1
|
Alkhars N, Gaca A, Zeng Y, Al-Jallad N, Rustchenko E, Wu TT, Eliav E, Xiao J. Antifungal Susceptibility of Oral Candida Isolates from Mother-Infant Dyads to Nystatin, Fluconazole, and Caspofungin. J Fungi (Basel) 2023; 9:580. [PMID: 37233291 PMCID: PMC10219145 DOI: 10.3390/jof9050580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
The carriage of Candida albicans in children's oral cavities is associated with a higher risk for early childhood caries, so controlling this fungus in early life is essential for preventing caries. In a prospective cohort of 41 mothers and their children from 0 to 2 years of age, this study addressed four main objectives: (1) Evaluate in vitro the antifungal agent susceptibility of oral Candida isolates from the mother-child cohort; (2) compare Candida susceptibility between isolates from the mothers and children; (3) assess longitudinal changes in the susceptibility of the isolates collected between 0 and 2 years; and (4) detect mutations in C. albicans antifungal resistance genes. Susceptibility to antifungal medications was tested by in vitro broth microdilution and expressed as the minimal inhibitory concentration (MIC). C. albicans clinical isolates were sequenced by whole genome sequencing, and the genes related to antifungal resistance, ERG3, ERG11, CDR1, CDR2, MDR1, and FKS1, were assessed. Four Candida spp. (n = 126) were isolated: C. albicans, C. parapsilosis, C. dubliniensis, and C. lusitaniae. Caspofungin was the most active drug for oral Candida, followed by fluconazole and nystatin. Two missense mutations in the CDR2 gene were shared among C. albicans isolates resistant to nystatin. Most of the children's C. albicans isolates had MIC values similar to those from their mothers, and 70% remained stable on antifungal medications from 0 to 2 years. For caspofungin, 29% of the children's isolates showed an increase in MIC values from 0 to 2 years. Results of the longitudinal cohort indicated that clinically used oral nystatin was ineffective in reducing the carriage of C. albicans in children; novel antifungal regimens in infants are needed for better oral yeast control.
Collapse
Affiliation(s)
- Naemah Alkhars
- Department of General Dental Practice, College of Dentistry, Health Science Center, Kuwait University, Safat 13110, Kuwait;
- Translational Biomedical Science Program, Clinical and Translational Science Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Anthony Gaca
- Genomic Research Center, University of Rochester, Rochester, NY 14642, USA;
| | - Yan Zeng
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14620, USA (N.A.-J.)
| | - Nisreen Al-Jallad
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14620, USA (N.A.-J.)
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Eli Eliav
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14620, USA (N.A.-J.)
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14620, USA (N.A.-J.)
| |
Collapse
|
2
|
Bernardo WLDC, Boriollo MFG, Tonon CC, da Silva JJ, Oliveira MC, de Moraes FC, Spolidorio DMP. Biosynthesis of silver nanoparticles from Syzygium cumini leaves and their potential effects on odontogenic pathogens and biofilms. Front Microbiol 2022; 13:995521. [PMID: 36246249 PMCID: PMC9556836 DOI: 10.3389/fmicb.2022.995521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
This study analyzed the antimicrobial and antibiofilm action and cytotoxicity of extract (HEScL) and silver nanoparticles (AgNPs-HEScL) from Syzygium cumini leaves. GC–MS, UV–Vis, EDX, FEG/SEM, DLS and zeta potential assays were used to characterize the extract or nanoparticles. Antimicrobial, antibiofilm and cytotoxicity analyses were carried out by in vitro methods: agar diffusion, microdilution and normal oral keratinocytes spontaneously immortalized (NOK-SI) cell culture. MICs of planktonic cells ranged from 31.2–250 (AgNPs-HEScL) to 1,296.8–10,375 μg/ml (HEScL) for Actinomyces naeslundii, Fusobacterium nucleatum, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Streptococcus oralis, Veillonella dispar, and Candida albicans. AgNPs-HEScL showed antibiofilm effects (125–8,000 μg/ml) toward Candida albicans, Streptococcus mutans and Streptococcus oralis, and Staphylococcus aureus and Staphylococcus epidermidis. The NOK-SI exhibited no cytotoxicity when treated with 32.8 and 680.3 μg/ml of AgNPs-HEScL and HEScL, respectively, for 5 min. The data suggest potential antimicrobial and antibiofilm action of HEScL, and more specifically, AgNPs-HEScL, involving pathogens of medical and dental interest (dose-, time- and species-dependent). The cytotoxicity of HEScL and AgNPs-HEScL detected in NOK-SI was dose- and time-dependent. This study presents toxicological information about the lyophilized ethanolic extract of S. cumini leaves, including their metallic nanoparticles, and adds scientific values to incipient studies found in the literature.
Collapse
Affiliation(s)
- Wagner Luis de Carvalho Bernardo
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, Brazil
- *Correspondence: Wagner Luís de Carvalho Bernardo,
| | - Marcelo Fabiano Gomes Boriollo
- Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas, Piracicaba, Brazil
- Marcelo Fabiano Gomes Boriollo,
| | - Caroline Coradi Tonon
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, Brazil
| | - Jeferson Júnior da Silva
- Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas, Piracicaba, Brazil
| | - Mateus Cardoso Oliveira
- Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas, Piracicaba, Brazil
| | | | | |
Collapse
|
3
|
Shariati A, Didehdar M, Razavi S, Heidary M, Soroush F, Chegini Z. Natural Compounds: A Hopeful Promise as an Antibiofilm Agent Against Candida Species. Front Pharmacol 2022; 13:917787. [PMID: 35899117 PMCID: PMC9309813 DOI: 10.3389/fphar.2022.917787] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The biofilm communities of Candida are resistant to various antifungal treatments. The ability of Candida to form biofilms on abiotic and biotic surfaces is considered one of the most important virulence factors of these fungi. Extracellular DNA and exopolysaccharides can lower the antifungal penetration to the deeper layers of the biofilms, which is a serious concern supported by the emergence of azole-resistant isolates and Candida strains with decreased antifungal susceptibility. Since the biofilms' resistance to common antifungal drugs has become more widespread in recent years, more investigations should be performed to develop novel, inexpensive, non-toxic, and effective treatment approaches for controlling biofilm-associated infections. Scientists have used various natural compounds for inhibiting and degrading Candida biofilms. Curcumin, cinnamaldehyde, eugenol, carvacrol, thymol, terpinen-4-ol, linalool, geraniol, cineole, saponin, camphor, borneol, camphene, carnosol, citronellol, coumarin, epigallocatechin gallate, eucalyptol, limonene, menthol, piperine, saponin, α-terpineol, β-pinene, and citral are the major natural compounds that have been used widely for the inhibition and destruction of Candida biofilms. These compounds suppress not only fungal adhesion and biofilm formation but also destroy mature biofilm communities of Candida. Additionally, these natural compounds interact with various cellular processes of Candida, such as ABC-transported mediated drug transport, cell cycle progression, mitochondrial activity, and ergosterol, chitin, and glucan biosynthesis. The use of various drug delivery platforms can enhance the antibiofilm efficacy of natural compounds. Therefore, these drug delivery platforms should be considered as potential candidates for coating catheters and other medical material surfaces. A future goal will be to develop natural compounds as antibiofilm agents that can be used to treat infections by multi-drug-resistant Candida biofilms. Since exact interactions of natural compounds and biofilm structures have not been elucidated, further in vitro toxicology and animal experiments are required. In this article, we have discussed various aspects of natural compound usage for inhibition and destruction of Candida biofilms, along with the methods and procedures that have been used for improving the efficacy of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Soroush
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Baldino MEL, Medina-Silva R, Sumienski J, Figueiredo MA, Salum FG, Cherubini K. Nystatin effect on chlorhexidine efficacy against Streptococcus mutans as planktonic cells and mixed biofilm with Candida albicans. Clin Oral Investig 2021; 26:633-642. [PMID: 34160701 PMCID: PMC8219785 DOI: 10.1007/s00784-021-04041-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/17/2021] [Indexed: 01/23/2023]
Abstract
Objective The aim of this study was to evaluate the effect of nystatin on the efficacy of chlorhexidine against Streptococcus mutans in planktonic cells and mixed biofilm with Candida albicans. Material and methods S. mutans ATCC 25,175 in suspension and also combined with C. albicans ATCC 18,804 in biofilm were cultured. Minimum inhibitory concentration (MIC), crystal violet colorimetric assay, and colony-forming unit counting (CFUs/mL) were performed. Results An increased MIC of chlorhexidine against S. mutans was observed when the drugs were administered mixed in a single formulation and with time intervals in between, except for the 30-min interval. The biofilm optical density (OD) in treatments using chlorhexidine and nystatin combined did not significantly differ from chlorhexidine alone. Either in biofilm colorimetric assay or determination of CFUs, the combined treatments with nystatin administered before chlorhexidine had less effect on chlorhexidine efficacy. Conclusions Nystatin interferes with the action of chlorhexidine against S. mutans. The antimicrobial effectiveness of the combined drugs depends on their concentration, time interval used, and the planktonic or biofilm behavior of the microorganisms. Clinical relevance In view of the great number of patients that can receive a prescription of chlorhexidine and nystatin concomitantly, this study contributes to the knowledge about the effect of the combined drugs. Given the high prevalence of prescriptions of chlorhexidine and nystatin in dentistry, dental professionals should be aware of their possible antagonistic effect.
Collapse
Affiliation(s)
- Maria Eduarda Lanes Baldino
- Post-Graduate Program, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Renata Medina-Silva
- Laboratory of Immunology and Microbiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Juliana Sumienski
- Laboratory of Immunology and Microbiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Maria Antonia Figueiredo
- Post-Graduate Program, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Gonçalves Salum
- Post-Graduate Program, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Karen Cherubini
- Post-Graduate Program, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Serviço de Estomatologia - Hospital São Lucas, PUCRS, Av. Ipiranga, 6690 Sala 231, Porto Alegre, RS, CEP 90610-000, Brazil.
| |
Collapse
|
5
|
Francisconi RS, Maquera-Huacho PM, Tonon CC, Calixto GMF, de Cássia Orlandi Sardi J, Chorilli M, Spolidorio DMP. Terpinen-4-ol and nystatin co-loaded precursor of liquid crystalline system for topical treatment of oral candidiasis. Sci Rep 2020; 10:12984. [PMID: 32737401 PMCID: PMC7395782 DOI: 10.1038/s41598-020-70085-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
This study was performed to develop a liquid crystalline system (LCS) incorporated with terpinen-4-ol and nystatin to evaluate its antifungal, antibiofilm, and synergistic/modulatory activity against Candida albicans. The LCS was composed of a dispersion containing 40% propoxylated and ethoxylated cetyl alcohol, 40% oleic acid, and 0.5% chitosan dispersion. According to analysis by polarized light microscopy, rheology, and mucoadhesion studies, the incorporation of 100% artificial saliva increased the pseudoplasticity, consistency index, viscosity, and mucoadhesion of the formulation. The minimum inhibitory concentration, minimum fungicidal concentration, and rate of biofilm development were used to evaluate antifungal activity; the LCS containing terpinen-4-ol and nystatin effectively inhibited C. albicans growth at a lower concentration, displaying a synergistic action. Therefore, LCS incorporated with terpinen-4-ol and nystatin is a promising alternative for preventing and treating infections and shows potential for the development of therapeutic strategies against candidiasis.
Collapse
Affiliation(s)
- Renata Serignoli Francisconi
- Department of Physiology and Pathology, School of Dentistry of Araraquara, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | - Patricia Milagros Maquera-Huacho
- Department of Physiology and Pathology, School of Dentistry of Araraquara, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | - Caroline Coradi Tonon
- Department of Physiology and Pathology, School of Dentistry of Araraquara, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | | | | | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical of Araraquara, UNESP, Araraquara, SP, Brazil
| | | |
Collapse
|
6
|
Corrêa JL, Veiga FF, Jarros IC, Costa MI, Castilho PF, de Oliveira KMP, Rosseto HC, Bruschi ML, Svidzinski TIE, Negri M. Propolis extract has bioactivity on the wall and cell membrane of Candida albicans. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112791. [PMID: 32234352 DOI: 10.1016/j.jep.2020.112791] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of natural products such as propolis extract (PE) is a promising alternative when topically administered to replace conventional antifungals, mostly due to its therapeutic applications, ease of access and low toxicity. However, despite being the subject of several mycology studies, they focus primarily on exploiting their antimicrobial activity, lacking information on the mechanisms of action of PE on Candida spp., characterizing its antifungal potential. AIM OF THE STUDY To elucidate the bioactivity of PE on the cellular structure of Candida albicans. MATERIALS AND METHODS A total of seven C. albicans clinical isolates plus a reference strain of C. albicans ATCC 90028 were used in this study. The PE was characterized and its effect on C. albicans was determined by susceptibility and growth kinetics assays; interference on C. albicans germination and filamentation; evaluation of the integrity of the C. albicans cell wall and membrane, as well as its mutagenic potential. RESULTS The PE presented strong inhibitory activity, which showed its greatest antifungal activity at 12 h with dose and time dependent fungistatic characteristics, effectively inhibiting and interfering on C. albicans filamentation. In addition, PE caused membrane and cell wall damage with intracellular content extravasation. Moreover, PE was not mutagenic. CONCLUSIONS The bioactivity of PE is mainly related to the loss of integrity membrane as well as the integrity of the cell wall and consequent increase in permeability, without mutagenic effects.
Collapse
Affiliation(s)
- Jakeline L Corrêa
- Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maringá, Colombo Avenue, 5790, Maringá, PR, Brazil; Graduate Program in Health Sciences, State University of Maringá, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Flavia F Veiga
- Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maringá, Colombo Avenue, 5790, Maringá, PR, Brazil; Graduate Program in Health Sciences, State University of Maringá, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Isabele C Jarros
- Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maringá, Colombo Avenue, 5790, Maringá, PR, Brazil; Graduate Program in Health Sciences, State University of Maringá, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Maiara Ignacio Costa
- Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maringá, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Pamella F Castilho
- Applied Microbiology Laboratory, Faculty of Health Sciences, Federal University of Grande Dourados, Street João Rosa Góes, 1761, Dourados, MS, Brazil
| | - Kelly Mari P de Oliveira
- Applied Microbiology Laboratory, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Street João Rosa Góes, 1761, Dourados, MS, Brazil
| | - Hélen Cássia Rosseto
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Marcos L Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Terezinha I E Svidzinski
- Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maringá, Colombo Avenue, 5790, Maringá, PR, Brazil; Graduate Program in Health Sciences, State University of Maringá, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Melyssa Negri
- Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maringá, Colombo Avenue, 5790, Maringá, PR, Brazil; Graduate Program in Health Sciences, State University of Maringá, Colombo Avenue, 5790, Maringá, PR, Brazil.
| |
Collapse
|
7
|
Francisconi RS, Huacho PMM, Tonon CC, Bordini EAF, Correia MF, Sardi JDCO, Spolidorio DMP. Antibiofilm efficacy of tea tree oil and of its main component terpinen-4-ol against Candida albicans. Braz Oral Res 2020; 34:e050. [PMID: 32578760 DOI: 10.1590/1807-3107bor-2020.vol34.0050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
Candida infection is an important cause of morbidity and mortality in immunocompromised patients. The increase in its incidence has been associated with resistance to antimicrobial therapy and biofilm formation. The aim of this study was to evaluate the efficacy of tea tree oil (TTO) and its main component - terpinen-4-ol - against resistant Candida albicans strains (genotypes A and B) identified by molecular typing and against C. albicans ATCC 90028 and SC 5314 reference strains in planktonic and biofilm cultures. The minimum inhibitory concentration, minimum fungicidal concentration, and rate of biofilm development were used to evaluate antifungal activity. Results were obtained from analysis of the biofilm using the cell proliferation assay 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and confocal laser scanning microscopy (CLSM). Terpinen-4-ol and TTO inhibited C. albicans growth. CLSM confirmed that 17.92 mg/mL of TTO and 8.86 mg/mL of terpinen-4-ol applied for 60 s (rinse simulation) interfered with biofilm formation. Hence, this in vitro study revealed that natural substances such as TTO and terpinen-4-ol present promising results for the treatment of oral candidiasis.
Collapse
Affiliation(s)
- Renata Serignoli Francisconi
- Universidade Estadual Paulista - Unesp, School of Dentistry of Araraquara, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | - Patricia Milagros Maquera Huacho
- Universidade Estadual Paulista - Unesp, School of Dentistry of Araraquara, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | - Caroline Coradi Tonon
- Universidade Estadual Paulista - Unesp, School of Dentistry of Araraquara, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | - Ester Alves Ferreira Bordini
- Universidade Estadual Paulista - Unesp, School of Dentistry of Araraquara, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | - Marília Ferreira Correia
- Universidade Estadual Paulista - Unesp, School of Dentistry of Araraquara, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | - Janaína de Cássia Orlandi Sardi
- Universidade Estadual de Campinas - Unicamp, School of Dentistry of Piracicaba, Department of Physiological Sciences, Piracicaba, SP, Brazil
| | | |
Collapse
|
8
|
Brilhante RS, Pereira VS, Oliveira JS, Rodrigues AM, de Camargo ZP, Pereira-Neto WA, Nascimento NR, Castelo-Branco DS, Cordeiro RA, Sidrim JJ, Rocha MF. Terpinen-4-ol inhibits the growth of Sporothrix schenckii complex and exhibits synergism with antifungal agents. Future Microbiol 2020; 14:1221-1233. [PMID: 31625442 DOI: 10.2217/fmb-2019-0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: This study investigated the effect of terpinen-4-ol against Sporothrix schenckii complex and its interactions with antifungals. Materials & methods: The antifungal activity of terpinen-4-ol was evaluated by broth microdilution. The potential effect on cellular ergosterol concentration was evaluated by spectrophotometry. The antibiofilm activity was evaluated by violet crystal staining and XTT reduction assay. The potential pharmacological interactions with antifungals were evaluated by the checkerboard assay. Results: terpinen-4-ol (T-OH) showed minimal inhibitory concentrations ranging from 4 to 32 mg/l decreasing cellular ergosterol content and presented a SMIC ranging from 64 to 1024 mg/l for Sporothrix spp. The combinations of T-OH with itraconazole or terbinafine were synergistic. Conclusion: T-OH has antifungal activity against Sporothrix spp. and acts synergistically with standard antifungals.
Collapse
Affiliation(s)
- Raimunda Sn Brilhante
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Vandbergue S Pereira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Jonathas S Oliveira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Anderson M Rodrigues
- Cellular Biology Division, Department of Microbiology, Immunology & Parasitology, Federal University of São Paulo, Rua Botucatu, 862, 6th floor, Medical Sciences Building, CEP: 04023-062, São Paulo, São Paulo, Brazil
| | - Zoilo P de Camargo
- Cellular Biology Division, Department of Microbiology, Immunology & Parasitology, Federal University of São Paulo, Rua Botucatu, 862, 6th floor, Medical Sciences Building, CEP: 04023-062, São Paulo, São Paulo, Brazil
| | - Waldemiro A Pereira-Neto
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Nilberto Rf Nascimento
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará. Av. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714-903, Fortaleza, Ceará, Brazil
| | - Débora Scm Castelo-Branco
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Rossana A Cordeiro
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - José Jc Sidrim
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos Fg Rocha
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology & Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil.,Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará. Av. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714-903, Fortaleza, Ceará, Brazil
| |
Collapse
|