1
|
Nie J, Qin X, Tao X, Huang J. Exploring the molecular landscape of lymphocyte activation gene-3: A literature review. Medicine (Baltimore) 2024; 103:e39622. [PMID: 39331884 PMCID: PMC11441911 DOI: 10.1097/md.0000000000039622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/16/2024] [Indexed: 09/29/2024] Open
Abstract
Molecular structure and cellular distribution of lymphocyte activation gene-3 (LAG-3) have been studied extensively since 1990. However, several unresolved questions remain. It is well-established that LAG-3 plays a significant role in maintaining immune homeostasis. The presence of deficiencies in LAG-3 has been observed to be linked with autoimmune disorders, whereas the excessive expression of LAG-3 within the tumor microenvironment hinders immune responses, particularly those mediated by lymphocytes, thereby facilitating immune evasion. Consequently, investigations into these 2 aspects have become a prominent focus in both fundamental and clinical research. The objective of this review is to examine the functions and molecular characteristics of LAG-3, as well as its current clinical applications in the context of tumor immune escape and autoimmune disease. The ultimate aim is to explore and propose novel immune therapy approach.
Collapse
Affiliation(s)
- Jiaqi Nie
- Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Qin
- Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Tao
- Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Huang
- Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Zhang Q, Yang C, Gao X, Dong J, Zhong C. Phytochemicals in regulating PD-1/PD-L1 and immune checkpoint blockade therapy. Phytother Res 2024; 38:776-796. [PMID: 38050789 DOI: 10.1002/ptr.8082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
Clinical treatment and preclinical studies have highlighted the role of immune checkpoint blockade in cancer treatment. Research has been devoted to developing immune checkpoint inhibitors in combination with other drugs to achieve better efficacy or reduce adverse effects. Phytochemicals sourced from vegetables and fruits have demonstrated antiproliferative, proapoptotic, anti-migratory, and antiangiogenic effects against several cancers. Phytochemicals also modulate the tumor microenvironment such as T cells, regulatory T cells, and cytokines. Recently, several phytochemicals have been reported to modulate immune checkpoint proteins in in vivo or in vitro models. Phytochemicals decreased programmed cell death ligand-1 expression and synergized programmed cell death receptor 1 (PD-1) monoclonal antibody to suppress tumor growth. Combined administration of phytochemicals and PD-1 monoclonal antibody enhanced the tumor growth inhibition as well as CD4+ /CD8+ T-cell infiltration. In this review, we discuss immune checkpoint molecules as potential therapeutic targets of cancers. We further assess the impact of phytochemicals including carotenoids, polyphenols, saponins, and organosulfur compounds on cancer PD-1/programmed cell death ligand-1 immune checkpoint molecules and document their combination effects with immune checkpoint inhibitors on various malignancies.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenying Yang
- Yinzhou Center for Disease Control and Prevention, Ningbo, China
| | - Xingsu Gao
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ju Dong
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Zhou X, Gu Y, Wang H, Zhou W, Zou L, Li S, Hua C, Gao S. From bench to bedside: targeting lymphocyte activation gene 3 as a therapeutic strategy for autoimmune diseases. Inflamm Res 2023:10.1007/s00011-023-01742-y. [PMID: 37314518 DOI: 10.1007/s00011-023-01742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/12/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Immune checkpoints negatively regulate immune response, thereby playing an important role in maintaining immune homeostasis. Substantial studies have confirmed that blockade or deficiency of immune checkpoint pathways contributes to the deterioration of autoimmune diseases. In this context, focusing on immune checkpoints might provide alternative strategies for the treatment of autoimmunity. Lymphocyte activation gene 3 (LAG3), as a member of immune checkpoint, is critical in regulating immune responses as manifested in multiple preclinical studies and clinical trials. Recent success of dual-blockade of LAG3 and programmed death-1 in melanoma also supports the notion that LAG3 is a crucial regulator in immune tolerance. METHODS We wrote this review article by searching the PubMed, Web of Science and Google Scholar databases. CONCLUSION In this review, we summarize the molecular structure and the action mechanisms of LAG3. Additionally, we highlight its roles in diverse autoimmune diseases and discuss how the manipulation of the LAG3 pathway can serve as a promising therapeutic strategy as well as its specific mechanism with the aim of filling the gaps from bench to bedside.
Collapse
Affiliation(s)
- Xueyin Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yiming Gu
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huihong Wang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
4
|
Kozłowski M, Borzyszkowska D, Cymbaluk-Płoska A. The Role of TIM-3 and LAG-3 in the Microenvironment and Immunotherapy of Ovarian Cancer. Biomedicines 2022; 10:2826. [PMID: 36359346 PMCID: PMC9687228 DOI: 10.3390/biomedicines10112826] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 08/11/2023] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecologic malignancies. The main treatment options are surgical removal of the tumor and chemotherapy. Cancer treatment has been revolutionized by immunotherapy, which has developed explosively over the past two decades. Clinical anticancer strategies used in immunotherapy include therapies based on the inhibition of PD-1, PD-L1 or CTLA-4. Despite encouraging results, a large proportion of cancer patients are resistant to these therapies or eventually develop resistance. It is important to perform research that will focus on immunotherapy based on other immune checkpoint inhibitors. The aim of the review was to analyze studies considering the expression of TIM-3 and LAG-3 in the ovarian cancer microenvironment and considering immunotherapy for ovarian cancer that includes antibodies directed against TIM-3 and LAG-3. As the data showed, the expression of the described immune checkpoints was shown in different ways. Higher TIM-3 expression was associated with a more advanced tumor stage. Both TIM-3 and LAG-3 were co-expressed with PD-1 in a large proportion of studies. The effect of LAG-3 expression on progression-free survival and/or overall survival is inconclusive and certainly requires further study. Co-expression of immune checkpoints prompts combination therapies using anti-LAG-3 or anti-TIM-3. Research on immune checkpoints, especially TIM-3 and LAG-3, should be further developed.
Collapse
|
5
|
Assessment of galectins -1, -3, -4, -8, and -9 expression in ovarian carcinoma patients with clinical implications. World J Surg Oncol 2022; 20:276. [PMID: 36050693 PMCID: PMC9434928 DOI: 10.1186/s12957-022-02738-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
Background and aim Galectins have been recently tackled by many researchers in the field of cancer due to their role in tumorigenesis, disease progression, and metastasis. Thus, they are currently involved in biomarkers research on several types of cancer. In ovarian cancers, few studies were carried out to evaluate galectins expression profiling. Hence, our present study was executed to evaluate the mRNA expression of galectins -1, -3, -4, -8, and -9 in epithelial ovarian cancers. Methods Fifty-six tumor samples of ovarian carcinomas were analyzed for mRNA expression using qRT-PCR, and fold-changes were calculated in comparison to tissue samples of 26 women with normal ovaries. Results The results of the present paper emphasize the importance of galectins as predictors for targeted therapy. LGALS1, LGALS3, LGALS4, LGALS8, and LGALS9 were found to be mostly overexpressed in ovarian carcinoma patients with the following percentage: 78.6%, 92.9%, 66.1%, 87.5%, and 85.7% respectively. Moreover, galectins -3 and -9 were found to be significantly elevated with lymph node metastasis (p = 0.044 and p = 0.011). Also, upregulation of galectin-1 and -9 were statistically significant in stages IIB, IIC, and IIIB (p = 0.002) in FIGO staging. CA19.9 is positively correlated to galectin-4 expression (p = 0.039). Conclusion Our findings strengthen the role of galectins in carcinogenesis, disease progression, and lymphnode metastasis in ovarian carcinomas. And since these galectins are mostly overexpressed, they could be promising markers for targeted therapy to reduce disease progression and metastasis process. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02738-4.
Collapse
|
6
|
Chocarro L, Bocanegra A, Blanco E, Fernández-Rubio L, Arasanz H, Echaide M, Garnica M, Ramos P, Piñeiro-Hermida S, Vera R, Escors D, Kochan G. Cutting-Edge: Preclinical and Clinical Development of the First Approved Lag-3 Inhibitor. Cells 2022; 11:2351. [PMID: 35954196 PMCID: PMC9367598 DOI: 10.3390/cells11152351] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized medical practice in oncology since the FDA approval of the first ICI 11 years ago. In light of this, Lymphocyte-Activation Gene 3 (LAG-3) is one of the most important next-generation immune checkpoint molecules, playing a similar role as Programmed cell Death protein 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4). 19 LAG-3 targeting molecules are being evaluated at 108 clinical trials which are demonstrating positive results, including promising bispecific molecules targeting LAG-3 simultaneously with other ICIs. Recently, a new dual anti-PD-1 (Nivolumab) and anti-LAG-3 (Relatimab) treatment developed by Bristol Myers Squibb (Opdualag), was approved by the Food and Drug Administration (FDA) as the first LAG-3 blocking antibody combination for unresectable or metastatic melanoma. This novel immunotherapy combination more than doubled median progression-free survival (PFS) when compared to nivolumab monotherapy (10.1 months versus 4.6 months). Here, we analyze the large clinical trial responsible for this historical approval (RELATIVITY-047), and discuss the preclinical and clinical developments that led to its jump into clinical practice. We will also summarize results achieved by other LAG-3 targeting molecules with promising anti-tumor activities currently under clinical development in phases I, I/II, II, and III. Opdualag will boost the entry of more LAG-3 targeting molecules into clinical practice, supporting the accumulating evidence highlighting the pivotal role of LAG-3 in cancer.
Collapse
Affiliation(s)
- Luisa Chocarro
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ana Bocanegra
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ester Blanco
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), 31001 Pamplona, Spain
| | - Leticia Fernández-Rubio
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Hugo Arasanz
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain;
| | - Miriam Echaide
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Maider Garnica
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Pablo Ramos
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Ruth Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain;
| | - David Escors
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| | - Grazyna Kochan
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31001 Pamplona, Spain; (E.B.); (L.F.-R.); (H.A.); (M.E.); (M.G.); (P.R.); (S.P.-H.); (D.E.); (G.K.)
| |
Collapse
|
7
|
Barik GK, Sahay O, Paul D, Santra MK. Ezrin gone rogue in cancer progression and metastasis: An enticing therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188753. [PMID: 35752404 DOI: 10.1016/j.bbcan.2022.188753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is the primary cause of morbidity and mortality in cancer as it remains the most complicated, devastating, and enigmatic aspect of cancer. Several decades of extensive research have identified several key players closely associated with metastasis. Among these players, cytoskeletal linker Ezrin (the founding member of the ERM (Ezrin-Radixin-Moesin) family) was identified as a critical promoter of metastasis in pediatric cancers in the early 21st century. Ezrin was discovered 40 years ago as a aminor component of intestinal epithelial microvillus core protein, which is enriched in actin-containing cell surface structures. It controls gastric acid secretion and plays diverse physiological roles including maintaining cell polarity, regulating cell adhesion, cell motility and morphogenesis. Extensive research for more than two decades evinces that Ezrin is frequently dysregulated in several human cancers. Overexpression, altered subcellular localization and/or aberrant activation of Ezrin are closely associated with higher metastatic incidence and patient mortality, thereby justifying Ezrin as a valuable prognostic biomarker in cancer. Ezrin plays multifaceted role in multiple aspects of cancer, with its significant contribution in the complex metastatic cascade, through reorganizing the cytoskeleton and deregulating various cellular signaling pathways. Current preclinical studies using genetic and/or pharmacological approaches reveal that inactivation of Ezrin results in significant inhibition of Ezrin-mediated tumor growth and metastasis as well as increase in the sensitivity of cancer cells to various chemotherapeutic drugs. In this review, we discuss the recent advances illuminating the molecular mechanisms responsible for Ezrin dysregulation in cancer and its pleiotropic role in cancer progression and metastasis. We also highlight its potential as a prognostic biomarker and therapeutic target in various cancers. More importantly, we put forward some potential questions, which we strongly believe, will stimulate both basic and translational research to better understand Ezrin-mediated malignancy, ultimately leading to the development of Ezrin-targeted cancer therapy for the betterment of human life.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Centre for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
8
|
Chocarro L, Blanco E, Arasanz H, Fernández-Rubio L, Bocanegra A, Echaide M, Garnica M, Ramos P, Fernández-Hinojal G, Vera R, Kochan G, Escors D. Clinical landscape of LAG-3-targeted therapy. IMMUNO-ONCOLOGY TECHNOLOGY 2022; 14:100079. [PMID: 35755891 PMCID: PMC9216443 DOI: 10.1016/j.iotech.2022.100079] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lymphocyte-activated gene 3 (LAG-3) is a cell surface inhibitory receptor and a key regulator of immune homeostasis with multiple biological activities related to T-cell functions. LAG-3 is considered a next-generation immune checkpoint of clinical importance, right next to programmed cell death protein 1 (PD-1) and cytotoxic T-cell lymphocyte antigen-4 (CTLA-4). Indeed, it is the third inhibitory receptor to be exploited in human anticancer immunotherapies. Several LAG-3-antagonistic immunotherapies are being evaluated at various stages of preclinical and clinical development. In addition, combination therapies blocking LAG-3 together with other immune checkpoints are also being evaluated at preclinical and clinical levels. Indeed, the co-blockade of LAG-3 with PD-1 is demonstrating encouraging results. A new generation of bispecific PD-1/LAG-3-blocking agents have also shown strong capacities to specifically target PD-1+ LAG-3+ highly dysfunctional T cells and enhance their proliferation and effector activities. Here we identify and classify preclinical and clinical trials conducted involving LAG-3 as a target through an extensive bibliographic research. The current understanding of LAG-3 clinical applications is summarized, and most of the publically available data up to date regarding LAG-3-targeted therapy preclinical and clinical research and development are reviewed and discussed.
Collapse
Affiliation(s)
- L. Chocarro
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - E. Blanco
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - H. Arasanz
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - L. Fernández-Rubio
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A. Bocanegra
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - M. Echaide
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - M. Garnica
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - P. Ramos
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - G. Fernández-Hinojal
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - R. Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - G. Kochan
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - D. Escors
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
9
|
Chetry M, Bhandari A, Feng R, Song X, Wang P, Lin J. Overexpression of galectin2 (LGALS2) predicts a better prognosis in human breast cancer. Am J Transl Res 2022; 14:2301-2316. [PMID: 35559406 PMCID: PMC9091085 DOI: pmid/35559406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Galectins (LGALS) are a family of carbohydrate-binding proteins, and LGALS family members have shown prognostic roles in various types of cancers. However, the prognostic significance of some LGALS family members has not been studied in breast malignancy. METHODS The prognostic value of LGALS family mRNA expression in breast cancer patients was investigated according to distinct clinicopathological features (including lymph node, intrinsic subtype, pathological grade, HER2, and TP53 status) using the Kaplan-Meier plotter database. Quantitative real-time polymerase chain reaction and western blotting were used to detect the mRNA and protein expression of LGALS in breast cancer and normal breast cells. The aberrant expression of specific LGALS and its correlation with breast cancer outcomes remains elusive. In the present analysis, we comprehensively explored an immunohistochemistry-based map of protein expression profiles in normal tissues, cancer, and cell lines from the widely available Human Protein Atlas (HPA) database. Immunohistochemistry was applied to evaluate the expression of LGALS between cancer and normal tissues. RESULTS Our results showed that overexpression of LGALS2 mRNA were correlated with satisfactory overall survival among all breast cancer patients. Furthermore, LGALS2 and LGALS4 expression correlated with a better overall survival (OS) in grade III breast cancer patients; LGALS2 also predicted a better OS in basal-like subtype patients, luminal B patients, HER2-overexpressing patients, TP53 mutated and wild breast cancer patients. Notably, the mRNA and protein expression levels of LGALS2 were decreased in cancer cells compared with normal cells (P<0.05). Furthermore, LGALS2 expression in immunostaining score was lower in cancer tissues than in normal tissues (P<0.005). CONCLUSION In conclusion, LGALS2 has potential as a valuable biomarker for envisaging a satisfactory prognosis in patients with breast tumours, particularly those with luminal and basal B types, all stages and grade III tumours.
Collapse
Affiliation(s)
- Mandika Chetry
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical College Shantou 515041, Guangdong, China
| | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Department of Breast and Thyroid Surgery, Primera HospitalMaharajgunj, Kathmandu, Nepal
| | - Ruiling Feng
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Xinming Song
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Pintian Wang
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Jing Lin
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical College Shantou 515041, Guangdong, China
| |
Collapse
|
10
|
Mielczarek-Palacz A, Kondera-Anasz Z, Smycz-Kubańska M, Englisz A, Janusz A, Królewska-Daszczyńska P, Wendlocha D. The role of galectins‑1, 3, 7, 8 and 9 as potential diagnostic and therapeutic markers in ovarian cancer (Review). Mol Med Rep 2022; 25:166. [PMID: 35293602 PMCID: PMC8941520 DOI: 10.3892/mmr.2022.12682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
The incidence of ovarian cancer is increasing, particularly throughout the highly developed countries, while this cancer type remains a major diagnostic and therapeutic challenge. The currently poorly recognized lectins called galectins have various roles in interactions occurring in the tumor microenvironment. Galectins are involved in tumor-associated processes, including the promotion of growth, adhesion, angiogenesis and survival of tumor cells. Results of research studies performed so far point to a complex role of galectins-1, 3, −7, −8 and −9 in carcinogenesis of ovarian cancer and elucidation of the mechanisms may contribute to novel forms of therapies targeting the proteins. In particular, it appears important to recognize the reasons for changes in expression of galectins. Galectins also appear to be a useful diagnostic and prognostic tool to evaluate tumor progression or the efficacy of therapies in patients with ovarian cancer, which requires further study.
Collapse
Affiliation(s)
- Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| | - Zdzisława Kondera-Anasz
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| | - Marta Smycz-Kubańska
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| | - Aleksandra Englisz
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| | - Aleksandra Janusz
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| | - Patrycja Królewska-Daszczyńska
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| | - Dominika Wendlocha
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| |
Collapse
|
11
|
Chen H, Li H, Wang L, Li Y, Yang C. A 5-gene DNA methylation signature is a promising prognostic biomarker for early-stage cervical cancer. J OBSTET GYNAECOL 2021; 42:327-332. [PMID: 34082663 DOI: 10.1080/01443615.2021.1907563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The demographic information and overall survival (OS) of patients with cervical cancer (CC) (pathological stage: IA-IIA) were extracted from the TCGA database. A univariate and multivariate Cox proportional hazard model was performed to identify methylation markers significantly associated with the OS of patients in the training dataset. Then such a prognostic classifier was tested on the validation set and all subgroups. The Kaplan-Meier analysis and ROC analysis were performed to detect the ability to discriminate between patients with different risks and different OS. A DNA methylation signature which contained five genes was found to be significantly associated with the OS of CC patients by the Cox regression analysis in the training dataset. Such a signature could efficiently distinguish the patients into two risk groups with significantly different OS in both datasets. The receiver operating characteristic (ROC) analysis showed it had high sensitivity and specificity. Moreover, such a prognostic model also could be effectively applied to different subgroups, including groups of different ages, tumour sizes, histologic types, etc. A 5-DNA methylation signature identified by this study may act as a novel prognostic indicator for early-stage CC, and it may be helpful for the timely diagnosis and intervention of CC at pathological stages IA-IIA.Impact StatementWhat is already known on this subject? Cervical cancer (CC) is one of the most common gynaecological malignant tumours.What the results of this study add? This study constructed a risk model based on a 5-DNA methylation signature for early-stage CC patients' survival prediction.What the implications are of these findings for clinical practice and/or further research? Methylated markers have the potential to discriminate patients of different risks and different OS. Our results may shed new light on the early diagnosis and intervention, and potential therapeutic targets for CC patients at pathological stages IA-IIA.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Pathophysiology, School of Basic Medicine, Hubei University of Science and Technology, Xianning, China
| | - Hongying Li
- Maternal and Child Health Hospital of Hubei Province, Hongshan District, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Lei Wang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yaxiong Li
- Information Center of Hubei University of Science and Technology, Xianning, China
| | - ChunYan Yang
- Department of Public Health Management, School of Basic Medicine, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
12
|
Chocarro L, Blanco E, Zuazo M, Arasanz H, Bocanegra A, Fernández-Rubio L, Morente P, Fernández-Hinojal G, Echaide M, Garnica M, Ramos P, Vera R, Kochan G, Escors D. Understanding LAG-3 Signaling. Int J Mol Sci 2021; 22:ijms22105282. [PMID: 34067904 PMCID: PMC8156499 DOI: 10.3390/ijms22105282] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Lymphocyte activation gene 3 (LAG-3) is a cell surface inhibitory receptor with multiple biological activities over T cell activation and effector functions. LAG-3 plays a regulatory role in immunity and emerged some time ago as an inhibitory immune checkpoint molecule comparable to PD-1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. LAG-3 is the third inhibitory receptor to be exploited in human anti-cancer immunotherapies, and it is considered a potential next-generation cancer immunotherapy target in human therapy, right next to PD-1 and CTLA-4. Unlike PD-1 and CTLA-4, the exact mechanisms of action of LAG-3 and its relationship with other immune checkpoint molecules remain poorly understood. This is partly caused by the presence of non-conventional signaling motifs in its intracellular domain that are different from other conventional immunoregulatory signaling motifs but with similar inhibitory activities. Here we summarize the current understanding of LAG-3 signaling and its role in LAG-3 functions, from its mechanisms of action to clinical applications.
Collapse
Affiliation(s)
- Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Miren Zuazo
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, 31008 Pamplona, Navarra, Spain;
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Leticia Fernández-Rubio
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Pilar Morente
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Gonzalo Fernández-Hinojal
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, 31008 Pamplona, Navarra, Spain;
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Maider Garnica
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Pablo Ramos
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Ruth Vera
- Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, 31008 Pamplona, Navarra, Spain;
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Correspondence: (G.K.); (D.E.)
| | - David Escors
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Correspondence: (G.K.); (D.E.)
| |
Collapse
|
13
|
Xi M, Tang W. Knockdown of Ezrin inhibited migration and invasion of cervical cancer cells in vitro. Int J Immunopathol Pharmacol 2021; 34:2058738420930899. [PMID: 32674647 PMCID: PMC7370327 DOI: 10.1177/2058738420930899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cervical cancer is the fourth most common malignancy in women. The aim of this study was to investigate the functions of Ezrin in cervical cancer cells. Two cervical cancer cell lines, SiHa and CaSki, were cultured in vitro. Following the knockdown of Ezrin using siRNA, real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis were applied to analyze Ezrin expression at the messenger RNA (mRNA) and protein levels. Subsequently, wound healing assay, transwell assay, and sulforhodamine B (SRB) assay were used to detect the migration, invasion, and viability of cervical cancer cells, respectively. Results revealed that Ezrin siRNA can notably inhibit the migration and invasion of SiHa and CaSki cells (P < 0.05). However, knockdown of Ezrin shows no effects on the viability of SiHa and CaSki cells (P < 0.05). It is indicated that Ezrin plays a possible role in promoting the migration and invasion of cervical cancer cells and may be a therapeutic target to prevent metastasis of cervical cancer.
Collapse
Affiliation(s)
- Meili Xi
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenbin Tang
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Song Y, Ma X, Zhang M, Wang M, Wang G, Ye Y, Xia W. Ezrin Mediates Invasion and Metastasis in Tumorigenesis: A Review. Front Cell Dev Biol 2020; 8:588801. [PMID: 33240887 PMCID: PMC7683424 DOI: 10.3389/fcell.2020.588801] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Ezrin, as encoded by the EZR gene, is a member of the Ezrin/Radixin/Moesin (ERM) family. The ERM family includes three highly related actin filament binding proteins, Ezrin, Radixin, and Moesin. These three members share similar structural properties containing an N-terminal domain named FERM, a central helical linker region, and a C-terminal domain that mediates the interaction with F-actin. Ezrin protein is highly regulated through the conformational change between a closed, inactivate form and an open, active form. As a membrane-cytoskeleton linker protein, Ezrin facilitates numerous signal transductions in tumorigenesis and mediates diverse essential functions through interactions with a variety of growth factor receptors and adhesion molecules. Emerging evidence has demonstrated that Ezrin is an oncogene protein, as high levels of Ezrin are associated with metastatic behavior in various types of cancer. The diverse functions attributed to Ezrin and the understanding of how Ezrin drives the deadly process of metastasis are complex and often controversial. Here by reviewing recent findings across a wide spectrum of cancer types we will highlight the structures, protein interactions and oncogenic roles of Ezrin as well as the emerging therapeutic agents targeting Ezrin. This review provides a comprehensive framework to guide future studies of Ezrin and other ERM proteins in basic and clinical studies.
Collapse
Affiliation(s)
- Yanan Song
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaokun Ma
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Menghan Wang
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoyu Wang
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Ye
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Kumar R, Mandal S, Arora P, Mala YM, Khurana N. The expression of p16 and galectin-3 in cervical intraepithelial neoplasia (CIN) and squamous cell carcinoma (SCC) uterine cervix. J OBSTET GYNAECOL 2020; 41:785-790. [PMID: 33073644 DOI: 10.1080/01443615.2020.1803235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cervical cancer is the most prevalent cancer among women in India. The main cause of cervical cancer is persistent human papilloma viral (HPV) infection. HPV inactivates the pRb tumour suppressor protein; thus p16 expression, which is controlled by a negative feedback mechanism, is relatively increased. Galectin-3 is directly and indirectly connected to cancer cell activity and contributes to oncogenesis, angiogenesis, cancer progression and metastasis. Thus, the aim of this study was to study the expression of p16 and galectin-3 in Cervical Intraepithelial Neoplasia (CIN) and Squamous Cell Carcinoma (SCC) and to correlate p16 and galectin-3 expression. On hundred and eighteen newly-diagnosed untreated cases of CIN and SCC of uterine cervix were included in the study. Expression of p16 and galectin 3 was more pronounced in invasive SCC and High-grade Intraepithelial Lesion (HSIL), as compared to Low-grade Intraepithelial Lesion (LSIL).Thus, it may be used in clinical setting to monitor cervical lesions and to predict their progression.Impact statementWhat is already known on this subject? p16 overexpression is a surrogate biomarker of HPV infection and useful in evaluating HPV-associated squamous and glandular neoplasia of the lower gynaecologic tract. Increased galectin-3 expression is seen in SCC cervical, with less consistent results in CIN.What do the results of this study add? The results of our study adds to the growing literature that p16 and galectin-3 expression have direct statistically significant correlation with a degree of dysplasia and SCC cervix. Expression of p16 and galectin-3 was more pronounced in invasive SCC and high-grade intraepithelial lesion (HSIL), as compared to low-grade intraepithelial lesion (LSIL).What are the implications of these findings for clinical practice and/or further research? This correction of p16 and galectin-3 expression with degree of dysplasia and SCC cervix can be used for screening and early detection of cervical lesions and thus aid their early treatment and increased survival.
Collapse
Affiliation(s)
- Rabish Kumar
- Department of Pathology and Obstetrics and Gynaecology, Maulana Azad Medical College and associated hospitals, New Delhi, India
| | - Shramana Mandal
- Department of Pathology and Obstetrics and Gynaecology, Maulana Azad Medical College and associated hospitals, New Delhi, India
| | - Prerna Arora
- Department of Pathology and Obstetrics and Gynaecology, Maulana Azad Medical College and associated hospitals, New Delhi, India
| | - Y M Mala
- Department of Pathology and Obstetrics and Gynaecology, Maulana Azad Medical College and associated hospitals, New Delhi, India
| | - Nita Khurana
- Department of Pathology and Obstetrics and Gynaecology, Maulana Azad Medical College and associated hospitals, New Delhi, India
| |
Collapse
|
16
|
Pergialiotis V, Nikolaou C, Haidopoulos D, Frountzas M, Thomakos N, Bellos I, Papapanagiotou A, Rodolakis A. PIK3CA Mutations and Their Impact on Survival Outcomes of Patients with Cervical Cancer: A Systematic Review. Acta Cytol 2020; 64:547-555. [PMID: 32683364 DOI: 10.1159/000509095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/28/2020] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Several studies have implicated the PIK3/AKT pathway in the pathophysiology of cancer progression as its activation seems to be aberrant in several forms of cancer. The purpose of the present systematic review is to evaluate the impact of PIK3CA mutations on survival outcomes of patients with cervical cancer. METHODS We used the Medline (1966-2020), Scopus (2004-2020), ClinicalTrials.gov (2008-2020), EMBASE (1980-2020), Cochrane Central Register of Controlled Trials (CENTRAL) (1999-2020), and Google Scholar (2004-2020) databases in our primary search along with the reference lists of electronically retrieved full-text papers. Statistical meta-analysis was performed with the RevMan 5.3 software. RESULTS Overall, 12 articles were included in the present study that comprised 2,196 women with cervical cancer. Of those, 3 studies did not report significant differences in survival outcomes among patients with mutated versus wild-type PIK3CA tumors, 5 studies reported decreased survival outcomes, and 3 studies revealed increased survival rates. The meta-analysis revealed that patients with the mutated PIK3CA genotypes had worse overall survival compared to patients with wild-type PIK3CA (HR 2.31; 95% CI: 1.51, 3.55; 95% PI: 0.54, 9.96; data from 3 studies) and the same was observed in the case of DFS rates (HR 1.82; 95% CI: 1.47, 2.25; 95% PI: 1.29, 2.56; data from 4 studies). CONCLUSION Current evidence concerning the impact of PIK3CA mutations on survival outcomes of patients with cervical cancer is inconclusive, although the majority of included studies support a potential negative effect, primarily among those with squamous cell carcinoma tumors.
Collapse
Affiliation(s)
- Vasilios Pergialiotis
- Laboratory of Experimental Surgery and Surgical Research N.S Christeas, National and Kapodistrian University of Athens, Athens, Greece,
- 1st Department of Obstetrics and Gynecology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece,
| | - Christina Nikolaou
- Laboratory of Experimental Surgery and Surgical Research N.S Christeas, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Haidopoulos
- 1st Department of Obstetrics and Gynecology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maximos Frountzas
- Laboratory of Experimental Surgery and Surgical Research N.S Christeas, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Thomakos
- Laboratory of Experimental Surgery and Surgical Research N.S Christeas, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Bellos
- Laboratory of Experimental Surgery and Surgical Research N.S Christeas, National and Kapodistrian University of Athens, Athens, Greece
| | - Angeliki Papapanagiotou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Rodolakis
- 1st Department of Obstetrics and Gynecology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Dietlmeier S, Ye Y, Kuhn C, Vattai A, Vilsmaier T, Schröder L, Kost BP, Gallwas J, Jeschke U, Mahner S, Heidegger HH. The prostaglandin receptor EP2 determines prognosis in EP3-negative and galectin-3-high cervical cancer cases. Sci Rep 2020; 10:1154. [PMID: 31980713 PMCID: PMC6981231 DOI: 10.1038/s41598-020-58095-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022] Open
Abstract
Recently our study identified EP3 receptor and galectin-3 as prognosticators of cervical cancer. The aim of the present study was the analysis of EP2 as a novel marker and its association to EP3, galectin-3, clinical pathological parameters and the overall survival rate of cervical cancer patients. Cervical cancer tissues (n = 250), as also used in our previous study, were stained with anti-EP2 antibodies employing a standardized immunohistochemistry protocol. Staining results were analyzed by the IRS scores and evaluated for its association with clinical-pathological parameters. H-test of EP2 percent-score showed significantly different expression in FIGO I-IV stages and tumor stages. Kaplan-Meier survival analyses indicated that EP3-negative/EP2-high staining patients (EP2 IRS score ≥2) had a significantly higher survival rate than the EP3-negative/EP2-low staining cases (p = 0.049). In the subgroup of high galectin-3 expressing patients, the group with high EP2 levels (IRS ≥2) had significantly better survival rates compared to EP2-low expressing group (IRS <2, p = 0.044). We demonstrated that the EP2 receptor is a prognostic factor for the overall survival in the subgroup of negative EP3 and high galectin-3 expressed cervical cancer patients. EP2 in combination with EP3 or galectin-3 might act as prognostic indicators of cervical cancer. EP2, EP3, and galectin-3 could be targeted for clinical diagnosis or endocrine treatment in cervical cancer patients, which demands future investigations.
Collapse
Affiliation(s)
- Sebastian Dietlmeier
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Yao Ye
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Lennard Schröder
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Bernd P Kost
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Julia Gallwas
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany. .,Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Großhadern, Munich, Germany.
| | - Sven Mahner
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany.,Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Großhadern, Munich, Germany
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Campus Innenstadt, Munich, Germany
| |
Collapse
|
18
|
Sun Q, Zhang Y, Liu M, Ye Z, Yu X, Xu X, Qin Y. Prognostic and diagnostic significance of galectins in pancreatic cancer: a systematic review and meta-analysis. Cancer Cell Int 2019; 19:309. [PMID: 31832021 PMCID: PMC6873495 DOI: 10.1186/s12935-019-1025-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Background Galectins constitute a family of β-galactoside-binding proteins, which influence various hallmarks of pancreatic cancer, including cell proliferation, invasion and migration; immune escape; and angiogenesis. Although many studies have concentrated on the role of galectins in pancreatic cancer, the results remain controversial. Hence, we performed a comprehensive meta-analysis to clarify the precise diagnostic and prognostic value of galectins in pancreatic cancer. Methods PubMed/MEDLINE, EMBASE and Web of Science were used to search related published literature up to July 2019. Pooled hazard ratios (HRs), diagnostic accuracy variables and related 95% confidence intervals (CIs) were calculated using STATA 14.0 software. Results Eleven studies including 1227 participants met our inclusion criteria. High expression of galectin family was not correlated with overall survival (OS) in pancreatic cancer (HR, 1.19; 95% CI 0.67-2.11). According to subgroup analysis, high levels of galectin-1 were significantly correlated with worse OS in pancreatic cancer (HR, 4.77; 95% CI 2.47-9.21), while high levels of tandem-repeat galectins (galectin-4 or galectin-9) predicted both better OS (HR, 0.63; 95% CI 0.46-0.86) and disease-free survival (DFS) (HR, 0.63; 95% CI 0.48-0.83). The expression levels of galectin-3 did not directly correlate with prognosis (HR, 0.99; 95% CI 0.40-2.46). The pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratios of galectin-3 were 0.64 (95% CI 0.41-0.82), 0.76 (95% CI 0.59-0.88), 2.70 (95% CI 1.21-6.1), and 0.47 (95% CI 0.23-0.98), respectively. The area under the curve (AUC) of galectin-3 was 0.77. Conclusion Taken together, our results suggest that high expression of galectin-1 and low levels of galectin-4 or galectin-9 are predictors of worse prognosis in pancreatic cancer patients. The expression of galectin-3 was not directly related to OS and other clinical characteristics. Although galectin-3 exhibited some diagnostic value in patients with pancreatic cancer in this meta-analysis, clinical application prospects remain to be validated. Further studies are warranted to confirm and strengthen these findings.
Collapse
Affiliation(s)
- Qiqing Sun
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,3Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China.,4Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Yiyin Zhang
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,3Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China.,4Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Mengqi Liu
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,3Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China.,4Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Zeng Ye
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,3Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China.,4Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Xianjun Yu
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,3Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China.,4Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Xiaowu Xu
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,3Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China.,4Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Yi Qin
- 1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,3Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China.,4Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| |
Collapse
|
19
|
Wei W, Liu C. Prognostic and predictive roles of microRNA‑411 and its target STK17A in evaluating radiotherapy efficacy and their effects on cell migration and invasion via the p53 signaling pathway in cervical cancer. Mol Med Rep 2019; 21:267-281. [PMID: 31746360 PMCID: PMC6896360 DOI: 10.3892/mmr.2019.10826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies worldwide. However, the pathogenesis of cervical cancer remains to be fully elucidated. Increasing evidence shows that microRNAs (miRNAs) may be involved in the pathogenesis of cervical cancer. The present study tested the hypothesis that the overexpression of miRNA (miR)-411 may delay, whereas the overexpression of serine/threonine kinase 17a (STK17A) may contribute to, cervical cancer development and progression through the p53 pathway. Cervical cancer tissues and adjacent normal tissues were obtained from 141 patients with cervical cancer following radiotherapy, with efficacy evaluated. The receiver operating characteristic curve was plotted to show the value of miR-411 and STK17A in predicting the efficacy of radiotherapy. Cox's proportional hazards regression model was utilized for multivariate analysis. A series of inhibitors, mimics or small interfering RNAs against STK17A were introduced to validate the regulatory mechanism of miR-411 in governing STK17A, determined with a luciferase reporter gene assay. The expression of miR-411 and STK17A, and the status of the p53 signaling pathway were evaluated. The colony forming ability, proliferation, migration, invasion and apoptosis of CaSki cells were assessed using a colony formation assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Transwell assay and flow cytometry, respectively. miR-411 was upregulated but STK17A was reciprocal in cervical tissues. The overexpression of miR-411 and low expression of STK17A were correlated with high efficacy of radiotherapy. miR-411 and STK17A had predictive value for the efficacy of radiotherapy; miR-411 was the protective factor and STK17A was a risk factor for prognosis of cervical cancer. Increasing miR-411 activated the p53 signaling pathway and promoted cell apoptosis, but inhibited cell proliferation, invasion and migration. STK17A, an miR-411 target, increased following miR-411 over-expression, whereas the p53 signaling pathway was activated following STK17A inhibition. It was observed that the effect of miR-411 inhibition was lost following STK17A silencing. These findings indicate that the miR-411-mediated direct suppression of STK17A induces apoptosis and suppresses the proliferation, migration and invasion of human cervical cancer cells via the p53 signaling pathway. Additionally, miR-411 and STK17A have predictive value for the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Wei Wei
- Department of Clinical Laboratory, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Cun Liu
- Department of Clinical Laboratory, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
20
|
Wang F, Yu T, Ma C, Zhang H, Zhang Z. The clinical prognostic significance of ezrin in patients with bone and soft tissue sarcomas: a meta-analysis. FEBS Open Bio 2019; 9:1744-1755. [PMID: 31376222 PMCID: PMC6768105 DOI: 10.1002/2211-5463.12713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/10/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Ezrin is a member of the ezrin–radixin–moesin (ERM) protein family and has been shown to be associated with poor prognosis in patients with a variety of solid tumors. However, the clinical prognostic significance of ezrin in patients with bone and soft tissue sarcomas remains unclear. Here, we performed a systematic meta‐analysis by searching PubMed, the Cochrane Library Database, EMBASE, the Web of Science, and the CBM, WanFang Med Online and CNKI databases. In total, 19 studies with a total of 1316 bone and soft tissue sarcoma patients were included. Pooled analyses showed that ezrin overexpression was correlated with a higher rate of tumor metastasis (OR 6.59, 95% CI: 2.84–15.33, P < 0.01, PFDR < 0.01) and recurrence (OR 3.18, 95% CI: 1.88–5.37, P < 0.01, PFDR < 0.01) and a more advanced tumor grade (OR 3.252, 95% CI: 1.371–7.715, P = 0.01, PFDR = 0.03). Moreover, elevated ezrin expression could predict poor OS (HR 3.02, 95% CI: 2.35–3.89, P < 0.01, PFDR < 0.01), MFS (HR 5.22, 95% CI: 2.08–13.08, P < 0.01, PFDR < 0.01), and EFS (HR 1.07, 95% CI: 1.03–1.11, P < 0.01, PFDR < 0.01). Subgroup analyses revealed the underlying sources of heterogeneity. Publication bias was observed in the analysis of metastasis. Sensitivity analysis revealed that the results were robust. Our findings indicated that ezrin overexpression was significantly correlated with poor survival and more advanced tumor progression in bone and soft tissue sarcomas, which suggests that ezrin might be a valuable prognostic biomarker and a potential therapeutic target.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tao Yu
- Center for Translational Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chengbin Ma
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haifei Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhiyu Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
21
|
Zhou L, Ye M, Xue F, Lu E, Sun LZ, Zhu X. Effects of dynein light chain Tctex-type 3 on the biological behavior of ovarian cancer. Cancer Manag Res 2019; 11:5925-5938. [PMID: 31308737 PMCID: PMC6612992 DOI: 10.2147/cmar.s205158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/27/2019] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To investigate dynein light chain Tctex-type 3 (DYNLT3) protein expression in ovarian epithelial lesions and explore the effects and related mechanisms of DYNLT3 in terms of the biological behavior of ovarian cancer. MATERIALS AND METHODS Initially, expression of the DYNLT3 protein in ovarian epithelial lesions was detected by immunohistochemical staining, and the prognostic value of DYNLT3 mRNA expression in ovarian cancer patients was assessed using the Kaplan-Meier plotter database. Then, the mRNA and protein expression of DYNLT3 in IOSE80 normal ovarian epithelial cells and SKOV3 ovarian cancer cells was evaluated by quantitative real-time polymerase chain reaction and Western blotting respectively, and the proliferation, apoptosis, migration and invasion of SKOV3 cells after DYNLT3 over-expression and under-expression were investigated by CCK-8 assays and immunofluorescence staining, flow cytometry, wound healing assays and Transwell invasion assays, respectively. Furthermore, the expression of the proliferation-related proteins PCNA and Ki-67 and the invasion- and migration-related proteins Ezrin, Fascin, MMP2 and MMP9 in cells was examined by Western blotting. RESULTS The protein expression of DYNLT3 gradually increased during the progression of ovarian epithelial lesions, and was related to the development of ovarian cancer. High expression of DYNLT3 mRNA was related to poor overall survival and progression free survival, especially in serous ovarian cancer patients. In addition, overexpression of DYNLT3 promoted SKOV3 cell proliferation, invasion and migration. The corresponding results were also verified by a DYNLT3 knockdown assay. Moreover, DYNLT3 increased cell proliferation, which was related to Ki-67 expression. Besides, DYNLT3 enhanced cell invasion and migration through regulating Ezrin, but not Fascin, MMP2 or MMP9. CONCLUSION DYNLT3 exerts pro-tumoral effects on ovarian cancer through promoting cell proliferation, migration and invasion, possibly via regulating the protein expression of Ki-67 and Ezrin. DYNLT3 may be a potential prognostic predictor in ovarian cancer.
Collapse
Affiliation(s)
- Lulu Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Fang Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Ermei Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Lu-Zhe Sun
- Departments of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| |
Collapse
|
22
|
Sun H, Shen K, Cao D. Progress in immunocytochemical staining for cervical cancer screening. Cancer Manag Res 2019; 11:1817-1827. [PMID: 30863187 PMCID: PMC6391129 DOI: 10.2147/cmar.s195349] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies. In recent years, the implementation of cervical cancer screening has resulted in the effective control of cervical cancer incidence. However, many deficiencies still exist in the current screening techniques and strategies. With advancements in cervical cancer screening research, immunochemical staining to determine cervical cytology has shown a broader application prospect in the early screening for cervical cancer, especially for triage in cervical cancer screening.
Collapse
Affiliation(s)
- Hengzi Sun
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, ;
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, ;
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, ;
| |
Collapse
|
23
|
Li X, Tian R, Gao H, Yan F, Ying L, Yang Y, Yang P, Gao Y. Identification of Significant Gene Signatures and Prognostic Biomarkers for Patients With Cervical Cancer by Integrated Bioinformatic Methods. Technol Cancer Res Treat 2018; 17:1533033818767455. [PMID: 29642758 PMCID: PMC5900817 DOI: 10.1177/1533033818767455] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cervical cancer is the leading cause of death with gynecological malignancies. We aimed to explore the molecular mechanism of carcinogenesis and biomarkers for cervical cancer by integrated bioinformatic analysis. We employed RNA-sequencing details of 254 cervical squamous cell carcinomas and 3 normal samples from The Cancer Genome Atlas. To explore the distinct pathways, messenger RNA expression was submitted to a Gene Set Enrichment Analysis. Kyoto Encyclopedia of Genes and Genomes and protein–protein interaction network analysis of differentially expressed genes were performed. Then, we conducted pathway enrichment analysis for modules acquired in protein–protein interaction analysis and obtained a list of pathways in every module. After intersecting the results from the 3 approaches, we evaluated the survival rates of both mutual pathways and genes in the pathway, and 5 survival-related genes were obtained. Finally, Cox hazards ratio analysis of these 5 genes was performed. DNA replication pathway (P < .001; 12 genes included) was suggested to have the strongest association with the prognosis of cervical squamous cancer. In total, 5 of the 12 genes, namely, minichromosome maintenance 2, minichromosome maintenance 4, minichromosome maintenance 5, proliferating cell nuclear antigen, and ribonuclease H2 subunit A were significantly correlated with survival. Minichromosome maintenance 5 was shown as an independent prognostic biomarker for patients with cervical cancer. This study identified a distinct pathway (DNA replication). Five genes which may be prognostic biomarkers and minichromosome maintenance 5 were identified as independent prognostic biomarkers for patients with cervical cancer.
Collapse
Affiliation(s)
- Xiaofang Li
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Run Tian
- 2 Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hugh Gao
- 3 Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Feng Yan
- 3 Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Le Ying
- 3 Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.,4 Department of Tea Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yongkang Yang
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Pei Yang
- 2 Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan'e Gao
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
24
|
Chetry M, Thapa S, Hu X, Song Y, Zhang J, Zhu H, Zhu X. The Role of Galectins in Tumor Progression, Treatment and Prognosis of Gynecological Cancers. J Cancer 2018; 9:4742-4755. [PMID: 30588260 PMCID: PMC6299382 DOI: 10.7150/jca.23628] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Galectins are the member of soluble proteins that bind with β-galactoside containing glycans. These proteins have been considered to be associated in various important events such as different types of cancers. It has been found that galectins could contribute to neoplastic transformation or regulate cell growth, cell apoptosis, and immune cells, causing tumor invasion, progression, metastasis and angiogenesis. Somehow, galectins are also found to exert a protective effect on cancer in a tissue-dependent way. These glycans binding proteins have been shown to be involved in the regulation of different tumor suppressor genes and oncogenes with their possible roles in human cancers. Objective of the current review is to summarize the role of galectin-1, -3 -7, and -9 in tumorigenesis of gynecological cancers. Galectin protein may be a potential therapeutic target in gynecological malignancies due to reported radio- and chemo- sensitivities, immunotherapeutic, anti-angiogenic and anti-proliferative activities. This review considers the evidence for the future research that how galectins may be important in the progression and treatment of gynecological cancers along with its potent use as a novel prognostic marker.
Collapse
Affiliation(s)
- Mandika Chetry
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Saroj Thapa
- MD, Department of Internal Medicine, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Xiaoli Hu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Yizuo Song
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Jianan Zhang
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Haiyan Zhu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| |
Collapse
|
25
|
Huang W, Wei X, Wei Y, Feng R. Biology of Tumor Associated Macrophages in Diffuse Large B Cell Lymphoma. DNA Cell Biol 2018; 37:947-952. [PMID: 30403536 DOI: 10.1089/dna.2018.4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tumor associated microenvironment is known to play a vital role during the development and progression of different malignant tumors. As a part of tumor microenvironment, tumor associated macrophages (TAMs) are crucial for the genesis, proliferation, metastasis, and survival of tumor cells. Recently, more and more studies showed that TAMs were related with poor clinical status and survival in patients with diffuse large B cell lymphoma (DLBCL). Considering the complex roles which TAMs play in the tumor microenvironment of DLBCL, the aim of this study was to review the biological mechanisms between TAMs and DLBCL cells, including extracellular matrix remodeling and angiogenesis promotion, tumor promotion, immune suppression, and phagocytosis inhibition. This review will help us to further understand the comprehensive impact of TAMs on DLBCL and explore possible prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Weimin Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Xiaolei Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Yongqiang Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
26
|
Wang Y, Liu S, Tian Y, Wang Y, Zhang Q, Zhou X, Meng X, Song N. Prognostic role of galectin-3 expression in patients with solid tumors: a meta-analysis of 36 eligible studies. Cancer Cell Int 2018; 18:172. [PMID: 30410421 PMCID: PMC6215616 DOI: 10.1186/s12935-018-0668-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/27/2018] [Indexed: 12/31/2022] Open
Abstract
Background Galectin-3 as a β-galactoside-binding protein, has been found to be involved in tumor cell growth, anti-apoptosis, adhesion, angiogenesis, invasion, and distant metastases, indicating that it may play a pivotal role in cancer development and progression. However, their results remain debatable and inconclusive. Hence, this meta-analysis was performed to clarify the precise predictive value of galectin-3 in various cancers. Methods PubMed, Web of Science, Embase, Cochrane Library, CNKI and Wanfang databases were searched comprehensively for eligible studies up to July 15, 2018. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) of OS or DFS/PFS/RFS were calculated to demonstrate their associations. Results A total of 36 relevant studies were ultimately enrolled in this meta-analysis. Our results shed light on the significant association of elevated galectin-3 expression with reduced OS or DFS/RFS/PFS in overall cancer patients (pooled HR = 1.79, 95% CI 1.42–2.27, I2= 67.3%, p < 0.01; pooled HR = 1.57, 95% CI 1.04–2.37, I2= 67.1%, p = 0.001). In tumor type subgroup analysis, we found high expression of galectin-3 was correlated with shorter OS or DFS/RFS/PFS in colorectal cancer (pooled HR = 3.05, 95% CI 2.13–4.35, I2= 0.0%, p = 0.734; pooled HR = 2.49, 95% CI 1.82–3.41, I2 = 0.0%, p = 0.738; respectively) and meanwhile it merely associated with reduced OS in ovarian cancer or non-small cell lung cancer (pooled HR = 2.24, 95% CI 1.38–3.64, I2= 0.0%, p = 0.910; pooled HR = 2.07, 95% CI 1.48–2.88, I2= 0.0%, p = 0.563; separately). Conclusions Taken together, our results suggested that galectin-3 played an oncogenic role in colorectal cancer, ovarian cancer and non-small cell lung cancer, indicating it could be a promising biomarker and a novel therapeutic target for them. Further studies were warranted to validate our findings.
Collapse
Affiliation(s)
- Yi Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Shiwei Liu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Ye Tian
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Yamin Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Qijie Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Xiang Zhou
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Xianghu Meng
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Ninghong Song
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| |
Collapse
|
27
|
Yan H, Sun BM, Zhang YY, Li YJ, Huang CX, Feng FZ, Li C. Upregulation of miR-183-5p is responsible for the promotion of apoptosis and inhibition of the epithelial-mesenchymal transition, proliferation, invasion and migration of human endometrial cancer cells by downregulating Ezrin. Int J Mol Med 2018; 42:2469-2480. [PMID: 30226564 PMCID: PMC6192766 DOI: 10.3892/ijmm.2018.3853] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is a life‑threatening malignancy that affects women all over the world, and it has an increasing incidence. MicroRNAs (miRNAs/miRs) have been reported to be involved in cellular activities in endometrial cancer. The present study aimed to examine the effects of miR‑183‑5p on the epithelial‑mesenchymal transition (EMT), proliferation, invasion, migration and apoptosis of human endometrial cancer cells by targeting Ezrin. Primary endometrial cancer tissues and adjacent normal tissues were obtained for the investigation. The protein expression of Ezrin in tissues was detected by immunohistochemistry. The expression level of miR‑183‑5p and the mRNA and protein expression levels of Ezrin and EMT‑associated genes were determined by reverse transcription‑quantitative polymerase chain reaction and western blot analyses. Endometrial cancer cells were treated with miR‑183‑5p inhibitors, small interfering RNA targeting Ezrin or miR‑183‑5p inhibitors. Cell proliferation, cell cycle, apoptosis, migration and invasion were then evaluated using an MTT assay, flow cytometry, scratch test and Transwell assay, respectively. Compared with normal adjacent tissues, the expression of miR‑183‑5p was decreased in endometrial cancer tissues, and the expression of Ezrin was significantly increased in endometrial cancer tissues. The protein expression of Ezrin was correlated with the severity and poor prognosis of endometrial cancer. Notably, the target prediction program and the luciferase reporter gene assay confirmed that miR‑183‑5p targeted and negatively regulated the expression of Ezrin. In vivo experiments revealed that the increased expression of miR‑183‑5p and decreased expression of Ezrin inhibited EMT, cell proliferation, migration and invasion, but promoted cell apoptosis in Ishikawa cells. These results suggested that the upregulated expression of miR‑183‑5p promoted apoptosis and suppressed the EMT, proliferation, invasion and migration of human endometrial cancer cells by downregulating Ezrin.
Collapse
Affiliation(s)
- Hua Yan
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Bing-Mei Sun
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Yu-Ying Zhang
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Yu-Juan Li
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Cheng-Xiang Huang
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Fu-Zhong Feng
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Cui Li
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| |
Collapse
|
28
|
Zhang Y, Wang G. MicroRNA-183 inhibits A375 human melanoma cell migration and invasion by targeting Ezrin and MMP-9. Oncol Lett 2018; 17:548-554. [PMID: 30655800 DOI: 10.3892/ol.2018.9603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
To assess the influence of microRNA-183 (miR-183) on the migration and invasion of A375 human melanoma cells, an A375 cell line with stable miR-183 overexpression or knockdown was constructed using lentiviral transfection. The change of miR-183 expression in these cells and in non-transfected controls was verified using reverse transcription-quantitative polymerase chain reaction. The impact of miR-183 on experimental A375 cell migration and invasion was assessed using a scratch and Transwell assay. The expression of Ezrin and matrix metalloprotease-9 (MMP-9), which are two mediator proteins that serve roles in tumor cell migration and invasion, were analyzed in each cell group via western blotting. The results of the present study indicated that miR-183 overexpression significantly inhibits A375 cell migration and invasion, which may be facilitated by miR-183 knockdown. Furthermore, Ezrin and MMP-9 protein levels were negatively associated with miR-183 expression, indicating that miR-183 may function as a tumor suppressor by inhibiting the expression of these two proteins. Additionally, miR-183 downregulation may be associated with the progression of melanoma.
Collapse
Affiliation(s)
- Yusen Zhang
- Department of Plastic Surgery, People's Hospital of Zhengzhou, Henan Agricultural University, Zhengzhou, Henan 450000, P.R. China
| | - Guoqiang Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
29
|
Zhang J, Yang W, Zhou YB, Xiang YX, Wang LS, Hu WK, Wang WJ. Baicalein inhibits osteosarcoma cell proliferation and invasion through the miR‑183/Ezrin pathway. Mol Med Rep 2018; 18:1104-1112. [PMID: 29845278 DOI: 10.3892/mmr.2018.9036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/09/2018] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma (OS), a common and primary malignant bone tumor, is characterized by highly aggressive potency. Baicalein, a bioactive flavone isolated from Scutellaria baicalensis Georgi, has been shown to inhibit the progression of numerous tumors, including OS. However, the mechanisms by which baicalein protects against OS are still largely unknown. The results of the present study showed that administration of baicalein significantly inhibited the proliferation, migration and invasion and promoted apoptosis in MG‑63 and Saos‑2 cells. Ezrin was identified as a target gene of microRNA (miR)‑183. MG‑63 and Saos‑2 cells treated with baicalein exhibited increased miR‑183 levels and decreased Ezrin expression. Importantly, miR‑183 inhibition and Ezrin overexpression abolished the effects of baicalein on MG‑63 and Saos‑2 cell proliferation, migration, invasion and apoptosis. Taken together, these findings suggest that baicalein inhibits the proliferation, migration and invasion and induces apoptosis in OS cells by activating the miR‑183/Ezrin pathway, revealing a novel mechanism underlying anti‑OS effects of baicalein.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei Yang
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - You-Bing Zhou
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yong-Xiao Xiang
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lu-Shan Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wen-Kai Hu
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
30
|
Zacapala-Gómez AE, Navarro-Tito N, Alarcón-Romero LDC, Ortuño-Pineda C, Illades-Aguiar B, Castañeda-Saucedo E, Ortiz-Ortiz J, Garibay-Cerdenares OL, Jiménez-López MA, Mendoza-Catalán MA. Ezrin and E-cadherin expression profile in cervical cytology: a prognostic marker for tumor progression in cervical cancer. BMC Cancer 2018; 18:349. [PMID: 29587669 PMCID: PMC5872531 DOI: 10.1186/s12885-018-4243-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 03/16/2018] [Indexed: 01/26/2023] Open
Abstract
Background Cervical cancer (CC) is the fourth cause of mortality by neoplasia in women worldwide. The use of immunomarkers is an alternative tool to complement currently used algorithms for detection of cancer, and to improve selection of therapeutic schemes. Aberrant expression of Ezrin and E-cadherin play an important role in tumor invasion. In this study we analyzed Ezrin and E-cadherin expression in liquid-based cervical cytology samples, and evaluated their potential use as prognostic immunomarkers. Methods Immunocytochemical staining of Ezrin and E-cadherin was performed in cervical samples of 125 patients. The cytological or histological diagnostic was performed by Papanicolaou staining or H&E staining, respectively. HPV genotyping was determined using INNO-LIPA Genotyping Extra kit and the HPV physical status by in situ hybridization. Ezrin expression in HaCaT, HeLa and SiHa cell lines was determined by immunocytochemistry, immunofluorescence and Western blot. Results High Ezrin expression was observed in cervical cancer samples (70%), samples with multiple infection by HR-HPV (43%), and samples with integrated viral genome (47%). High Ezrin expression was associated with degree of SIL, viral genotype and physical status. In contrast, low E-cadherin expression was found in cervical cancer samples (95%), samples with multiple infection by HR-HPV/LR-HPV (87%) and integrated viral genome (72%). Low E-cadherin expression was associated with degree of SIL and viral genotype. Interestingly, Ezrin nuclear staining was associated with degree of SIL and viral genotype. High Ezrin expression, high percent of nuclear Ezrin and low E-cadherin expression behaved as risk factors for progression to HSIL and cervical cancer. Conclusions Ezrin and E-cadherin expression profile in cervical cytology samples could be a potential prognostic marker, useful for identifying cervical lesions with a high-risk of progression to cervical cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4243-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana E Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lazaro Cardenas s/n, Ciudad Universitaria, CP, 39090, Chilpancingo, Guerrero, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Luz Del C Alarcón-Romero
- Laboratorio de Citopatología e Histoquímica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Ácidos nucleicos y proteínas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lazaro Cardenas s/n, Ciudad Universitaria, CP, 39090, Chilpancingo, Guerrero, Mexico
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lazaro Cardenas s/n, Ciudad Universitaria, CP, 39090, Chilpancingo, Guerrero, Mexico
| | - Olga L Garibay-Cerdenares
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lazaro Cardenas s/n, Ciudad Universitaria, CP, 39090, Chilpancingo, Guerrero, Mexico
| | | | - Miguel A Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lazaro Cardenas s/n, Ciudad Universitaria, CP, 39090, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|