1
|
Pandey VK, Srivastava S, Ashish, Dash KK, Singh R, Dar AH, Singh T, Farooqui A, Shaikh AM, Kovacs B. Bioactive properties of clove ( Syzygium aromaticum) essential oil nanoemulsion: A comprehensive review. Heliyon 2024; 10:e22437. [PMID: 38163240 PMCID: PMC10755278 DOI: 10.1016/j.heliyon.2023.e22437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Syzygium aromaticum, commonly called clove, is a culinary spice with medical uses. Clove is utilized in cosmetics, medicine, gastronomy, and agriculture due to its abundance of bioactive components such as gallic acid, flavonoids, eugenol acetate, and eugenol. Clove essential oil has been revealed to have antibacterial, antinociceptive, antibacterial activities, antifungal, and anticancerous qualities. Anti-inflammatory chemicals, including eugenol and flavonoids, are found in clove that help decrease inflammation and alleviate pain. The anti-inflammatory and analgesic qualities of clove oil have made it a popular natural cure for toothaches and gum discomfort. Due to its therapeutic potential, it has been used as a bioactive ingredient in coating fresh fruits and vegetables. This review article outlines the potential food processing applications of clove essential oil. The chemical structures of components, bioactive properties, and medicinal potential of clove essential oil, including phytochemical importance in food, have also been thoroughly addressed.
Collapse
Affiliation(s)
- Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Shivangi Srivastava
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh, India
| | - Ashish
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, 732141, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Tripti Singh
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Ayaz Mukkaram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Bela Kovacs
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
2
|
Feitosa BDS, Ferreira OO, Mali SN, Anand A, Cruz JN, Franco CDJP, Mahawer SK, Kumar R, Cascaes MM, de Oliveira MS, Andrade EHDA. Chemical Composition, Preliminary Toxicity, and Antioxidant Potential of Piper marginatum Sensu Lato Essential Oils and Molecular Modeling Study. Molecules 2023; 28:5814. [PMID: 37570784 PMCID: PMC10421147 DOI: 10.3390/molecules28155814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The essential oils (OEs) of the leaves, stems, and spikes of P. marginatum were obtained by hydrodistillation, steam distillation, and simultaneous extraction. The chemical constituents were identified and quantified by GC/MS and GC-FID. The preliminary biological activity was determined by assessing the toxicity of the samples to Artemia salina Leach larvae and calculating the mortality rate and lethal concentration (LC50). The antioxidant activity of the EOs was determined by the DPPH radical scavenging method. Molecular modeling was performed using molecular docking and molecular dynamics, with acetylcholinesterase being the molecular target. The OES yields ranged from 1.49% to 1.83%. The EOs and aromatic constituents of P. marginatum are characterized by the high contents of (E)-isoosmorhizole (19.4-32.9%), 2-methoxy-4,5-methylenedioxypropiophenone (9.0-19.9%), isoosmorhizole (1.6-24.5%), and 2-methoxy-4,5-methylenedioxypropiophenone isomer (1.6-14.3%). The antioxidant potential was significant in the OE of the leaves and stems of P. marginatum extracted by SD in November (84.9 ± 4.0 mg TE·mL-1) and the OEs of the leaves extracted by HD in March (126.8 ± 12.3 mg TE·mL-1). Regarding the preliminary toxicity, the OEs of Pm-SD-L-St-Nov and Pm-HD-L-St-Nov had mortality higher than 80% in concentrations of 25 µg·mL-1. This in silico study on essential oils elucidated the potential mechanism of interaction of the main compounds, which may serve as a basis for advances in this line of research.
Collapse
Affiliation(s)
- Bruna de Souza Feitosa
- School of Chemistry, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil (E.H.d.A.A.)
| | - Oberdan Oliveira Ferreira
- Graduate Program in Biodiversity and Biotechnology—Rede Bionorte, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil;
| | - Suraj N. Mali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi 835215, India
| | - Amit Anand
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi 835215, India
| | - Jorddy Nevez Cruz
- School of Chemistry, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil (E.H.d.A.A.)
| | | | - Sonu Kumar Mahawer
- Department of Chemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar 263145, India
| | - Ravendra Kumar
- Department of Chemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar 263145, India
| | - Marcia Moraes Cascaes
- Graduate Program in Chemistry, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil;
| | - Mozaniel Santana de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas—Botânica Tropical, Universidade Federal Rural da Amazônia, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil
| | - Eloisa Helena de Aguiar Andrade
- School of Chemistry, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil (E.H.d.A.A.)
- Graduate Program in Biodiversity and Biotechnology—Rede Bionorte, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil;
- Graduate Program in Chemistry, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil;
- Programa de Pós-Graduação em Ciências Biológicas—Botânica Tropical, Universidade Federal Rural da Amazônia, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil
| |
Collapse
|
3
|
Amaral MSS, Hearn MTW, Marriott PJ. Lipase-catalysed changes in essential oils revealed by comprehensive two-dimensional gas chromatography. Anal Bioanal Chem 2023:10.1007/s00216-023-04729-0. [PMID: 37184634 PMCID: PMC10184066 DOI: 10.1007/s00216-023-04729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
Candida antarctica lipase A (CALA) was applied for the chemo-selective enzymatic transesterification of terpene and phenyl alcohols in 35 different essential oil samples. Comprehensive two-dimensional gas chromatography with mass spectrometry (GC×GC‒MS) analysis enabled the separation and tentative identification of a cohort of 125 compounds, allowing the instant visualisation of the reaction process changes, amid the complex chemical background of the samples. The results indicate that 42 out of 79 alcohols so-identified were fully or partially esterified within 48 h of reaction, with primary alcohols being the substrates of preference of the enzyme (90-100% conversion), followed by secondary alcohols (mostly ~ 80-100% conversion). No significant conversion of tertiary alcohols and phenols was observed using the tested conditions. Overall, the enzyme's performance was consistent for primary alcohol substrates identified in multiple samples of different compositions. The observed selectivity, efficiency, robustness, scalability (enzyme/substrate working concentration ratio > 1:160), potential reusability, mild reaction conditions, and other factors make this process a greener and more sustainable alternative for industry applications, particularly for the manufacture of novel flavours and fragrances.
Collapse
Affiliation(s)
- Michelle S S Amaral
- Australian Centre for Research On Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Milton T W Hearn
- Australian Centre for Research On Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Philip J Marriott
- Australian Centre for Research On Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.
| |
Collapse
|
4
|
Olennikov DN, Kashchenko NI. New Inhibitors of Pancreatic α-Amylase from Rhaponticum uniflorum. APPL BIOCHEM MICRO+ 2023. [DOI: 10.1134/s0003683823010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Costa KAD, Catarina AS, Leal ICR, Sathler PC, de Oliveira D, de Oliveira AASC, Cansian RL, Dallago RM, Zeni J, Paroul N. Enzymatic synthesis of ascorbyl oleate and evaluation of biological activities. Food Res Int 2022; 161:111851. [DOI: 10.1016/j.foodres.2022.111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
|
6
|
Clove Oil-Nanostructured Lipid Carriers: A Platform of Herbal Anesthetics in Whiteleg Shrimp (Penaeus vannamei). Foods 2022. [DOI: 10.3390/foods11203162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Whiteleg shrimp (Penaeus vannamei) have been vulnerable to the stress induced by different aquaculture operations such as capture, handling, and transportation. In this study, we developed a novel clove oil-nanostructured lipid carrier (CO-NLC) to enhance the water-soluble capability and improve its anesthetic potential in whiteleg shrimp. The physicochemical characteristics, stability, and drug release capacity were assessed in vitro. The anesthetic effect and biodistribution were fully investigated in the shrimp body as well as the acute multiple-dose toxicity study. The average particle size, polydispersity index, and zeta potential value of the CO-NLCs were 175 nm, 0.12, and −48.37 mV, respectively, with a spherical shape that was stable for up to 3 months of storage. The average encapsulation efficiency of the CO-NLCs was 88.55%. In addition, the CO-NLCs were able to release 20% of eugenol after 2 h, which was lower than the standard (STD)-CO. The CO-NLC at 50 ppm observed the lowest anesthesia (2.2 min), the fastest recovery time (3.3 min), and the most rapid clearance (30 min) in shrimp body biodistribution. The results suggest that the CO-NLC could be a potent alternative nanodelivery platform for increasing the anesthetic activity of clove oil in whiteleg shrimp (P. vannamei).
Collapse
|
7
|
Kumar Pandey V, Shams R, Singh R, Dar AH, Pandiselvam R, Rusu AV, Trif M. A comprehensive review on clove (Caryophyllus aromaticus L.) essential oil and its significance in the formulation of edible coatings for potential food applications. Front Nutr 2022; 9:987674. [PMID: 36185660 PMCID: PMC9521177 DOI: 10.3389/fnut.2022.987674] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies have demonstrated the use of synthetic preservatives and chemical additives in food is causing poisoning, cancer, and other degenerative disorders. New solutions for food preservation with quality maintenance are currently emerging. As a result, public concern has grown, as they desire to eat healthier products that use natural preservatives and compounds rather than synthetic ones. Clove is a highly prized spice used as a food preservative and for a variety of therapeutic reasons. Clove essential oil and its principal active component, eugenol, indicate antibacterial and antifungal action, aromaticity, and safety as promising and valuable antiseptics in the food sector. Clove essential oil and eugenol are found to have strong inhibition effects on a variety of food-source bacteria, and the mechanisms are linked to lowering migration and adhesion, as well as blocking the creation of biofilm and various virulence factors. This review emphasizes the importance of CEO (clove essential oil) in the food industry and how it can be explored with edible coatings to deliver its functional properties in food preservation.
Collapse
Affiliation(s)
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, India
- Rahul Singh
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Pulwama, India
- *Correspondence: Aamir Hussain Dar
| | - R. Pandiselvam
- Division of Physiology, Biochemistry and Post-harvest Technology, ICAR–Central Plantation Crops Research Institute, Kasaragod, India
- R. Pandiselvam
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Vasile Rusu
| | - Monica Trif
- Department of Food Research, Centre for Innovative Process Engineering (CENTIV) GmbH, Stuhr, Germany
| |
Collapse
|
8
|
Clove Flower Extract (Syzygium aromaticum) Has Anticancer Potential Effect Analyzed by Molecular Docking and Brine Shrimp Lethality Test (BSLT). Vet Med Int 2022; 2022:5113742. [PMID: 36106174 PMCID: PMC9467815 DOI: 10.1155/2022/5113742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Various anticancer medications have been discovered due to advances in the health care industry, but they have undesirable side effects. On the other hand, anticancer drugs derived from natural sources have low side effects, making them excellent for cancer therapy. This study aims to evaluate the effect of clove flower extract (Syzygium aromaticum) as a potential anticancer agent by determining grid-score values using molecular docking and LC50 values using the brine shrimp lethality test (BSLT) technique. As animal models, three hundred larvae of Artemia salina leach were divided into six groups. Each group has ten larvae that have undergone five replications. The clove flower extract concentration in the treatment media was 50 ppm (T1), 250 ppm (T2), 500 ppm (T3), 750 ppm (T4), 1000 ppm (T5), and 0 ppm (seawater) as the control. The probit analysis of Artemia Salina leach mortality percentage data. The results indicated that the clove flower extract (Syzygium aromaticum) is harmful to larvae with LC50 values of 227,1 g/ml or in the equation y = 2,8636 x – 1,7466 with an R2 value of 0.9062. According to molecular docking, eugenol acetate (grid-score −42.120834) has a close relationship with the cognate enzyme nitric oxide synthase (3E7G) based on its proximity to the grid score value (grid-score −61.271812). Therefore, clove flower extract has the potential to act as an anticancer medication. Based on the grid-score proximity, eugenol acetate is close to the homologous enzyme nitric oxide synthase (3E7G). Inhibition of nitric oxide synthase also shows a reduction in cancer cell proliferation.
Collapse
|
9
|
da Silva Felix RC, Barbosa TN, Marques HP, de Oliveira Rebouças CK, da Silveira Pereira JC, Batista JIL, de Paiva Soares KM, da Silva MDC, Bezerra ACDS. In vitro nematocidal activity of Punica granatum L. against gastrointestinal helminths in goats. J Parasit Dis 2022; 46:236-242. [PMID: 35299932 PMCID: PMC8901839 DOI: 10.1007/s12639-021-01439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/07/2021] [Indexed: 01/18/2023] Open
Abstract
The objective of this study was to evaluate the in vitro ovicidal activity, phytochemistry, and toxicity of a saline extract obtained from peel of Punica granatum L fruits. The ovicidal activity was evaluated by the hatching inhibition of eggs recovered from fecal samples of naturally infected goats; the phytochemical analysis was carried out using the fruit peel; and the toxicity was tested on Artemia salina, using saline extract. The results showed that the ovicidal effect of the tested extract was 99% (25 mg mL-1), 99% (12.5 mg mL-1), 98% (6.25 mg mL-1), and 95% (3.12 mg mL-1), higher than that of the control drug, thiabendazole (83%). The phytochemical analysis showed presence of phenols, anthraquinones, and condensed and hydrolysable tannins in the fruit extract. The toxicity test of the extract of P. granatum showed an LC50 of 6.19 mg mL-1, which indicates a safe use for a concentration of 3.12 mg mL-1, since it was the tested concentration that was below the reliable LC50. The saline extract from peels of P. granatum has ovicidal activity, important secondary metabolites, and absence of toxicity at the lowest concentration tested. However, in vivo tests in experimental models are recommended before performing experiments in ruminants.
Collapse
Affiliation(s)
- Renata Cristinne da Silva Felix
- grid.412393.e0000 0004 0644 0007Programa de Pós-Graduação em Ambiente, Tecnologia e Sociedade, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte Brazil
| | - Tallyson Nogueira Barbosa
- grid.412393.e0000 0004 0644 0007Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte Brazil
| | | | | | | | - João Inácio Lopes Batista
- grid.412393.e0000 0004 0644 0007Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte Brazil
| | - Karoline Mikaelle de Paiva Soares
- grid.412393.e0000 0004 0644 0007Laboratório de Biotecnologia de Alimentos, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte Brazil
| | - Michele Dalvina Correia da Silva
- grid.412393.e0000 0004 0644 0007Laboratório de Biotecnologia Molecular, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte Brazil
| | - Ana Carla Diógenes Suassuna Bezerra
- grid.412393.e0000 0004 0644 0007Laboratório de Biotecnologia Aplicada à Doenças Infecto-Parasitárias, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte Brazil
| |
Collapse
|
10
|
Alexa VT, Galuscan A, Soica CM, Cozma A, Coricovac D, Borcan F, Popescu I, Mioc A, Szuhanek C, Dehelean CA, Jumanca D. In Vitro Assessment of the Cytotoxic and Antiproliferative Profile of Natural Preparations Containing Bergamot, Orange and Clove Essential Oils. Molecules 2022; 27:molecules27030990. [PMID: 35164253 PMCID: PMC8838259 DOI: 10.3390/molecules27030990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
Medicinal plants and essential oils (EOs), in particular, were intensively studied in recent years as viable alternatives for antiproliferative chemical synthetic agents. In the same lines, the present study focuses on investigating the effects of natural preparations (emulsions) based on EOs obtained from Citrus bergamia Risso (bergamot-BEO), Citrus sinensis Osbeck (orange-OEO), and Syzygium aromaticum Merill et L. M. Perry (clove-CEO) on different healthy (human immortalized keratinocytes—HaCaT and primary human gingival fibroblasts—HGF) and human tumor cell lines (human melanoma—A375 and oral squamous carcinoma—SCC-4) in terms of the cells’ viability and cellular morphology. The obtained results indicate that the CEO emulsion (ECEO) induced a dose-dependent cytotoxic in both healthy (HaCaT and HGF) and tumor (A375 and SCC-4) cells. OEO emulsion (EOEO) increased cell viability percentage both for HaCaT and A375 cells and had an antiproliferative effect at the highest concentration in HGF and SCC-4 cells. BEO emulsion (EBEO) decreased the viability percentage of SCC-4 tumor cells. By associating OEO with CEO as a binary mixture in an emulsified formulation, the inhibition of tumor cell viability increases. The E(BEO/OEO) binary emulsion induced an antiproliferative effect on oral health and tumor cells, with a minimal effect on skin cells. The non-invasive tests performed to verify the safety of the test compound’s emulsions at skin level indicated that these compounds do not significantly modify the physiological skin parameters and can be considered safe for human skin.
Collapse
Affiliation(s)
- Vlad Tiberiu Alexa
- Department of Preventive, Community Dentistry and Oral Health, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (V.T.A.); (A.G.); (D.J.)
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No 2, 300041 Timisoara, Romania;
| | - Atena Galuscan
- Department of Preventive, Community Dentistry and Oral Health, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (V.T.A.); (A.G.); (D.J.)
- Translational and Experimental Clinical Research Center in Oral Health (TEXC-OH), Department of Preventive, Community Dentistry and Oral Health, “Victor Babeş” University of Medicine and Pharmacy 14A TudorVladimirescu Ave., 300173 Timisoara, Romania
| | - Codruța M. Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania; (D.C.); (C.A.D.)
- Correspondence: (C.M.S.); (A.C.)
| | - Antoanela Cozma
- Department of Soil Science, Faculty of Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300641 Timisoara, Romania;
- Correspondence: (C.M.S.); (A.C.)
| | - Dorina Coricovac
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania; (D.C.); (C.A.D.)
- Department of Toxicology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Florin Borcan
- Department of Analytical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
| | - Iuliana Popescu
- Department of Soil Science, Faculty of Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300641 Timisoara, Romania;
| | - Alexandra Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania; (D.C.); (C.A.D.)
| | - Camelia Szuhanek
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No 2, 300041 Timisoara, Romania;
- Department of Orthodontics, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No 2, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania; (D.C.); (C.A.D.)
- Department of Toxicology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Daniela Jumanca
- Department of Preventive, Community Dentistry and Oral Health, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (V.T.A.); (A.G.); (D.J.)
- Translational and Experimental Clinical Research Center in Oral Health (TEXC-OH), Department of Preventive, Community Dentistry and Oral Health, “Victor Babeş” University of Medicine and Pharmacy 14A TudorVladimirescu Ave., 300173 Timisoara, Romania
| |
Collapse
|
11
|
Mesquita KDSM, Feitosa BDS, Cruz JN, Ferreira OO, Franco CDJP, Cascaes MM, de Oliveira MS, Andrade EHDA. Chemical Composition and Preliminary Toxicity Evaluation of the Essential Oil from Peperomia circinnata Link var. circinnata. ( Piperaceae) in Artemia salina Leach. Molecules 2021; 26:7359. [PMID: 34885940 PMCID: PMC8659193 DOI: 10.3390/molecules26237359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Peperomia Ruiz and Pav, the second largest genus of the Piperaceae, has over the years shown potential biological activities. In this sense, the present work aimed to carry out a seasonal and circadian study on the chemical composition of Peperomia circinata essential oils and aromas, as well as to evaluate the preliminary toxicity in Artemia salina Leach and carry out an in silico study on the interaction mechanism. The chemical composition was characterized by gas chromatography (GC/MS and GC-FID). In the seasonal study the essential oil yields had a variation of 1.2-7.9%, and in the circadian study the variation was 1.5-5.6%. The major compounds in the seasonal study were β-phellandrene and elemicin, in the circadian they were β-phellandrene and myrcene, and the aroma was characterized by the presence of β-phellandrene. The multivariate analysis showed that the period and time of collection influenced the essential oil and aroma chemical composition. The highest toxicity value was observed for the essential oil obtained from the dry material, collected in July with a value of 14.45 ± 0.25 μg·mL-1, the in silico study showed that the major compounds may be related to potential biological activity demonstrated by the present study.
Collapse
Affiliation(s)
- Késsia do Socorro Miranda Mesquita
- Faculdade de Farmácia, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (K.d.S.M.M.); (B.d.S.F.); (E.H.d.A.A.)
| | - Bruna de Souza Feitosa
- Faculdade de Farmácia, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (K.d.S.M.M.); (B.d.S.F.); (E.H.d.A.A.)
| | - Jorddy Neves Cruz
- Laboratório Adolpho Ducke-Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (J.N.C.); (O.O.F.); (C.d.J.P.F.)
| | - Oberdan Oliveira Ferreira
- Laboratório Adolpho Ducke-Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (J.N.C.); (O.O.F.); (C.d.J.P.F.)
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Celeste de Jesus Pereira Franco
- Laboratório Adolpho Ducke-Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (J.N.C.); (O.O.F.); (C.d.J.P.F.)
| | - Márcia Moraes Cascaes
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil;
| | - Mozaniel Santana de Oliveira
- Laboratório Adolpho Ducke-Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (J.N.C.); (O.O.F.); (C.d.J.P.F.)
| | - Eloisa Helena de Aguiar Andrade
- Faculdade de Farmácia, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (K.d.S.M.M.); (B.d.S.F.); (E.H.d.A.A.)
- Laboratório Adolpho Ducke-Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (J.N.C.); (O.O.F.); (C.d.J.P.F.)
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil;
| |
Collapse
|
12
|
Clove Essential Oil ( Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021; 26:molecules26216387. [PMID: 34770801 PMCID: PMC8588428 DOI: 10.3390/molecules26216387] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 01/08/2023] Open
Abstract
Clove (Syzygium aromaticum L. Myrtaceae) is an aromatic plant widely cultivated in tropical and subtropical countries, rich in volatile compounds and antioxidants such as eugenol, β-caryophyllene, and α-humulene. Clove essential oil has received considerable interest due to its wide application in the perfume, cosmetic, health, medical, flavoring, and food industries. Clove essential oil has biological activity relevant to human health, including antimicrobial, antioxidant, and insecticidal activity. The impacts of the extraction method (hydrodistillation, steam distillation, ultrasound-assisted extraction, microwave-assisted extraction, cold pressing, and supercritical fluid extraction) on the concentration of the main volatile compounds in clove essential oil and organic clove extracts are shown. Eugenol is the major compound, accounting for at least 50%. The remaining 10-40% consists of eugenyl acetate, β-caryophyllene, and α-humulene. The main biological activities reported are summarized. Furthermore, the main applications in clove essential oil in the food industry are presented. This review presents new biological applications beneficial for human health, such as anti-inflammatory, analgesic, anesthetic, antinociceptive, and anticancer activity. This review aims to describe the effects of different methods of extracting clove essential oil on its chemical composition and food applications and the biological activities of interest to human health.
Collapse
|
13
|
Cai J, Yan R, Shi J, Chen J, Long M, Wu W, Kuca K. Antifungal and mycotoxin detoxification ability of essential oils: A review. Phytother Res 2021; 36:62-72. [PMID: 34528300 DOI: 10.1002/ptr.7281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/24/2022]
Abstract
With increased popular awareness of food safety and environmental protection, plant essential oil has attracted interest due to the absence of residue, its high efficiency, antioxidant, immune regulation, antibacterial, insecticidal, and other advantages. Their application in degradation and elimination of mycotoxin toxicity has attracted increasing attention. This paper reviews the structure, antibacterial activity, antibacterial mechanism, and toxic effects of essential oils. The inhibitory effects of various essential oils on different mycotoxins were studied. The research progress on the inhibitory effects of plant essential oils on fungi and mycotoxins in recent years was summarized to provide reference for the application of plant essential oils.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rong Yan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jichao Shi
- Liaoning Service Development Center, Shenyang, China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
14
|
Enzymatic Synthesis of Eugenyl Acetate from Essential Oil of Clove Using Lipases in Liquid Formulation as Biocatalyst. Appl Biochem Biotechnol 2021; 193:3512-3527. [PMID: 34292478 DOI: 10.1007/s12010-021-03610-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
In this research, eugenyl acetate, a compound with flavoring, antioxidant, and antimicrobial properties, was obtained from essential oil of clove (Syzygium aromaticum) via liquid lipase-mediated acetylation. Clove essential oil was extracted by drag water vapor from dry flower buds and its physic-chemical characteristics were analyzed. For the enzymatic synthesis, an extensive evaluation of reaction parameters was accomplished through employment of distinct reaction temperatures, acetic anhydride to eugenol molar ratios, enzyme loads, and three different lipases (a lyophilized enzyme produced by solid-state fermentation of sunflower seed with Penicillium sumatrense microorganism and other two commercial lipases - Lipozyme TL 100L and CALB L). The product eugenyl acetate was confirmed by 1H-NMR, 13C-NMR Distortionless Enhancement by Polarization Transfer (DEPT 135), and Heteronuclear Multiple Bond Correlation (HMBC). Through optimized conditions (55 °C, acetic anhydride to eugenol molar ratio of 1:1, 10 wt% of Lipozyme TL 100L), 91.80% of conversion after 2 h was achieved to the eugenyl acetate production. With the results obtained, it was possible to conclude that the use of lipases in liquid formulation is a promising alternative for the synthesis of essential esters largely applied on food, cosmetic, and pharmaceutical industries.
Collapse
|
15
|
Cansian RL, Staudt A, Bernardi JL, Puton BMS, Oliveira D, de Oliveira JV, Gomes ACC, Andrade BCOP, Leal ICR, Simas NK, Zeni J, Jungues A, Dallago RM, Backes GT, Paroul N. Toxicity and larvicidal activity on Aedes aegypti of citronella essential oil submitted to enzymatic esterification. BRAZ J BIOL 2021; 83:e244647. [PMID: 34190758 DOI: 10.1590/1519-6984.244647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/10/2021] [Indexed: 11/22/2022] Open
Abstract
The essential oil of citronella (Cymbopogon winterianus) has several biological activities, among them the insect repellent action. Some studies showed that cinnamic acid esters can be applied as natural pesticides, insecticides and fungicides. In this context, the objective of the present work was to evaluate the production of esters from citronella essential oil with cinnamic acid via enzymatic esterification. Besides, the essential oil toxicity before and after esterification against Artemia salina and larvicidal action on Aedes aegypti was investigated. Esters were produced using cinnamic acid as the acylating agent and citronella essential oil (3:1) in heptane and 15 wt% NS 88011 enzyme as biocatalysts, at 70 °C and 150 rpm. Conversion rates of citronellyl and geranyl cinnamates were 58.7 and 69.0% for NS 88011, respectively. For the toxicity to Artemia salina LC50 results of 5.29 μg mL-1 were obtained for the essential oil and 4.36 μg mL-1 for the esterified oils obtained with NS 88011. In the insecticidal activity against Aedes aegypti larvae, was obtained LC50 of 111.84 μg mL-1 for the essential oil of citronella and 86.30 μg mL-1 for the esterified oils obtained with the enzyme NS 88011, indicating high toxicity of the esters. The results demonstrated that the evaluated samples present potential of application as bioinsecticide.
Collapse
Affiliation(s)
- R L Cansian
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões - URI Erechim, Erechim, RS, Brasil
| | - A Staudt
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões - URI Erechim, Erechim, RS, Brasil.,Laboratório de Produtos Naturais e Ensaios Biológicos - LaProNEB, Departamento de Alimentos e Produtos Naturais, Faculdade de Farmácia, Centro de Ciências da Saúde - CCS, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brasil
| | - J L Bernardi
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões - URI Erechim, Erechim, RS, Brasil
| | - B M S Puton
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões - URI Erechim, Erechim, RS, Brasil
| | - D Oliveira
- Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brasil
| | - J V de Oliveira
- Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brasil
| | - A C C Gomes
- Laboratório de Produtos Naturais e Ensaios Biológicos - LaProNEB, Departamento de Alimentos e Produtos Naturais, Faculdade de Farmácia, Centro de Ciências da Saúde - CCS, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brasil
| | - B C O P Andrade
- Laboratório de Produtos Naturais e Ensaios Biológicos - LaProNEB, Departamento de Alimentos e Produtos Naturais, Faculdade de Farmácia, Centro de Ciências da Saúde - CCS, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brasil
| | - I C R Leal
- Laboratório de Produtos Naturais e Ensaios Biológicos - LaProNEB, Departamento de Alimentos e Produtos Naturais, Faculdade de Farmácia, Centro de Ciências da Saúde - CCS, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brasil
| | - N K Simas
- Laboratório de Produtos Naturais e Ensaios Biológicos - LaProNEB, Departamento de Alimentos e Produtos Naturais, Faculdade de Farmácia, Centro de Ciências da Saúde - CCS, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brasil
| | - J Zeni
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões - URI Erechim, Erechim, RS, Brasil
| | - A Jungues
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões - URI Erechim, Erechim, RS, Brasil
| | - R M Dallago
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões - URI Erechim, Erechim, RS, Brasil
| | - G T Backes
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões - URI Erechim, Erechim, RS, Brasil
| | - N Paroul
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões - URI Erechim, Erechim, RS, Brasil
| |
Collapse
|
16
|
Aldana-Mejía JA, Ccana-Ccapatinta GV, Squarisi IS, Nascimento S, Tanimoto MH, Ribeiro VP, Arruda C, Nicolella H, Esperandim T, Ribeiro AB, de Freitas KS, da Silva LHD, Ozelin SD, Oliveira LTS, Melo ALA, Tavares DC, Bastos JK. Nonclinical Toxicological Studies of Brazilian Red Propolis and Its Primary Botanical Source Dalbergia ecastaphyllum. Chem Res Toxicol 2021; 34:1024-1033. [PMID: 33720704 DOI: 10.1021/acs.chemrestox.0c00356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Propolis is one of the most widely used products in traditional medicine. One of the most prominent types of Brazilian propolis is the red one, whose primary botanical source is Dalbergia ecastaphyllum (L.) Taub. Despite the potential of Brazilian red propolis for developing new products with pharmacological activity, few studies guarantee safety in its use. The objective of this study was the evaluation of the possible toxic effects of Brazilian red propolis and D. ecastaphyllum, as well as the cytotoxicity assessment of the main compounds of red propolis on tumoral cell lines. Hydroalcoholic extracts of the Brazilian red propolis (BRPE) and D. ecastaphyllum stems (DSE) and leaves (DLE) were prepared and chromatographed for isolation of the major compounds. RP-HPLC-DAD was used to quantify the major compounds in the obtained extracts. The XTT assay was used to evaluate the cytotoxic activity of the extracts in the human fibroblast cell line (GM07492A). The results revealed IC50 values of 102.7, 143.4, and 253.1 μg/mL for BRPE, DSE, and DLE, respectively. The extracts were also evaluated for their genotoxic potential in the micronucleus assay in Chinese hamster lung fibroblasts cells (V79), showing the absence of genotoxicity. The BRPE was investigated for its potential in vivo toxicity in the zebrafish model. Concentrations of 0.8-6.3 mg/L were safe for the animals, with a LC50 of 9.37 mg/L. Of the 11 compounds isolated from BRPE, medicarpin showed a selective cytotoxic effect against the HeLa cell line. These are the initial steps to determine the toxicological potential of Brazilian red propolis.
Collapse
Affiliation(s)
- Jennyfer A Aldana-Mejía
- Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café S/N, Ribeirão Preto, SP 14040-930, Brazil
| | - Gari V Ccana-Ccapatinta
- Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café S/N, Ribeirão Preto, SP 14040-930, Brazil
| | - Iara S Squarisi
- Laboratory of Mutagenesis, University of Franca, Avenida Dr. Armando Salles Oliveira, 201-Parque Universitário, Franca, SP 14404-600, Brazil
| | - Samuel Nascimento
- Laboratory of Mutagenesis, University of Franca, Avenida Dr. Armando Salles Oliveira, 201-Parque Universitário, Franca, SP 14404-600, Brazil
| | - Matheus H Tanimoto
- Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café S/N, Ribeirão Preto, SP 14040-930, Brazil
| | - Victor P Ribeiro
- Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café S/N, Ribeirão Preto, SP 14040-930, Brazil
| | - Caroline Arruda
- Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café S/N, Ribeirão Preto, SP 14040-930, Brazil
| | - Heloiza Nicolella
- Laboratory of Mutagenesis, University of Franca, Avenida Dr. Armando Salles Oliveira, 201-Parque Universitário, Franca, SP 14404-600, Brazil
| | - Tábata Esperandim
- Laboratory of Mutagenesis, University of Franca, Avenida Dr. Armando Salles Oliveira, 201-Parque Universitário, Franca, SP 14404-600, Brazil
| | - Arthur B Ribeiro
- Laboratory of Mutagenesis, University of Franca, Avenida Dr. Armando Salles Oliveira, 201-Parque Universitário, Franca, SP 14404-600, Brazil
| | - Karoline S de Freitas
- Laboratory of Mutagenesis, University of Franca, Avenida Dr. Armando Salles Oliveira, 201-Parque Universitário, Franca, SP 14404-600, Brazil
| | - Lucas H D da Silva
- Laboratory of Mutagenesis, University of Franca, Avenida Dr. Armando Salles Oliveira, 201-Parque Universitário, Franca, SP 14404-600, Brazil
| | - Saulo D Ozelin
- Laboratory of Mutagenesis, University of Franca, Avenida Dr. Armando Salles Oliveira, 201-Parque Universitário, Franca, SP 14404-600, Brazil
| | - Lucas T S Oliveira
- Laboratory of Mutagenesis, University of Franca, Avenida Dr. Armando Salles Oliveira, 201-Parque Universitário, Franca, SP 14404-600, Brazil
| | - Alex L A Melo
- Laboratory of Mutagenesis, University of Franca, Avenida Dr. Armando Salles Oliveira, 201-Parque Universitário, Franca, SP 14404-600, Brazil
| | - Denise C Tavares
- Laboratory of Mutagenesis, University of Franca, Avenida Dr. Armando Salles Oliveira, 201-Parque Universitário, Franca, SP 14404-600, Brazil
| | - Jairo K Bastos
- Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café S/N, Ribeirão Preto, SP 14040-930, Brazil
| |
Collapse
|
17
|
Santana de Oliveira M, Pereira da Silva VM, Cantão Freitas L, Gomes Silva S, Nevez Cruz J, de Aguiar Andrade EH. Extraction Yield, Chemical Composition, Preliminary Toxicity of Bignonia nocturna (Bignoniaceae) Essential Oil and in Silico Evaluation of the Interaction. Chem Biodivers 2021; 18:e2000982. [PMID: 33587821 DOI: 10.1002/cbdv.202000982] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
Bignonia nocturna (Bignoniaceae) is a plant used for medicinal purposes by the Amazonian indigenous peoples. To date, there have been no reported studies on its toxicity. The present study aimed to evaluate the chemical composition of essential oils obtained from Bignonia nocturna by different extraction techniques. In addition, an in silico study of the molecular interactions was performed using molecular docking and molecular dynamics. The extractions were carried out by hydrodistillation, simultaneous distillation-extraction, and steam distillation, using samples collected from the Amazon in summer and winter. The chemical composition was analyzed by GC/FID and GC/MS, and the cytotoxic activity in Artemia salina Leach was evaluated. The maximum yield (1.38 % w/w) was obtained by hydrodistillation. The results indicated that benzaldehyde predominated in all the fractions of both the volatile concentrate and the essential oils. In addition, the oil proved to be highly toxic to Artemia salina. The computer simulation results indicated that benzaldehyde strongly interacts with acetylcholinesterase, which is the likely interaction mechanism responsible for the cytotoxicity.
Collapse
Affiliation(s)
- Mozaniel Santana de Oliveira
- Museu Paraense Emílio Goeldi, Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, 1901, Belém, 66077-530, PA, Brazil
| | - Valdeline Maria Pereira da Silva
- Museu Paraense Emílio Goeldi, Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, 1901, Belém, 66077-530, PA, Brazil
| | - Lucas Cantão Freitas
- Food Science and Technology, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, 66075-110, PA, Brazil
| | - Sebastião Gomes Silva
- Museu Paraense Emílio Goeldi, Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, 1901, Belém, 66077-530, PA, Brazil
| | - Jorddy Nevez Cruz
- Museu Paraense Emílio Goeldi, Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, 1901, Belém, 66077-530, PA, Brazil
| | - Eloisa Helena de Aguiar Andrade
- Museu Paraense Emílio Goeldi, Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, 1901, Belém, 66077-530, PA, Brazil.,Faculty of Chemistry, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, Belém, 66075-110, PA, Brazil
| |
Collapse
|
18
|
Piazza SP, Puton BM, Dallago RM, de Oliveira D, Cansian RL, Mignoni M, Paroul N. Production of benzyl cinnamate by a low-cost immobilized lipase and evaluation of its antioxidant activity and toxicity. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00586. [PMID: 33489787 PMCID: PMC7809389 DOI: 10.1016/j.btre.2021.e00586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/03/2020] [Accepted: 12/31/2020] [Indexed: 11/17/2022]
Abstract
In this work was optimized the production of benzyl cinnamate by enzymatic catalysis using the immobilized lipase NS88011 and to evaluate its biological properties. The optimized condition for this system was 1:3 (acid:alcohol) molar ratio, 59 °C, biocatalyst concentration 4.4 mg.mL-1 for 32 h, with a yield of 97.6 %. The enzyme stability study showed that the enzyme remains active and yields above 60 % until the 13th cycle (416 h), presenting a promising half-life. In the determination of the antioxidant activity of the ester, an inhibitory concentration necessary to inhibit 50 % of the free radical 2,2-diphenyl-1-picryl-hydrazyl DPPH (IC50) of 149.8 mg.mL-1 was observed. For acute toxicity against bioindicator Artemia salina, lethal doses (LD50) of 0.07 and 436.7 μg.mL-1 were obtained for the ester and cinnamic acid, showing that benzyl cinnamate had higher toxicity, indicating potential cytotoxic activity against human tumors.
Collapse
Affiliation(s)
- Suelen Paloma Piazza
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Av. sete de setembro, 1621, 99709-910, Erechim, RS, Brazil
| | - Bruna Maria Puton
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Av. sete de setembro, 1621, 99709-910, Erechim, RS, Brazil
| | - Rogério Marcos Dallago
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Av. sete de setembro, 1621, 99709-910, Erechim, RS, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina-UFSC, Campus Universitário, Bairro Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Rogério Luis Cansian
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Av. sete de setembro, 1621, 99709-910, Erechim, RS, Brazil
| | - Marcelo Mignoni
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Av. sete de setembro, 1621, 99709-910, Erechim, RS, Brazil
| | - Natalia Paroul
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Av. sete de setembro, 1621, 99709-910, Erechim, RS, Brazil
| |
Collapse
|
19
|
França LP, Amaral ACF, Ramos ADS, Ferreira JLP, Maria ACB, Oliveira KMT, Araujo ES, Branches ADS, Silva JN, Silva NG, Barros GDA, Chaves FCM, Tadei WP, Silva JRDA. Piper capitarianum essential oil: a promising insecticidal agent for the management of Aedes aegypti and Aedes albopictus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9760-9776. [PMID: 33159226 DOI: 10.1007/s11356-020-11148-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Mosquitoes are responsible for serious public health problems worldwide, and as such, Aedes aegypti and Aedes albopictus are important vectors in the transmission of dengue, chikungunya, and Zika in Brazil and other countries of the world. Due to growing resistance to chemical insecticides among populations of vectors, environmentally friendly strategies for vector management are receiving ever more attention. Essential oils (EOs) extracted from plants have activities against insects with multiple mechanisms of action. These mechanisms hinder the development of resistance, and have the advantages of being less toxicity and biodegradable. Thus, the present study aimed to evaluate the chemical composition of the EOs obtained from Piper capitarianum Yunck, as well as evaluating their insecticidal potential against Aedes aegypti and A. albopictus, and their toxicity in relation to Artemia salina. The yields of the EOs extracted from the leaves, stems, and inflorescences of P. capitarianum were 1.2%, 0.9%, and 0.6%, respectively, and their main constituents were trans-caryophyllene (20.0%), α-humulene (10.2%), β-myrcene (10.5%), α-selinene (7.2%), and linalool (6.0%). The EO from the inflorescences was the most active against A. aegypti and A. albopictus, and exhibited the respective larvicidal (LC50 = 87.6 μg/mL and 76.1 μg/mL) and adulticide activities (LC50 = 126.2 μg/mL and 124.5 μg/mL). This EO was also the most active in the inhibition of AChE, since it presented an IC50 value of 14.2 μg/mL. Its larvicidal effect was observed under optical and scanning electron microscopy. Additionally, non-toxic effects against A. salina were observed. Docking modeling of trans-caryophyllene and α-humulene on sterol carrier protein-2 (SCP-2) suggests that both molecules have affinity with the active site of the enzyme, which indicates a possible mechanism of action. Therefore, the essential oil of P. capitarianum may be used in the development of new insecticide targets for the control of A. aegypti and A. albopictus in the Amazonian environment.
Collapse
Affiliation(s)
- Leandro P França
- Chromatography Laboratory, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Ana Claudia F Amaral
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Aline de S Ramos
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - José Luiz P Ferreira
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Ana Clara B Maria
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Kelson Mota T Oliveira
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Earle S Araujo
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Adjane Dalvana S Branches
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Jonathas N Silva
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Noam G Silva
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Gabriel de A Barros
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Wanderli P Tadei
- Laboratory of Malaria and Dengue, Institute for Research in the Amazon, Manaus, AM, Brazil
| | | |
Collapse
|
20
|
Gonçalves IL, Machado das Neves G, Porto Kagami L, Eifler-Lima VL, Merlo AA. Discovery, development, chemical diversity and design of isoxazoline-based insecticides. Bioorg Med Chem 2020; 30:115934. [PMID: 33360575 DOI: 10.1016/j.bmc.2020.115934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/09/2020] [Accepted: 12/03/2020] [Indexed: 12/29/2022]
Abstract
Isoxazoline is a 5-membered heterocycle present in the active compounds of many commercial veterinary anti-ectoparasitic products. The molecular target of isoxazolines is the inhibition of GABA-gated chloride channels in insects. These facts have inspired the use of the isoxazoline scaffold in the design of novel insecticide compounds. The main strategies used for isoxazoline synthesis are either the 1,3-dipolar cycloaddition between a nitrile oxide and an alkene or the reaction between hydroxylamine and an α,β-unsaturated carbonyl compound. This review highlights the utilization of isoxazoline as insecticide: its mode of action, its commercial preparations and its consideration in the design of novel insecticides. Similarity analyses were performed with 235 isoxazoline derivatives in three different cheminformatic approaches - chemical property correlations, similarity network and compound clustering. The cheminformatic methodologies are interesting tools to use in evaluating the similarity between commercial isoxazolines and to clarify the main features explored within their derivatives.
Collapse
Affiliation(s)
- Itamar Luís Gonçalves
- Laboratório de Síntese Orgânica Medicinal - LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre-RS 90610-000, Brazil
| | - Gustavo Machado das Neves
- Laboratório de Síntese Orgânica Medicinal - LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre-RS 90610-000, Brazil
| | - Luciano Porto Kagami
- Laboratório de Síntese Orgânica Medicinal - LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre-RS 90610-000, Brazil
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal - LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre-RS 90610-000, Brazil
| | - Aloir Antonio Merlo
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501970 RS, Brazil.
| |
Collapse
|
21
|
Staudt A, Duarte PF, Amaral BPD, Peixoto Andrade BCDO, Simas NK, Correa Ramos Leal I, Sangenito LS, Santos ALSD, de Oliveira D, Junges A, Cansian RL, Paroul N. Biological properties of functional flavoring produced by enzymatic esterification of citronellol and geraniol present in Cymbopogon winterianus essential oil. Nat Prod Res 2020; 35:5981-5987. [PMID: 32840398 DOI: 10.1080/14786419.2020.1810032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The chemical composition and biological properties of citronella essential oil were modified by enzymatic esterification reaction of the major monoterpenic alcohols with cinnamic acid. The almost complete conversion of geraniol and citronellol present in the citronella (Cymbopogon winterianus) essential oil, into geranyl (99%) and citronellyl (98%) cinnamates was obtained after 48 hours of reaction using a molar ratio of 3:1 (cinnamic acid/alcohol), lipase concentration (Novozym 435) of 15% (w/w) and 70 °C. The esterified oil showed higher antimicrobial activity against Staphylococcus aureus bacteria resistant to oxacillin and penicillin and also greater larvicidal activity against Aedes aegypti larvae compared to unesterified oil. The results concerning the evaluation of toxicity against Artemia salina and cytotoxicity against monkey kidney epithelial cells also showed the superiority of the esterified oil.
Collapse
Affiliation(s)
- Amanda Staudt
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Erechim, RS, Brazil.,Laboratory of Natural Products and Biological Assays - LaProNEB, Food and Natural Products Department, Pharmacy Faculty, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Patrícia Fonseca Duarte
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Erechim, RS, Brazil
| | - Bruna Paes do Amaral
- Laboratory of Natural Products and Biological Assays - LaProNEB, Food and Natural Products Department, Pharmacy Faculty, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Bárbara Carolina de Oliveira Peixoto Andrade
- Laboratory of Natural Products and Biological Assays - LaProNEB, Food and Natural Products Department, Pharmacy Faculty, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Naomi Kato Simas
- Laboratory of Natural Products and Biological Assays - LaProNEB, Food and Natural Products Department, Pharmacy Faculty, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Ivana Correa Ramos Leal
- Laboratory of Natural Products and Biological Assays - LaProNEB, Food and Natural Products Department, Pharmacy Faculty, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Leandro Stefano Sangenito
- Laboratory of Advanced Studies of Emerging and Resistant Microorganisms, Department of General Microbiology, Paulo de Góes Institute of Microbiology, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Laboratory of Advanced Studies of Emerging and Resistant Microorganisms, Department of General Microbiology, Paulo de Góes Institute of Microbiology, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina-UFSC, Florianópolis, SC, Brazil
| | - Alexander Junges
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Erechim, RS, Brazil
| | - Rogério Luis Cansian
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Erechim, RS, Brazil
| | - Natalia Paroul
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Erechim, RS, Brazil
| |
Collapse
|
22
|
Physical, Thermal, and Antibacterial Effects of Active Essential Oils with Potential for Biomedical Applications Loaded onto Cellulose Acetate/Polycaprolactone Wet-Spun Microfibers. Biomolecules 2020; 10:biom10081129. [PMID: 32751893 PMCID: PMC7465996 DOI: 10.3390/biom10081129] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
New approaches to deal with the growing concern associated with antibiotic-resistant bacteria are emerging daily. Essential oils (EOs) are natural antimicrobial substances with great potential to mitigate this situation. However, their volatile nature, in their liquid-free form, has restricted their generalized application in biomedicine. Here, we propose the use of cellulose acetate (CA)/polycaprolactone (PCL) wet-spun fibers as potential delivery platforms of selected EOs to fight infections caused by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Twenty EOs were selected and screened for their minimal inhibitory concentration (MIC), using the antibiotic ampicillin as positive control. The cinnamon leaf oil (CLO), cajeput oil (CJO), and the clove oil (CO) were the most effective EOs, against the Gram-positive (MIC < 22.38 mg/mL) and the Gram-negative (MIC < 11.19 mg/mL) bacteria. Uniform microfibers were successfully wet-spun from CA/PCL with an averaged diameter of 53.9 ± 4.5 µm, and then modified by immersion with CLO, CJO and CO at 2 × MIC value. EOs incorporation was confirmed by UV-visible spectroscopy, Fourier-transformed infrared spectroscopy, and thermal gravimetric analysis. However, while microfibers contained ampicillin at MIC (control) after the 72 h modification, the CLO, CO and CJO-loaded fibers registered ≈ 14%, 66%, and 76% of their MIC value, respectively. Data showed that even at small amounts the EO-modified microfibers were effective against the tested bacteria, both by killing bacteria more quickly or by disrupting more easily their cytoplasmic membrane than ampicillin. Considering the amount immobilized, CLO-modified fibers were deemed the most effective from the EOs group. These results indicate that CA/PCL microfibers loaded with EOs can be easily produced with increased antibacterial action, envisioning their use as scaffolding materials for the treatment of infections.
Collapse
|
23
|
Luis AS, Campos ER, de Oliveira JL, Guilger-Casagrande M, de Lima R, Castanha RF, de Castro VLSS, Fraceto LF. Zein Nanoparticles Impregnated with Eugenol and Garlic Essential Oils for Treating Fish Pathogens. ACS OMEGA 2020; 5:15557-15566. [PMID: 32637831 PMCID: PMC7331071 DOI: 10.1021/acsomega.0c01716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 05/08/2023]
Abstract
The supply of food derived from aquaculture has increased significantly in recent years. The aim of this industrial sector is to produce sustainable products to meet the needs of consumers, providing food security and nutritional benefits. The development of aquaculture has faced challenges including disease outbreaks that can cause substantial economic losses. These diseases can be controlled using chemicals such as antibiotics. However, the indiscriminate use of these substances can have major negative impacts on human health and the environment with the additional risk of the emergence of resistant organisms. The present manuscript describes the use of phytotherapy in association with nanotechnology in order to obtain a more effective and less harmful system for the control of bacterial diseases in fish. Zein nanoparticles associated with eugenol and garlic essential oil were prepared through antisolvent precipitation and characterized. Zein nanoparticles are promising carrier systems as zein proteins are biodegradable and biocompatible and, in this way, good candidates for encapsulation of active ingredients. The system presented good physicochemical properties with an average particle diameter of approximately 150 nm, a polydispersity index lower than 0.2, and a zeta potential of approximately 30 mV. High encapsulation efficiency was obtained for the active compounds with values higher than 90%, and the compounds were protected against degradation during storage (90 days). The nanoparticle formulations containing the botanical compounds also showed less toxicity in the tests performed with a biomarker (Artemia salina). In addition, the systems showed bactericidal activity against the important fish pathogenic bacteria Aeromonas hydrophila, Edwardsiella tarda, and Streptococcus iniae in vitro. The present study opens new perspectives for the use of botanical compounds in combination with nanotechnology to treat fish diseases caused by bacteria, contributing to a more sustainable fish chain production.
Collapse
Affiliation(s)
- Angélica
I. S. Luis
- Institute
of Science and Technology, Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP 18087-180, Brazil
| | | | - Jhones L. de Oliveira
- Institute
of Science and Technology, Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP 18087-180, Brazil
| | - Mariana Guilger-Casagrande
- Laboratory
of Bioactivity Assessment and Toxicology of Nanomaterials (LABiToN), University of Sorocaba, Sorocaba, SP 18023-000, Brazil
| | - Renata de Lima
- Laboratory
of Bioactivity Assessment and Toxicology of Nanomaterials (LABiToN), University of Sorocaba, Sorocaba, SP 18023-000, Brazil
| | - Rodrigo F. Castanha
- Laboratory
of Ecotoxicology and Biosafety, Embrapa
Environment, Jaguariúna, São Paulo 13820-000, Brazil
| | - Vera L. S. S. de Castro
- Laboratory
of Ecotoxicology and Biosafety, Embrapa
Environment, Jaguariúna, São Paulo 13820-000, Brazil
| | - Leonardo F. Fraceto
- Institute
of Science and Technology, Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP 18087-180, Brazil
| |
Collapse
|
24
|
de Oliveira ADN, de Oliveira DT, Angélica RS, Andrade EHDA, da Silva JKDR, Rocha Filho GND, Coral N, Pires LHDO, Luque R, do Nascimento LAS. Efficient esterification of eugenol using a microwave-activated waste kaolin. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01797-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Acetylation of Eugenol on Functionalized Mesoporous Aluminosilicates Synthesized from Amazonian Flint Kaolin. Catalysts 2020. [DOI: 10.3390/catal10050478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work was aimed to investigate the catalytic activity of a mesoporous catalyst synthesized from 3-mercaptopropyltrimethoxysilane (MPTS) functionalized Amazonian flint kaolin in the acetylation of eugenol with acetic anhydride. Materials were characterized by thermogravimetry (TGA), N2 adsorption (BET), X-ray dispersive energy spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and acid-base titration. The results presented proved the efficiency of flint kaolin as an alternative source in the preparation of mesoporous materials, since the material exhibited textural properties (specific surface area of 1071 m2 g−1, pore volume of 1.05 cm3 g−1 and pore diameter of 3.85 nm) and structural properties (d100 = 4.35 nm, a0 = 5.06 nm and Wt = 1.21 nm) within the required and characteristic material standards. The catalyst with the total amount of acidic sites of 4.89 mmol H+ g−1 was efficient in converting 99.9% of eugenol (eugenol to acetic anhydride molar ratio of 1:5, 2% catalyst, temperature and reaction time 80 °C and 40 min reaction). In addition, the reused catalyst could be successfully recycled with 92% conversion activity under identical reaction conditions.
Collapse
|
26
|
Acetylation of Eugenol over 12-Molybdophosphoric Acid Anchored in Mesoporous Silicate Support Synthesized from Flint Kaolin. MATERIALS 2019; 12:ma12182995. [PMID: 31527423 PMCID: PMC6766331 DOI: 10.3390/ma12182995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/26/2019] [Accepted: 09/09/2019] [Indexed: 11/18/2022]
Abstract
A new prepared catalyst, 12-molybdophosphoric acid (HPMo) anchored to the mesoporous aluminosilicate AlSiM, synthesized from Amazon kaolin, was characterized and used as a heterogeneous acid catalyst for the production of eugenyl acetate by acetylation of eugenol with acetic anhydride. The effect of various reaction parameters, such as catalyst concentration, eugenol/acetic anhydride molar ratio, temperature and reaction time, was studied to optimize the conditions of maximum conversion of eugenol. The kinetics studies showed that in eugenol acetylation, the substrate concentration follows a first order kinetics. The results of activation energy was 19.96 kJ mol−1 for HPMo anchored to AlSiM. The reuse of the catalyst was also studied and there was no loss of catalytic activity after four cycles of use (from 99.9% in the first cycle to 90% in the fifth cycle was confirmed), and an excellent stability of the material was observed. Based on catalytic and kinetic studies, HPMo anchored to AlSiM is considered an excellent catalyst.
Collapse
|
27
|
Lakshmeesha TR, Kalagatur NK, Mudili V, Mohan CD, Rangappa S, Prasad BD, Ashwini BS, Hashem A, Alqarawi AA, Malik JA, Abd Allah EF, Gupta VK, Siddaiah CN, Niranjana SR. Biofabrication of Zinc Oxide Nanoparticles With Syzygium aromaticum Flower Buds Extract and Finding Its Novel Application in Controlling the Growth and Mycotoxins of Fusarium graminearum. Front Microbiol 2019; 10:1244. [PMID: 31249558 PMCID: PMC6582371 DOI: 10.3389/fmicb.2019.01244] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/20/2019] [Indexed: 12/24/2022] Open
Abstract
Fusarium graminearum is a leading plant pathogen that causes Fusarium head blight, stalk rot, and Gibberella ear rot diseases in cereals and posing the immense threat to the microbiological safety of the food. Herein, we report the green synthesis of zinc oxide nanoparticles from Syzygium aromaticum (SaZnO NPs) flower bud extract by combustion method and investigated their application for controlling of growth and mycotoxins of F. graminearum. Formation of SaZnO NPs was confirmed by spectroscopic methods. The electron microscopic (SEM and TEM) analysis revealed the formation of triangular and hexagonal shaped SaZnO NPs with size range 30-40 nm. The synthesized SaZnO NPs reduced the growth and production of deoxynivalenol and zearalenone of F. graminearum in broth culture. Further analysis revealed that treatment of mycelia with SaZnO NPs resulted in the accumulation of ROS in the dose-dependent manner. Also, SaZnO NPs treatment enhanced lipid peroxidation, depleted ergosterol content, and caused detrimental damage to the membrane integrity of fungi. Moreover, SEM observations revealed that the presence of diverged micro-morphology (wrinkled, rough and shrank surface) in the macroconidia treated with SaZnO NPs. Taken together, SaZnO NPs may find a potential application in agriculture and food industries due to their potent antifungal activity.
Collapse
Affiliation(s)
| | - Naveen Kumar Kalagatur
- Microbiology Division, Defence Food Research Laboratory, Mysore, India.,Toxicology and Immunology Division, DRDO-BU-Centre for Life Sciences, Bharathiar University, Coimbatore, India
| | - Venkataramana Mudili
- Toxicology and Immunology Division, DRDO-BU-Centre for Life Sciences, Bharathiar University, Coimbatore, India
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Mandya, India
| | | | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Abdulaziz A Alqarawi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jahangir Ahmad Malik
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | |
Collapse
|
28
|
Tischer JS, Possan H, Luiz J, Malagutti NB, Martello R, Valério A, Dalmagro J, de Oliveira D, Oliveira JV. Synthesis of eugenyl acetate through heterogeneous catalysis. JOURNAL OF ESSENTIAL OIL RESEARCH 2019. [DOI: 10.1080/10412905.2019.1566098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Heloysa Possan
- Environmental Sciences Area, Unochapecó, Chapecó, Brazil
| | - José Luiz
- Environmental Sciences Area, Unochapecó, Chapecó, Brazil
| | | | | | | | - Jacir Dalmagro
- Environmental Sciences Area, Unochapecó, Chapecó, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, UFSC, Florianópolis, Brazil
| | | |
Collapse
|
29
|
Dimitrijević M, Grković N, Bošković M, Baltić MŽ, Dojčinović S, Karabasil N, Vasilev D, Teodorović V. Inhibition of
Listeria monocytogenes
growth on vacuum packaged rainbow trout (
Oncorhynchus mykiss
) with carvacrol and eugenol. J Food Saf 2018. [DOI: 10.1111/jfs.12553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mirjana Dimitrijević
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineUniversity of Belgrade Belgrade Serbia
| | - Nevena Grković
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineUniversity of Belgrade Belgrade Serbia
| | - Marija Bošković
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineUniversity of Belgrade Belgrade Serbia
| | - Milan Ž. Baltić
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineUniversity of Belgrade Belgrade Serbia
| | - Slobodan Dojčinović
- Veterinary Institute of Republic of Srpska “Dr Vaso Butozan” Banja Luka Bosnia and Herzegovina
| | - Neđeljko Karabasil
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineUniversity of Belgrade Belgrade Serbia
| | - Dragan Vasilev
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineUniversity of Belgrade Belgrade Serbia
| | - Vlado Teodorović
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineUniversity of Belgrade Belgrade Serbia
| |
Collapse
|
30
|
Hepokur C. Investigation of cytotoxic effects of Eugenia caryophyllus (Clove). CUMHURIYET DENTAL JOURNAL 2018. [DOI: 10.7126/cumudj.444426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Thomas A, Mazigo HD, Manjurano A, Morona D, Kweka EJ. Evaluation of active ingredients and larvicidal activity of clove and cinnamon essential oils against Anopheles gambiae (sensu lato). Parasit Vectors 2017; 10:411. [PMID: 28874207 PMCID: PMC5585972 DOI: 10.1186/s13071-017-2355-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mosquitoes are well-known vectors of many diseases including malaria and lymphatic filariasis. Uses of synthetic insecticides are associated with high toxicity, resistance, environmental pollution and limited alternative, effective synthetic insecticides. This study was undertaken to evaluate the larvicidal efficacy of clove and cinnamon essential oils against laboratory Anopheles gambiae (sensu stricto) and wild An. arabiensis larvae. METHODS The standard WHO guideline for larvicides evaluation was used, and the GC-MS machine was used for active compounds percentage composition analysis and structures identification. Probit regression analysis was used for LC50 and LC95 calculations while a t-test was used to test for significant differences between laboratory-reared and wild larvae populations in each concentration of plant extract. RESULTS Mortality effect of clove and cinnamon essential oils against wild and laboratory-reared larvae had variations indicated by their LC50 and LC95 values. The mortality at different concentrations of cinnamon and clove post-exposure for wild and laboratory-reared larvae were dosage-dependent and were higher for cinnamon than for clove essential oils. The mortality effect following exposure to a blend of the two essential oils was higher for blends containing a greater proportion of cinnamon oil. In the chemical analysis of the active ingredients of cinnamon essential oil, the main chemical content was Eugenol, and the rarest was β-Linalool while for clove essential oil, the main chemical content was Eugenol and the rarest was Bicyclo. CONCLUSION The essential oils showed a larvicidal effect which was concentration-dependent for both laboratory and wild collected larvae. The active ingredient compositions triggered different responses in mortality. Further research in small-scale should be conducted with concentrated extracted compounds.
Collapse
Affiliation(s)
- Adelina Thomas
- School of Pharmacy, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Humphrey D. Mazigo
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Alphaxard Manjurano
- National Institute for Medical Research, Mwanza Research Centre, Mwanza, Tanzania
| | - Domenica Morona
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Eliningaya J. Kweka
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
- Division of Livestock and Human Diseases Vector Control, Mosquito Section, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
| |
Collapse
|
32
|
Chemical Composition and In Vitro Antioxidant, Cytotoxic, Antimicrobial, and Larvicidal Activities of the Essential Oil of Mentha piperita L. (Lamiaceae). ScientificWorldJournal 2017; 2017:4927214. [PMID: 28116346 PMCID: PMC5237462 DOI: 10.1155/2017/4927214] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/06/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022] Open
Abstract
The essential oil was obtained by hydrodistillation and the identification and quantification of components were achieved with the use of GC-MS analysis. The antioxidant activity was evaluated by the method of sequestration of DPPH. Essential oils were used for study the cytotoxic front larvae of Artemia salina. In the evaluation of the antimicrobial activity of essential oils, we employed the disk-diffusion method. The potential larvicide in mosquito larvae of the third stage of development of Aedes aegypti to different concentrations of essential oils was evaluated. The major compounds found in the essential oils of M. piperita were linalool (51.8%) and epoxyocimene (19.3%). The percentage of antioxidant activity was 79.9 ± 1.6%. The essential oil showed LC50 = 414.6 μg/mL front of A. saline and is considered highly toxic. It shows sensitivity and halos significant inhibition against E. coli. The essential possessed partial larvicidal efficiency against A. aegypti.
Collapse
|