regarding peripheral versus tissue-specific immune responses, different underlying conditions of individuals, and newly emerging immune correlates of protection. Moreover, we propose how recently discovered TB risk or susceptibility factors can be better utilized as novel biomarkers for the evaluation of vaccine-induced protection to suggest more practical ways to develop advanced TB vaccines. Vaccines are the most effective tools for reducing mortality and morbidity from infectious diseases, and more advanced technologies and a greater understanding of host-pathogen interactions will provide feasibility and rationale for novel vaccine design and development.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Pépin J, Fox A, LeBlanc L, De Wals P, Rousseau MC. In the footsteps of Albert Calmette: an ecological study of TB, leprosy and potential exposure to wild-type Mycobacterium bovis. Trans R Soc Trop Med Hyg 2022; 116:1112-1122. [PMID: 35460554 DOI: 10.1093/trstmh/trac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND One hundred years ago, Albert Calmette developed an avirulent strain of Mycobacterium bovis, but there is no evidence that his BCG strain was more immunogenic than wild-type M. bovis. Geographic variations in BCG efficacy remain ill-understood. We hypothesized that exposure to M. bovis through unpasteurized milk might protect against Mycobacterium tuberculosis and Mycobacterium leprae. METHODS After excluding high-income countries (with universal milk pasteurization) and microstates, an ecological study comprising 113 countries was conducted. National data were obtained from United Nations agencies and international organizations about milk production per capita (1980-1999) as a proxy for exposure to wild-type M. bovis, TB (2000-2019) and leprosy (2005-2019) incidence, HIV prevalence (2000-2019), human development index (2010), global hunger index (2010), neonatal BCG coverage (1980-1999), urbanization (2000) and temperature (1990-2020). Multiple linear regression analyses were performed using log-transformed variables. RESULTS For TB, the association differed by region. An inverse association with milk production was seen in regions outside, but not within, sub-Saharan Africa, after adjustment for confounders. The incidence of leprosy was inversely associated with milk production when combining all countries, but the association was stronger in sub-Saharan Africa. CONCLUSIONS Exposure to wild-type M. bovis through unpasteurized milk may provide cross-protection against M. tuberculosis and M. leprae and contribute to geographic disparities in BCG efficacy. This needs to be confirmed by individual-level studies.
Collapse
Affiliation(s)
- Jacques Pépin
- Department of microbiology and infectious diseases, Université de Sherbrooke, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Aicha Fox
- Department of microbiology and infectious diseases, Université de Sherbrooke, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Louiselle LeBlanc
- Department of microbiology and infectious diseases, Université de Sherbrooke, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Philippe De Wals
- Department of social and preventive medicine, Université Laval, 2725 chemin Ste-Foy, Québec, Québec, G1V 4G5, Canada
| | - Marie-Claude Rousseau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, 531 boulevard des Prairies, Laval, Québec, H7V 1B7 Canada
| |
Collapse
|
6
|
Oral Bacille Calmette-Guérin (BCG) vaccination induces long-term potentiation of memory immune response to Ovalbumin airway challenge in mice. Immunol Lett 2022; 249:43-52. [PMID: 36031026 DOI: 10.1016/j.imlet.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
Abstract
The Bacille Calmette-Guérin (BCG) is a potent immunomodulator. It was initially used by oral administration, but it is mostly used subcutaneously nowadays. This study shows that oral BCG vaccination modifies the immune response to a second non-related antigen (Ovalbumin) systemic immunization. Airway Ovalbumin challenge six months after the systemic intraperitoneal immunization resulted in a potent γδ+ T cell response in the lungs biased to IFN-γ and IL-17 production ex vivo and a mixed Th1, Th2, and Th17 T cells upon further stimulation with anti-CD3 mAb in vitro. Higher percentages of CD4+ T cells accompanied the augmented T cell response in oral BCG vaccinated mice. Also, the proportion of Foxp-3+ Tregs was diminished compared to PBS-gavaged and OVA-immunized mice. The anti-OVA-specific antibody response was also influenced by oral exposure to BCG so that these mice produced more IgG2a and less IgE detected in the sera. These results suggest that oral BCG vaccination can modify future immune responses to vaccines and improve immunity to pathogen infections, especially in the mucosal interfaces.
Collapse
|
7
|
Klein BY, Greenblatt CL, Gofrit ON, Bercovier H. Bacillus Calmette-Guérin in Immuno-Regulation of Alzheimer's Disease. Front Aging Neurosci 2022; 14:861956. [PMID: 35832066 PMCID: PMC9271739 DOI: 10.3389/fnagi.2022.861956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Bacillus Calmette-Guérin is frequently the treatment of choice of superficial bladder cancer. Exposing the urinary bladder of elderly patients with bladder cancer to the BCG vaccine reduced the risk of Alzheimer's disease (AD) substantially. Vaccines against other infectious microorganisms by other vaccination methods showed a similar but a lesser effect. This suggests that immune effects on AD are antigenically non-specific, likely being a metabolic result of immune system activation, similar to that shown for Juvenile diabetes. In this mini review we point to the benefit of BCG vaccine. We then briefly highlight the pathological involvement of the immune system in the AD both, in the peripheral and the central (brain) compartments. Given the uncertain prophylactic mechanism of the BCG effect against AD we propose to take advantage of the therapeutically planned bladder exposure to BCG. Based on pathological aggregation of wrongly cleaved amyloid precursor protein (APP) resistant to the unfolded protein response (UPR) which results in amyloid beta plaques we predict that BCG may impact the UPR signaling cascade. In addition pathways of innate immunity training concerned with energy metabolism, predict capability of activated immune cells to substitute deranged astrocytes that fail to support neuronal energy metabolism. This mini review points to ways through which immune cells can mediate between BCG vaccination and AD to support the wellness of the central nervous system.
Collapse
Affiliation(s)
- Benjamin Y. Klein
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofer N. Gofrit
- Department of Urology, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hervé Bercovier
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Dwivedi V, Gautam S, Headley CA, Piergallini T, Torrelles JB, Turner J. IL-10 Receptor Blockade Delivered Simultaneously with Bacillus Calmette-Guérin Vaccination Sustains Long-Term Protection against Mycobacterium tuberculosis Infection in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1406-1416. [PMID: 35181640 PMCID: PMC11075079 DOI: 10.4049/jimmunol.2100900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022]
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG) immunization still remains the best vaccination strategy available to control the development of active tuberculosis. Protection afforded by BCG vaccination gradually wanes over time and although booster strategies have promise, they remain under development. An alternative approach is to improve BCG efficacy through host-directed therapy. Building upon prior knowledge that blockade of IL-10R1 during early Mycobacterium tuberculosis infection improves and extends control of M. tuberculosis infection in mice, we employed a combined anti-IL-10R1/BCG vaccine strategy. An s.c. single vaccination of BCG/anti-IL10-R1 increased the numbers of CD4+ and CD8+ central memory T cells and reduced Th1 and Th17 cytokine levels in the lung for up to 7 wk postvaccination. Subsequent M. tuberculosis challenge in mice showed both an early (4 wk) and sustained long-term (47 wk) control of infection, which was associated with increased survival. In contrast, protection of BCG/saline-vaccinated mice waned 8 wk after M. tuberculosis infection. Our findings demonstrate that a single and simultaneous vaccination with BCG/anti-IL10-R1 sustains long-term protection, identifying a promising approach to enhance and extend the current BCG-mediated protection against TB.
Collapse
Affiliation(s)
- Varun Dwivedi
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Shalini Gautam
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX; and
| | - Colwyn A Headley
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX; and
| | - Tucker Piergallini
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX; and
| | - Jordi B Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Joanne Turner
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX; and
| |
Collapse
|
9
|
Qu M, Zhou X, Li H. BCG vaccination strategies against tuberculosis: updates and perspectives. Hum Vaccin Immunother 2021; 17:5284-5295. [PMID: 34856853 DOI: 10.1080/21645515.2021.2007711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB). However, BCG has variable efficacy and cannot completely prevent TB infection and transmission. Therefore, the worldwide prevalence of TB calls for urgent development of a more effective TB vaccine. In the absence of other approved vaccines, it is also necessary to improve the efficacy of BCG itself. Intravenous (IV) BCG administration and BCG revaccination strategies have recently shown promising results for clinical usage. Therefore, it is necessary for us to revisit the BCG vaccination strategies and summarize the current research updates related to BCG vaccination. This literature review provides an updated overview and perspectives of the immunization strategies against TB using BCG, which may inspire the following research on TB vaccine development.
Collapse
Affiliation(s)
- Mengjin Qu
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, China Agricultural University, Beijing, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Kaewseekhao B, Roytrakul S, Yingchutrakul Y, Laohaviroj M, Salao K, Faksri K. Characterisation of secretome-based immune responses of human leukocytes infected with various Mycobacterium tuberculosis lineages. PeerJ 2021; 9:e11565. [PMID: 34141493 PMCID: PMC8180191 DOI: 10.7717/peerj.11565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/14/2021] [Indexed: 11/27/2022] Open
Abstract
Background Differences in immune responses against different lineages of Mycobacterium tuberculosis (Mtb), and by different types of immune cell, are still poorly understood. We aimed to compare the secretome-based immune responses among three Mtb lineages and among immune-cell types. The immune responses were also investigated during infection and when the bacilli had been eliminated from the immune cells. Methods Human primary leukocytes were infected with strains representing three lineages of Mtb (East-Asian, Indo-Oceanic and Euro-American). Label-free GeLC MS/MS proteomic analysis of secretomes was performed. The response of each immune-cell type was compared with the appropriate interactome database for each. Results The expression pattern of proteins secreted by Mtb-infected leukocytes differed among Mtb lineages. The ancestral lineage (IO lineage) had a greater ability to activate MMP14 (associated with leukocyte migration) than did the more recent lineages (EA and EuA). During infection, proteins secreted by macrophages, dendritic cells, neutrophils and B-cells were associated with cell proliferation. Following clearance of Mtb, proteins associated with interferon signaling were found in macrophages, dendritic cells and neutrophils: proteins associated with antigen processing were found in B-cells and regulatory T-cells. Expression of immune response-related proteins from many immune-cell types might be suppressed by Mtb infection. Our study has provided a better insight into the host-pathogen interaction and immune response against different Mtb lineages.
Collapse
Affiliation(s)
- Benjawan Kaewseekhao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Marut Laohaviroj
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanin Salao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
11
|
Periyasamy KM, Ranganathan UD, Tripathy SP, Bethunaickan R. Vitamin D - A host directed autophagy mediated therapy for tuberculosis. Mol Immunol 2020; 127:238-244. [PMID: 33039674 DOI: 10.1016/j.molimm.2020.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
According to the WHO report 2019, Tuberculosis (TB) is an ancient disease of humanity that is curable. TB has caused significant morbidity and mortality even in 2018. The etiological agent of TB, Mycobacterium tuberculosis (MTB) exploits its virulence factors to escape from host immunity and therapeutic drugs. Host Directed Therapy (HDT) is an adjunctive therapy where repurposed drugs, small molecules, vitamins, cytokines, and monoclonal antibodies are used to overcome the pathogen exploited pathways in the host. One of the HDTs, i.e. induction of autophagy is a highly regulated intracellular self-degradative process in which pathogens are sequestered in double-layered autophagosomes and targeted to the lysosome for degradation. Apart from the pathogen clearance, autophagy involves the release of nutrients during starvation, removal of damaged organelles and aggregated proteins, antigen presentation, tumor suppression, and anti-aging mechanisms. Xenophagy is a type of selective autophagy against microbes induced by ubiquitin receptors (p62/SQSTM1, NDP52, NBR1, OPTN, Parkin and Smurf proteins) after pathogen recognition. ULK1/2, Beclin-1, ATG5-ATG12-ATG16 L and LC-II-PE complexes along with two nutrient-sensing protein complexes, mTOR and AMPK activate autophagy mechanisms to limit infection. Pattern Recognition Receptors (PRRs) such as TLR2, recognize lipopolysaccharide (LPS) of MTB and triggers vitamin D3 activating enzymes. Activated vitamin D3 induces the synthesis of antimicrobial peptide, LL-37, which further enhances xenophagy. Apart from vitamin D, few micronutrients such as zinc and iron also regulate autophagy. In this review, we discuss current knowledge, advances and perspectives of autophagy against TB.
Collapse
Affiliation(s)
- Krisna Moorthi Periyasamy
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai. Affiliated to University of Madras, Chepauk, Chennai, India
| | - Uma Devi Ranganathan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai. Affiliated to University of Madras, Chepauk, Chennai, India
| | | | - Ramalingam Bethunaickan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai. Affiliated to University of Madras, Chepauk, Chennai, India; Department of Pathology and Microbiology, ICMR-National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
12
|
Nadolinskaia NI, Karpov DS, Goncharenko AV. Vaccines Against Tuberculosis: Problems and Prospects (Review). APPL BIOCHEM MICRO+ 2020; 56:497-504. [PMID: 32981943 PMCID: PMC7508421 DOI: 10.1134/s0003683820050129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Despite the efforts of the global medical and scientific community, tuberculosis remains the leading cause of death from infectious diseases. The expectation of success associated with the development of new anti-TB drugs was not justified, and the attention of researchers was largely drawn to the creation of new mycobacterial strains for vaccination against tuberculosis. The proposed review contains current information on the existing vaccine strains and the development of new, genetically engineered strains for the prevention of tuberculosis and the prevention and treatment of other diseases. The review includes relevant information on the correlation between BCG vaccination and the frequency and severity of COVID-19 infection.
Collapse
Affiliation(s)
- N. I. Nadolinskaia
- Bach Institute of Biochemistry, Federal Research Center Fundamentals of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - D. S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. V. Goncharenko
- Bach Institute of Biochemistry, Federal Research Center Fundamentals of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
13
|
Stylianou E, Paul MJ, Reljic R, McShane H. Mucosal delivery of tuberculosis vaccines: a review of current approaches and challenges. Expert Rev Vaccines 2019; 18:1271-1284. [PMID: 31876199 PMCID: PMC6961305 DOI: 10.1080/14760584.2019.1692657] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Tuberculosis (TB) remains a major health threat and it is now clear that the current vaccine, BCG, is unable to arrest the global TB epidemic. A new vaccine is needed to either replace or boost BCG so that a better level of protection could be achieved. The route of entry of Mycobacterium tuberculosis, the causative organism, is via inhalation making TB primarily a respiratory disease. There is therefore good reason to hypothesize that a mucosally delivered vaccine against TB could be more effective than one delivered via the systemic route. Areas covered: This review summarizes the progress that has been made in the area of TB mucosal vaccines in the last few years. It highlights some of the strengths and shortcomings of the published evidence and aims to discuss immunological and practical considerations in the development of mucosal vaccines. Expert opinion: There is a growing body of evidence that the mucosal approach to vaccination against TB is feasible and should be pursued. However, further key studies are necessary to both improve our understanding of the protective immune mechanisms operating in the mucosa and the technical aspects of aerosolized delivery, before such a vaccine could become a feasible, deployable strategy.
Collapse
Affiliation(s)
- Elena Stylianou
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthew J Paul
- Institute for Infection and Immunity, St George's University of London, Tooting, London, UK
| | - Rajko Reljic
- Institute for Infection and Immunity, St George's University of London, Tooting, London, UK
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Lesellier S, Boschiroli ML, Barrat J, Wanke C, Salguero FJ, Garcia-Jimenez WL, Nunez A, Godinho A, Spiropoulos J, Palmer S, Dave D, Anderson P, Boucher JM, de Cruz K, Henault S, Michelet L, Gowtage S, Williams GA, Nadian AK, Monchâtre-Leroy E, Boué F, Chambers MA, Richomme C. Detection of live M. bovis BCG in tissues and IFN-γ responses in European badgers (Meles meles) vaccinated by oropharyngeal instillation or directly in the ileum. BMC Vet Res 2019; 15:445. [PMID: 31810466 PMCID: PMC6898942 DOI: 10.1186/s12917-019-2166-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Background Oral vaccination with Mycobacterium bovis Bacille of Calmette and Guerin (BCG) has provided protection against M. bovis to badgers both experimentally and in the field. There is also evidence suggesting that the persistence of live BCG within the host is important for maintaining protection against TB. Here we investigated the capacity of badger inductive mucosal sites to absorb and maintain live BCG. The targeted mucosae were the oropharyngeal cavity (tonsils and sublingual area) and the small intestine (ileum). Results We showed that significant quantities of live BCG persisted within badger in tissues of vaccinated badgers for at least 8 weeks following oral vaccination with only very mild pathological features and induced the circulation of IFNγ-producing mononuclear cells. The uptake of live BCG by tonsils and drainage to retro-pharyngeal lymph nodes was repeatable in the animal group vaccinated by oropharyngeal instillation whereas those vaccinated directly in the ileum displayed a lower frequency of BCG detection in the enteric wall or draining mesenteric lymph nodes. No faecal excretion of live BCG was observed, including when BCG was delivered directly in the ileum. Conclusions The apparent local loss of BCG viability suggests an unfavorable gastro-enteric environment for BCG in badgers, which should be taken in consideration when developing an oral vaccine for use in this species.
Collapse
Affiliation(s)
- Sandrine Lesellier
- Animal and Plant Health Agency, New Haw, UK. .,Anses, Nancy laboratory for rabies and wildlife, Malzéville, France. .,Public Health England, Porton Down, UK.
| | - Maria-Laura Boschiroli
- Laboratory for Animal Health, Tuberculosis National Reference Laboratory, University Paris-Est, Anses, Maisons-Alfort, France
| | - Jacques Barrat
- Anses, Nancy laboratory for rabies and wildlife, Malzéville, France
| | - Christoph Wanke
- Medimetrics Personalized Drug Delivery B.V., High Tech Campus 10, 5656 AE, Eindhoven, The Netherlands
| | - Francisco J Salguero
- Animal and Plant Health Agency, New Haw, UK.,Public Health England, Porton Down, UK
| | | | - Alex Nunez
- Animal and Plant Health Agency, New Haw, UK
| | | | | | | | | | | | | | - Krystel de Cruz
- Laboratory for Animal Health, Tuberculosis National Reference Laboratory, University Paris-Est, Anses, Maisons-Alfort, France
| | - Sylvie Henault
- Laboratory for Animal Health, Tuberculosis National Reference Laboratory, University Paris-Est, Anses, Maisons-Alfort, France
| | - Lorraine Michelet
- Laboratory for Animal Health, Tuberculosis National Reference Laboratory, University Paris-Est, Anses, Maisons-Alfort, France
| | | | | | | | | | - Frank Boué
- Anses, Nancy laboratory for rabies and wildlife, Malzéville, France
| | - Mark A Chambers
- Animal and Plant Health Agency, New Haw, UK.,University of Surrey, Guildford, UK
| | - Céline Richomme
- Anses, Nancy laboratory for rabies and wildlife, Malzéville, France
| |
Collapse
|
15
|
Gofrit ON, Klein BY, Cohen IR, Ben-Hur T, Greenblatt CL, Bercovier H. Bacillus Calmette-Guérin (BCG) therapy lowers the incidence of Alzheimer's disease in bladder cancer patients. PLoS One 2019; 14:e0224433. [PMID: 31697701 PMCID: PMC6837488 DOI: 10.1371/journal.pone.0224433] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects one in ten people older than 65 years. Thus far, there is no cure or even disease-modifying treatment for this disease. The immune system is a major player in the pathogenesis of AD. Bacillus Calmette-Guérin (BCG), developed as a vaccine against tuberculosis, modulates the immune system and reduces recurrence of non-muscle invasive bladder cancer. Theoretical considerations suggested that treatment with BCG may decrease the risk of AD. We tested this hypothesis on a natural population of bladder cancer patients. METHODS AND FINDINGS After removing all bladder cancer patients presenting with AD or developing AD within one-year following diagnosis of bladder cancer, we collected data on a total of 1371 patients (1134 males and 237 females) who were followed for at least one year after the diagnosis of bladder cancer. The mean age at diagnosis of bladder cancer was 68.1 years (SD 13.0). Adjuvant post-operative intra-vesical treatment with BCG was given to 878 (64%) of these patients. The median period post-operative follow-up was 8 years. During follow-up, 65 patients developed AD at a mean age of 84 years (SD 5.9), including 21 patients (2.4%) who had been treated with BCG and 44 patients (8.9%) who had not received BCG. Patients who had been treated with BCG manifested more than 4-fold less risk for AD than those not treated with BCG. The Cox proportional hazards regression model and the Kaplan-Meier analysis of AD free survival both indicated high significance: patients not treated with BCG had a significantly higher risk of developing AD compared to BCG treated patients (HR 4.778, 95%CI: 2.837-8.046, p = 4.08x10-9 and Log Rank Chi-square 42.438, df = 1, p = 7.30x10-11, respectively). Exposure to BCG did not modify the prevalence of Parkinson's disease, 1.9% in BCG treated patients and 1.6% in untreated (Fisher's Exact Test, p = 1). CONCLUSIONS Bladder cancer patients treated with BCG were significantly less likely to develop AD at any age than patients who were not so treated. This finding of a retrospective study suggests that BCG treatment might also reduce the incidence of AD in the general population. Confirmation of such effects of BCG in other retrospective studies would support prospective studies of BCG in AD.
Collapse
Affiliation(s)
- Ofer N. Gofrit
- Department of Urology, Hadassah- Hebrew University Medical Center, Jerusalem, Israel
- * E-mail: (HB); (ONG)
| | - Benjamin Y. Klein
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
| | - Irun R. Cohen
- Department of Immunology, Weizmann Institute, Rehovot, Israel
| | - Tamir Ben-Hur
- Department of Neurology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
| | - Hervé Bercovier
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
- * E-mail: (HB); (ONG)
| |
Collapse
|
16
|
Tanner R, Villarreal-Ramos B, Vordermeier HM, McShane H. The Humoral Immune Response to BCG Vaccination. Front Immunol 2019; 10:1317. [PMID: 31244856 PMCID: PMC6579862 DOI: 10.3389/fimmu.2019.01317] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 01/19/2023] Open
Abstract
Bacillus Calmette Guérin (BCG) is the only currently available vaccine against tuberculosis (TB), but it confers incomplete and variable protection against pulmonary TB in humans and bovine TB (bTB) in cattle. Insights into the immune response induced by BCG offer an underexploited opportunity to gain knowledge that may inform the design of a more efficacious vaccine, which is urgently needed to control these major global epidemics. Humoral immunity in TB and bTB has been neglected, but recent studies supporting a role for antibodies in protection against TB has driven a growing interest in determining their relevance to vaccine development. In this manuscript we review what is known about the humoral immune response to BCG vaccination and re-vaccination across species, including evidence for the induction of specific B cells and antibodies; and how these may relate to protection from TB or bTB. We discuss potential explanations for often conflicting findings and consider how factors such as BCG strain, manufacturing methodology and route of administration influence the humoral response. As novel vaccination strategies include BCG prime-boost regimens, the literature regarding off-target immunomodulatory effects of BCG vaccination on non-specific humoral immunity is also reviewed. Overall, reported outcomes to date are inconsistent, but indicate that humoral responses are heterogeneous and may play different roles in different species, populations, or individual hosts. Further study is warranted to determine whether a new TB vaccine could benefit from the targeting of humoral as well as cell-mediated immunity.
Collapse
Affiliation(s)
- Rachel Tanner
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bernardo Villarreal-Ramos
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - H. Martin Vordermeier
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Williams GA, Koenen ME, Havenaar R, Wheeler P, Gowtage S, Lesellier S, Chambers MA. Survival of Mycobacterium bovis BCG oral vaccine during transit through a dynamic in vitro model simulating the upper gastrointestinal tract of badgers. PLoS One 2019; 14:e0214859. [PMID: 31002668 PMCID: PMC6474584 DOI: 10.1371/journal.pone.0214859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/22/2019] [Indexed: 11/19/2022] Open
Abstract
In developing an oral bait BCG vaccine against tuberculosis in badgers we wanted to understand the conditions of the gastrointestinal tract and their impact on vaccine viability. Conditions mimicking stomach and small-intestine caused substantial reduction in BCG viability. We performed in vivo experiments using a telemetric pH monitoring system and used the data to parameterise a dynamic in vitro system (TIM-1) of the stomach and small intestine. Some BCG died in the stomach compartment and through the duodenum and jejunum compartments. BCG survival in the stomach was greatest when bait was absent but by the time BCG reached the jejunum, BCG viability was not significantly affected by the presence of bait. Our data suggest that from a starting quantity of 2.85 ± 0.45 x 108 colony-forming units of BCG around 2 log10 may be killed before delivery to the intestinal lymphoid tissue. There are economic arguments for reducing the dose of BCG to vaccinate badgers orally. Our findings imply this could be achieved if we can protect BCG from the harsh environment of the stomach and duodenum. TIM-1 is a valuable, non-animal model with which to evaluate and optimise formulations to maximise BCG survival in the gastrointestinal tract.
Collapse
Affiliation(s)
- Gareth A. Williams
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, United Kingdom
| | - Marjorie E. Koenen
- Earth, Environmental and Life Sciences, Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Robert Havenaar
- Earth, Environmental and Life Sciences, Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Paul Wheeler
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, United Kingdom
| | - Sonya Gowtage
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, United Kingdom
| | - Sandrine Lesellier
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, United Kingdom
| | - Mark A. Chambers
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, United Kingdom
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Sathkumara HD, Pai S, Aceves-Sánchez MDJ, Ketheesan N, Flores-Valdez MA, Kupz A. BCG Vaccination Prevents Reactivation of Latent Lymphatic Murine Tuberculosis Independently of CD4 + T Cells. Front Immunol 2019; 10:532. [PMID: 30949177 PMCID: PMC6437071 DOI: 10.3389/fimmu.2019.00532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is a major global public health problem causing significant mortality and morbidity. In addition to ~10.4 million cases of active TB annually, it is estimated that about two billion people are latently infected with Mycobacterium tuberculosis (Mtb), the causative agent of TB. Reactivation of latent Mtb infection is the leading cause of death in patients with immunodeficiency virus (HIV) infection. The low efficiency of the only licensed anti-TB vaccine, Bacille Calmette–Guérin (BCG) to reduce pulmonary TB in adults contributes to this problem. Here we investigated if vaccination with conventional BCG or the genetically modified experimental BCGΔBCG1419c strain can prevent reactivation of latent lymphatic TB in a mouse model of induced reactivation, following the depletion of CD4+ T cells, as it occurs in HIV+ individuals. Vaccination with conventional BCG or BCGΔBCG1419c prevented reactivation of Mtb from the infected lymph node and the systemic spread of Mtb to spleen and lung. Prevention of reactivation was independent of vaccination route and was accompanied by reduced levels of circulating inflammatory cytokines and the absence of lung pathology. Our results demonstrate that vaccine-induced CD4+ T cells are not essential to prevent reactivation of latent lymphatic murine TB, and highlight the need to better understand how non-CD4+ immune cell populations participate in protective immune responses to control latent TB.
Collapse
Affiliation(s)
- Harindra D Sathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| | - Saparna Pai
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| | - Michel de Jesús Aceves-Sánchez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Biotecnología Médica y Farmacéutica, Guadalajara, Mexico
| | - Natkunam Ketheesan
- Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mario Alberto Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Biotecnología Médica y Farmacéutica, Guadalajara, Mexico
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD, Australia
| |
Collapse
|
19
|
Hoft DF, Xia M, Zhang GL, Blazevic A, Tennant J, Kaplan C, Matuschak G, Dube TJ, Hill H, Schlesinger LS, Andersen PL, Brusic V. PO and ID BCG vaccination in humans induce distinct mucosal and systemic immune responses and CD4 + T cell transcriptomal molecular signatures. Mucosal Immunol 2018; 11:486-495. [PMID: 28853442 PMCID: PMC5832504 DOI: 10.1038/mi.2017.67] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Protective efficacy of Bacillus Calmette-Guérin (BCG) may be affected by the methods and routes of vaccine administration. We have studied the safety and immunogenicity of oral (PO) and/or intradermal (ID) administration of BCG in healthy human subjects. No major safety concerns were detected in the 68 healthy adults vaccinated with PO and/or ID BCG. Although both PO and ID BCG could induce systemic Th1 responses capable of IFN-γ production, ID BCG more strongly induced systemic Th1 responses. In contrast, stronger mucosal responses (TB-specific secretory IgA and bronchoalveolar lavage T cells) were induced by PO BCG vaccination. To generate preliminary data comparing the early gene signatures induced by mucosal and systemic BCG vaccination, CD4+ memory T cells were isolated from subsets of BCG vaccinated subjects pre- (Day 0) and post-vaccination (Days 7 and 56), rested or stimulated with BCG infected dendritic cells, and then studied by Illumina BeadArray transcriptomal analysis. Notably, distinct gene expression profiles were identified both on Day 7 and Day 56 comparing the PO and ID BCG vaccinated groups by GSEA analysis. Future correlation analyses between specific gene expression patterns and distinct mucosal and systemic immune responses induced will be highly informative for TB vaccine development.
Collapse
Affiliation(s)
- D F Hoft
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University, Saint Louis, MO, USA
- Department of Molecular Microbiology & Immunology, Saint Louis University, Saint Louis, MO, USA
| | - M Xia
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University, Saint Louis, MO, USA
| | - G L Zhang
- Computer Science Department, Metropolitan College, Boston University, Boston, MA, USA
| | - A Blazevic
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University, Saint Louis, MO, USA
| | - J Tennant
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University, Saint Louis, MO, USA
| | - C Kaplan
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, USA
| | - G Matuschak
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, USA
| | - T J Dube
- Emmes Corporation, Rockville Pike, Maryland, USA
| | - H Hill
- Emmes Corporation, Rockville Pike, Maryland, USA
| | - L S Schlesinger
- Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio, USA
| | | | - V Brusic
- Computer Science Department, Metropolitan College, Boston University, Boston, MA, USA
- School of Medicine and Bioinformatics Center, Nazarbayev University, Astana, Khazakstan
| |
Collapse
|
20
|
Kowalewicz-Kulbat M, Locht C. BCG and protection against inflammatory and auto-immune diseases. Expert Rev Vaccines 2017; 16:1-10. [PMID: 28532186 DOI: 10.1080/14760584.2017.1333906] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Bacillus Calmette-Guérin (BCG) is the only available vaccine against tuberculosis. Although its protective efficacy against pulmonary tuberculosis is still under debate, it provides protection against other mycobacterial diseases. BCG is also an effective therapy against superficial bladder cancer and potentially decreases overall childhood mortality. Areas covered: The purpose of this paper is to provide a state-of-the-art summary of the beneficial effects of BCG in inflammatory and auto-immune diseases. As a strong inducer of Th1 type immunity, BCG has been reported to protect against atopic conditions, such as allergic asthma, a Th2-driven disorder. Its protective effect has been well documented in mice, but still awaits definitive evidence in humans. Similarly, murine studies have shown a protective effect of BCG against auto-immune diseases, such as multiple sclerosis and insulin-dependent diabetes, but studies in humans have come to conflicting conclusions. Expert commentary: Studies in mice have shown a beneficial effect of the BCG vaccine against allergic asthma, multiple sclerosis and diabetes. However, the understanding of its mechanism is still fragmentary and requires further in depth research. Some observational or intervention studies in humans have also suggested a beneficial effect, but definitive evidence for this requires confirmation in carefully conducted prospective studies.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- a Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology , University of Lodz , Lodz , Poland
| | - Camille Locht
- a Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology , University of Lodz , Lodz , Poland.,b Center for Infection and Immunity of Lille , Institut Pasteur de Lille , Lille , France.,c Center for Infection and Immunity of Lille , Inserm U1019 , Lille , France.,d Center for Infection and Immunity of Lille , CNRS UMR 8204 , Lille , France.,e Center for Infection and Immunity of Lille , Université Lille Nord de France , Lille , France
| |
Collapse
|
21
|
Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis. mBio 2016; 7:mBio.01686-16. [PMID: 27879332 PMCID: PMC5120139 DOI: 10.1128/mbio.01686-16] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4+ T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8+ T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. IMPORTANCE BCG remains the only licensed vaccine against TB. Parenterally administered BCG has variable efficacy against pulmonary TB, and thus, improved prevention strategies and a more refined understanding of correlates of vaccine protection are required. Induction of memory T cells has been shown to be essential for protective TB vaccines. Mimicking the natural infection route by mucosal vaccination has been known to generate superior protection against TB in animal models; however, the mechanisms of protection have remained elusive. Here we performed an in-depth analysis to dissect the immunological mechanisms associated with superior mucosal protection in the mouse model of TB. We found that mucosal, and not subcutaneous, BCG vaccination generates lung-resident memory T cell populations that confer protection against pulmonary TB. We establish a comprehensive phenotypic characterization of these populations, providing a framework for future vaccine development.
Collapse
|