1
|
Añazco C, Ojeda PG, Guerrero-Wyss M. Common Beans as a Source of Amino Acids and Cofactors for Collagen Biosynthesis. Nutrients 2023; 15:4561. [PMID: 37960212 PMCID: PMC10649776 DOI: 10.3390/nu15214561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Common beans (Phaseolus vulgaris L.) are widely consumed in diets all over the world and have a significant impact on human health. Proteins, vitamins, minerals, phytochemicals, and other micro- and macronutrients are abundant in these legumes. On the other hand, collagens, the most important constituent of extracellular matrices, account for approximately 25-30 percent of the overall total protein composition within the human body. Hence, the presence of amino acids and other dietary components, including glycine, proline, and lysine, which are constituents of the primary structure of the protein, is required for collagen formation. In this particular context, protein quality is associated with the availability of macronutrients such as the essential amino acid lysine, which can be acquired from meals containing beans. Lysine plays a critical role in the process of post-translational modifications facilitated with enzymes lysyl hydroxylase and lysyl oxidase, which are directly involved in the synthesis and maturation of collagens. Furthermore, collagen biogenesis is influenced by the cellular redox state, which includes important minerals and bioactive chemicals such as iron, copper, and certain quinone cofactors. This study provides a novel perspective on the significant macro- and micronutrients present in Phaseolus vulgaris L., as well as explores the potential application of amino acids and cofactors derived from this legume in the production of collagens and bioavailability. The utilization of macro- and micronutrients obtained from Phaseolus vulgaris L. as a protein source, minerals, and natural bioactive compounds could optimize the capacity to promote the development and durability of collagen macromolecules within the human body.
Collapse
Affiliation(s)
- Carolina Añazco
- Laboratorio de Bioquímica Nutricional, Escuela de Nutrición y Dietética, Carrera de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, General Lagos #1190, Valdivia 5110773, Chile
| | - Paola G. Ojeda
- Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Marion Guerrero-Wyss
- Laboratorio de Bioquímica Nutricional, Escuela de Nutrición y Dietética, Carrera de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, General Lagos #1190, Valdivia 5110773, Chile
| |
Collapse
|
2
|
Teixeira RF, Balbinot Filho CA, Oliveira DD, Zielinski AAF. Prospects on emerging eco-friendly and innovative technologies to add value to dry bean proteins. Crit Rev Food Sci Nutr 2023; 64:10256-10280. [PMID: 37341113 DOI: 10.1080/10408398.2023.2222179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The world's growing population and evolving food habits have created a need for alternative plant protein sources, with pulses playing a crucial role as healthy staple foods. Dry beans are high-protein pulses rich in essential amino acids like lysine and bioactive peptides. They have gathered attention for their nutritional quality and potential health benefits concerning metabolic syndrome. This review highlights dry bean proteins' nutritional quality, health benefits, and limitations, focusing on recent eco-friendly emerging technologies for their obtaining and functionalization. Antinutritional factors (ANFs) in bean proteins can affect their in vitro protein digestibility (IVPD), and lectins have been identified as potential allergens. Recently, eco-friendly emerging technologies such as ultrasound, microwaves, subcritical fluids, high-hydrostatic pressure, enzyme technology, and dry fractionation methods have been explored for extracting and functionalizing dry bean proteins. These technologies have shown promise in reducing ANFs, improving IVPD, and modifying allergen epitopes. Additionally, they enhance the techno-functional properties of bean proteins, making them more soluble, emulsifying, foaming, and gel-forming, with enhanced water and oil-holding capacities. By utilizing emerging innovative technologies, protein recovery from dry beans and the development of protein isolates can meet the demand for alternative protein sources while being eco-friendly, safe, and efficient.
Collapse
Affiliation(s)
- Renata Fialho Teixeira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | |
Collapse
|
3
|
Sanfilippo R, Canale M, Dugo G, Oliveri C, Scarangella M, Strano MC, Amenta M, Crupi A, Spina A. Effects of Partial Replacement of Durum Wheat Re-Milled Semolina with Bean Flour on Physico-Chemical and Technological Features of Doughs and Breads during Storage. PLANTS (BASEL, SWITZERLAND) 2023; 12:1125. [PMID: 36903984 PMCID: PMC10005074 DOI: 10.3390/plants12051125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The 'Signuredda' bean is a local genotype of pulse with particular technological characteristics, cultivated in Sicily, Italy. This paper presents the results of a study to evaluate the effects of partial substitutions of durum wheat semolina with 5%, 7.5%, and 10% of bean flour to prepare durum wheat functional breads. The physico-chemical properties and the technological quality of flours, doughs, and breads were investigated, as well as their storage process up to six days after baking. With the addition of bean flour, the proteins increased, as did the brown index, while the yellow index decreased. The water absorption and dough stability according to the farinograph increased from 1.45 in FBS 7.5%, to 1.65 in FBS 10%, for both 2020 and 2021, and from 5% to 10% supplementation for water absorption. Dough stability increased from 4.30 in FBS 5%-2021 to 4.75 in FBS 10%-2021. According to the mixograph, the mixing time also increased. The absorption of water and oil, as well as the leavening capacity, were also examined, and results highlighted an increase in the amount of water absorbed and a greater fermentation capacity. The greatest oil uptake was shown with bean flour at 10% supplementation (3.40%), while all bean flour mixes showed a water absorption of approximately 1.70%. The fermentation test showed the addition of 10% bean flour significantly increased the fermentative capacity of the dough. The color of the crumb was darker, while the crust became lighter. During the staling process, compared with the control sample, loaves with greater moisture and volume, and better internal porosity were obtained. Moreover, the loaves were extremely soft at T0 (8.0 versus 12.0 N of the control). In conclusion, the results showed an interesting potential of 'Signuredda' bean flour as a bread-making ingredient to obtain softer breads, which are better able to resist becoming stale.
Collapse
Affiliation(s)
- Rosalia Sanfilippo
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Michele Canale
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Giacomo Dugo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina-Viale Annunziata, 98100 Messina, Italy
- Science4Life S.r.l., Spin-Off of the University of Messina-Via Leonardo Sciascia, 98100 Messina, Italy
| | - Cinzia Oliveri
- Agronomic Consultant of AgriCultura Terra di Santo Stefano, C.da Segreto, Santo Stefano di Briga, 98100 Messina, Italy
| | - Michele Scarangella
- ICQ-RF—Ispettorato Centrale Qualità e Repressione Frodi, Laboratorio di Catania, Via Alessandro Volta 19, 95122 Catania, Italy
| | - Maria Concetta Strano
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Margherita Amenta
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Antonino Crupi
- AgriCultura Terra di Santo Stefano, C.da Passo della Scala, Santo Stefano di Briga, 98100 Messina, Italy
| | - Alfio Spina
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| |
Collapse
|
4
|
Egea MB, De Sousa TL, Dos Santos DC, De Oliveira Filho JG, Guimarães RM, Yoshiara LY, Lemes AC. Application of Soy, Corn, and Bean By-products in the Gluten-free Baking Process: A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Ugwuanyi S, Udengwu OS, Snowdon RJ, Obermeier C. Novel candidate loci for morpho-agronomic and seed quality traits detected by targeted genotyping-by-sequencing in common bean. FRONTIERS IN PLANT SCIENCE 2022; 13:1014282. [PMID: 36438107 PMCID: PMC9685177 DOI: 10.3389/fpls.2022.1014282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Phaseolus vulgaris L., known as common bean, is one of the most important grain legumes cultivated around the world for its immature pods and dry seeds, which are rich in protein and micronutrients. Common bean offers a cheap food and protein sources to ameliorate food shortage and malnutrition around the world. However, the genetic basis of most important traits in common bean remains unknown. This study aimed at identifying QTL and candidate gene models underlying twenty-six agronomically important traits in common bean. For this, we assembled and phenotyped a diversity panel of 200 P. vulgaris genotypes in the greenhouse, comprising determinate bushy, determinate climbing and indeterminate climbing beans. The panel included dry beans and snap beans from different breeding programmes, elite lines and landraces from around the world with a major focus on accessions of African, European and South American origin. The panel was genotyped using a cost-conscious targeted genotyping-by-sequencing (GBS) platform to take advantage of highly polymorphic SNPs detected in previous studies and in diverse germplasm. The detected single nucleotide polymorphisms (SNPs) were applied in marker-trait analysis and revealed sixty-two quantitative trait loci (QTL) significantly associated with sixteen traits. Gene model identification via a similarity-based approach implicated major candidate gene models underlying the QTL associated with ten traits including, flowering, yield, seed quality, pod and seed characteristics. Our study revealed six QTL for pod shattering including three new QTL potentially useful for breeding. However, the panel was evaluated in a single greenhouse environment and the findings should be corroborated by evaluations across different field environments. Some of the detected QTL and a number of candidate gene models only elucidate the understanding of the genetic nature of these traits and provide the basis for further studies. Finally, the study showed the possibility of using a limited number of SNPs in performing marker-trait association in common bean by applying a highly scalable targeted GBS approach. This targeted GBS approach is a cost-efficient strategy for assessment of the genetic basis of complex traits and can enable geneticists and breeders to identify novel loci and targets for marker-assisted breeding more efficiently.
Collapse
Affiliation(s)
- Samson Ugwuanyi
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
- Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Nigeria
| | - Obi Sergius Udengwu
- Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Nigeria
| | - Rod J. Snowdon
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | | |
Collapse
|
6
|
Gamela RR, Fontoura BM, Costa VC, Babos DV, Pereira-Filho ER. Matrix-Matching Calibration Using Solid Standards: A Comparison between Univariate and Multivariate Strategies for the Determination of Calcium and Magnesium in Bean Seed Samples Employing Laser-Induced Breakdown Spectroscopy (LIBS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Raimundo R. Gamela
- Faculty of Agriculture, Higher Polytechnic Institute of Gaza, Lionde, Chokwe-Gaza, Mozambique
| | - Beatriz M. Fontoura
- Group for Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo State, Brazil
| | | | - Diego V. Babos
- Embrapa Instrumentation, São Carlos, São Paulo State, Brazil
| | - Edenir R. Pereira-Filho
- Group for Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo State, Brazil
| |
Collapse
|
7
|
Jha UC, Nayyar H, Parida SK, Deshmukh R, von Wettberg EJB, Siddique KHM. Ensuring Global Food Security by Improving Protein Content in Major Grain Legumes Using Breeding and 'Omics' Tools. Int J Mol Sci 2022; 23:7710. [PMID: 35887057 PMCID: PMC9325250 DOI: 10.3390/ijms23147710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Grain legumes are a rich source of dietary protein for millions of people globally and thus a key driver for securing global food security. Legume plant-based 'dietary protein' biofortification is an economic strategy for alleviating the menace of rising malnutrition-related problems and hidden hunger. Malnutrition from protein deficiency is predominant in human populations with an insufficient daily intake of animal protein/dietary protein due to economic limitations, especially in developing countries. Therefore, enhancing grain legume protein content will help eradicate protein-related malnutrition problems in low-income and underprivileged countries. Here, we review the exploitable genetic variability for grain protein content in various major grain legumes for improving the protein content of high-yielding, low-protein genotypes. We highlight classical genetics-based inheritance of protein content in various legumes and discuss advances in molecular marker technology that have enabled us to underpin various quantitative trait loci controlling seed protein content (SPC) in biparental-based mapping populations and genome-wide association studies. We also review the progress of functional genomics in deciphering the underlying candidate gene(s) controlling SPC in various grain legumes and the role of proteomics and metabolomics in shedding light on the accumulation of various novel proteins and metabolites in high-protein legume genotypes. Lastly, we detail the scope of genomic selection, high-throughput phenotyping, emerging genome editing tools, and speed breeding protocols for enhancing SPC in grain legumes to achieve legume-based dietary protein security and thus reduce the global hunger risk.
Collapse
Affiliation(s)
- Uday C. Jha
- ICAR—Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh 160014, India;
| | - Swarup K. Parida
- National Institute of Plant Genome Research, New Delhi 110067, India;
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Punjab 140308, India;
| | | | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
8
|
Popoola JO, Aworunse OS, Ojuederie OB, Adewale BD, Ajani OC, Oyatomi OA, Eruemulor DI, Adegboyega TT, Obembe OO. The Exploitation of Orphan Legumes for Food, Income, and Nutrition Security in Sub-Saharan Africa. FRONTIERS IN PLANT SCIENCE 2022; 13:782140. [PMID: 35665143 PMCID: PMC9156806 DOI: 10.3389/fpls.2022.782140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/19/2022] [Indexed: 05/17/2023]
Abstract
Poverty, food, and nutrition insecurity in sub-Saharan Africa (SSA) have become major concerns in recent times. The effects of climate change, drought, and unpredictable rainfall patterns threaten food production and sustainable agriculture. More so, insurgency, youth restiveness, and politico-economic instability amidst a burgeoning population requiring a sufficient and healthy diet remain front-burner issues in the region. Overdependence on only a few major staple crops is increasingly promoting the near extinction of many crops, especially orphan legumes, which possess immense potentials as protein and nutritional security crops. The major staple crops are declining in yield partly to their inability to adapt to the continuously changing climatic conditions. Remarkably, the orphan legumes are climate-smart crops with enormous agronomic features which foster sustainable livelihood. Research efforts on these crops have not attained a reasonable comparative status with most commercial crops. Though many research organizations and scientists have made efforts to promote the improvement and utilization of these orphan legumes, there is still more to be done. These legumes' vast genetic resources and economic utility are grossly under-exploited, but their values and promising impacts are immeasurable. Given the United Nations sustainable development goals (SDGs) of zero hunger, improved nutrition, health, and sustainable agriculture, the need to introduce these crops into food systems in SSA and other poverty-prone regions of the world is now more compelling than ever. This review unveils inherent values in orphan legumes needing focus for exploitation viz-a-viz cultivation, commercialization, and social acceptance. More so, this article discusses some of the nutraceutical potentials of the orphan legumes, their global adaptability, and modern plant breeding strategies that could be deployed to develop superior phenotypes to enrich the landraces. Advanced omics technologies, speed breeding, as well as the application of genome editing techniques, could significantly enhance the genetic improvement of these useful but underutilized legumes. Efforts made in this regard and the challenges of these approaches were also discussed.
Collapse
Affiliation(s)
- Jacob Olagbenro Popoola
- Department of Biological Sciences, Covenant University, Ota, Nigeria
- *Correspondence: Jacob Olagbenro Popoola, , orcid.org/0000-0001-5302-4856
| | | | - Omena Bernard Ojuederie
- Department of Biological Sciences, Biotechnology Unit, Kings University, Ode-Omu, Nigeria
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Babasola Daniel Adewale
- Department of Crop Science and Horticulture, Federal University Oye-Ekiti, Ikole-Ekiti, Nigeria
| | | | - Olaniyi Ajewole Oyatomi
- Genetic Resources Center, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | - Taofeek Tope Adegboyega
- Biology Unit, Faculty of Science, Air Force Institute of Technology, Nigerian Air Force Base, Rafin Kura, Kaduna, Nigeria
| | - Olawole Odun Obembe
- Department of Biological Sciences, Covenant University, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Department of Biological Sciences, Covenant University, PMB, Ota, Nigeria
- Olawole Odun Obembe, , orcid.org/0000-0001-9050-8198
| |
Collapse
|
9
|
de Carvalho Paulino JF, de Almeida CP, Song Q, Carbonell SAM, Chiorato AF, Benchimol-Reis LL. Genetic diversity and inter-gene pool introgression of Mesoamerican Diversity Panel in common beans. J Appl Genet 2021; 62:585-600. [PMID: 34386968 DOI: 10.1007/s13353-021-00657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Brazil is among the largest producers and consumers of common bean (Phaseolus vulgaris L.) and can be considered a secondary center of diversity for the species. The aim of this study was to estimate the genetic diversity, population structure, and relationships among 288 common bean accessions in an American Diversity Panel (ADP) genotyped with 4,042 high-quality single nucleotide polymorphisms (SNPs). The results showed inter-gene pool hybridization (hybrids) between the two main gene pools (i.e., Mesoamerican and Andean), based on principal component analysis (PCA), discriminant analysis of principal components (DAPC), and STRUCTURE analysis. The genetic diversity parameters showed that the Mesoamerican group has higher values of diversity and allelic richness in comparison with the Andean group. Considering the optimal clusters (K), clustering was performed according to the type of grain (i.e., market group), the institution of origin, the period of release, and agronomic traits. A new subset was selected and named the Mesoamerican Diversity Panel (MDP), with 205 Mesoamerican accessions. Analysis of molecular variance (AMOVA) showed low genetic variance between the two panels (i.e., ADP and MDP) with the highest percentage of the limited variance among accessions in each group. The ADP showed occurrence of high genetic differentiation between populations (i.e., Mesoamerican and Andean) and introgression between gene pools in hybrids based on a set of diagnostic SNPs. The MDP showed better linkage disequilibrium (LD) decay. The availability of genetic variation from inter-gene pool hybridizations presents a potential opportunity for breeders towards the development of superior common bean cultivars.
Collapse
Affiliation(s)
| | - Caléo Panhoca de Almeida
- Common Bean Genetic Group, Natural Center of Plant Genetics, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Qijian Song
- Soybean Genomics and Improvement Lab, USDA-ARS, Beltsville, MD, USA
| | | | | | | |
Collapse
|
10
|
Salvador-Reyes R, Rebellato AP, Lima Pallone JA, Ferrari RA, Clerici MTPS. Kernel characterization and starch morphology in five varieties of Peruvian Andean maize. Food Res Int 2021; 140:110044. [PMID: 33648270 DOI: 10.1016/j.foodres.2020.110044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/20/2023]
Abstract
Peruvian Andean maize (PAM) has been commonly used as an ingredient that confers color, flavor, and texture in culinary. Nevertheless, no studies are focusing on agro-industrial interest characteristics to develop new products. This study aimed to evaluate the physicochemical, nutritional, and technological characteristics of kernels and the starch granule morphology of the five main PAM varieties: Chullpi, Piscorunto, Giant Cuzco, Sacsa, and Purple. PAM's characterization was performed according to the official methods, and its morphology was observed by scanning electron microscopy (SEM). Physically, the varieties of larger kernels (Giant Cuzco and Sacsa) presented a higher 1000-kernel weight and a lower hectoliter weight than those of smaller size (Piscorunto, Purple, and Chullpi). Nutritionally, PAM had higher ether extract (5%) and ash (2%) contents than other pigmented maizes. Likewise, they presented more significant amounts of essential amino acids, as leucine (10 mg/g protein) and tryptophan (up to 2 mg/g protein); unsaturated fatty acids, oleic (30%) and linoleic (53%); and minerals, as magnesium (104 mg/100 g). SEM showed that endosperm structure and starch morphology vary according to maize types and their grain location. Starch granules of floury PAM varieties were small and polyhedral in the sub-aleurone endosperm, whereas those of the central area were bigger and spherical. In Chullpi, it was observed a portion of vitreous endosperm with a compact structure. The low protein content (8.3%) and the endosperm structure of floury varieties of PAM influenced their pasting properties. Their pasting temperature was <69 to 71 °C>, peak viscosity < 3200 to 4400 cP>, and seatback <1250 to 1706 cP>; therefore, they do not retrograde easily. The results suggest that PAM has characteristics that would help elaborate regional products with added value, such as soups, willows, beverages, and porridges.
Collapse
Affiliation(s)
- Rebeca Salvador-Reyes
- Department of Food Tecnology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP: 13083-862 Campinas, São Paulo, Brazil.
| | - Ana Paula Rebellato
- Department of Food Tecnology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP: 13083-862 Campinas, São Paulo, Brazil
| | - Juliana Azevedo Lima Pallone
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP: 13083-862 Campinas, São Paulo, Brazil
| | - Roseli Aparecida Ferrari
- Institute of Food Technology (ITAL), Food Science and Quality Center (CCQA), Campinas, São Paulo, Brazil
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Tecnology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP: 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
11
|
de Lima FRD, Barbosa AP, Vasques ICF, Oliveira JR, Silva AO, Martins GC, Engelhardt MM, Pereira P, Dos Reis RHCL, Guilherme LRG, Marques JJ. Physiological effects of mercury-contaminated Oxisols on common bean and oat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11279-11288. [PMID: 33113065 DOI: 10.1007/s11356-020-11286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/15/2020] [Indexed: 05/04/2023]
Abstract
The heavy metal mercury (Hg) is one of the most complex and toxic pollutants. When present in soils, it may impair plant growth, but the intensity of damage depends on the physical-chemical properties of the soil such as pH, clay, and organic matter content, which in turn affects Hg sorption and bioavailability. Understanding Hg potential damage to staple food crops is of paramount relevance. Here, we evaluated the physiological effects of Hg in Phaseolus vulgaris (common bean) and Avena sativa (oat) cultivated in two Oxisols with contrasting properties: Rhodic Acrudox (RA) and Typic Hapludox (TH). We performed four independent experiments (one per species/soil combination) that lasted 30 days each. Treatments were composed by HgCl2 concentrations in soils (0 to 80 mg kg-1 Hg). At the end of the experiment, we determined the impact of Hg on photosynthesis, nutritional status, and oxidative stress. Cultivation in TH contaminated with Hg resulted in oxidative stress in common bean and decreased photosynthesis/P accumulation in oat. No deleterious effects on physiological variables were detected in both species when cultivated in the RA soil. In general, we conclude that the lower Hg sorption in the TH soil resulted in toxicity-like responses, while acclimation-like responses were observed in plants cultivated in RA, reinforcing soil physical-chemical properties as key features driving Hg toxicity in Oxisols. Graphical abstract.
Collapse
Affiliation(s)
| | - Alice Pita Barbosa
- Center for Coastal, Limnological and Marine Studies, Federal University of Rio Grande do Sul, Imbé, Rio Grande do Sul State, 95625-000, Brazil
| | | | - Jakeline Rosa Oliveira
- Soil Science Department, Federal University of Lavras, Lavras, Minas Gerais State, 37200-900, Brazil
| | - Aline Oliveira Silva
- Soil Science Department, Federal University of Lavras, Lavras, Minas Gerais State, 37200-900, Brazil
| | | | - Mateus Moreira Engelhardt
- Soil Science Department, Federal University of Lavras, Lavras, Minas Gerais State, 37200-900, Brazil
| | - Polyana Pereira
- Soil Science Department, Federal University of Lavras, Lavras, Minas Gerais State, 37200-900, Brazil
| | | | | | - João José Marques
- Soil Science Department, Federal University of Lavras, Lavras, Minas Gerais State, 37200-900, Brazil.
| |
Collapse
|
12
|
Kajiwara V, Moda-Cirino V, Scholz MBDS. The influence of chemical composition diversity in the cooking quality of Andean bean genotypes. Food Chem 2020; 339:127917. [PMID: 32950898 DOI: 10.1016/j.foodchem.2020.127917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
Andean beans (Phaseolus vulgaris) chemical compositions and cooking characteristics contribute to a healthy diet. The objective of this study was to evaluate the influence of chemical composition on the cooking quality of 14 Andean beans genotypes with different seed coat colors. More specifically, water retention (WR), cooking time (CT), and solids released in the broth, were analysed. WR values ranged from 128.4% to 160.7% and CT ranged from 13.7 (BRS Embaixador) to 21.7 min (KID44). Andean beans showed variability in chemical composition, mainly starch content (39.43 g 100 g-1, BRS Realce to 51.92 g 100 g-1, LP15-04) and polymer composition. The profile of starch and interactions among minerals and chemical compounds influenced the cooking profiles than do the individual compounds. Andean beans traits of cooking, mainly CT, were influenced by their chemical composition; however they can be incorporated into diets without drastic changes in preparation methods.
Collapse
Affiliation(s)
- Vania Kajiwara
- Conservationist Agronomy Master, Agronomic Institute of Paraná State, Londrina, Brazil
| | - Vânia Moda-Cirino
- Department of Plant Breeding, Agronomic Institute of Paraná State, Londrina, Brazil
| | | |
Collapse
|
13
|
Zeffa DM, Moda-Cirino V, Medeiros IA, Freiria GH, Neto JDS, Ivamoto-Suzuki ST, Delfini J, Scapim CA, Gonçalves LSA. Genetic Progress of Seed Yield and Nitrogen Use Efficiency of Brazilian carioca Common Bean Cultivars Using Bayesian Approaches. FRONTIERS IN PLANT SCIENCE 2020; 11:1168. [PMID: 32849723 PMCID: PMC7419646 DOI: 10.3389/fpls.2020.01168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 05/17/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is one of the most important crops worldwide and is considered an essential source of proteins, fibers, and minerals in the daily diet of several countries. Nitrogen (N) is considered the most important nutrient for common bean crop. On the other hand, the reduction of chemical fertilizers is a global challenge, and the development of cultivars with more N use efficiency (NUsE) is considered one of the main strategies to reduce the amount of N fertilizers. Genetic progress of NUsE has been reported in several crops; however, there was still no quantity in common bean. In this study, our goal was to analyze the genetic progress of seed yield (SY) and NUsE-related traits of 40 carioca common bean cultivars release from 1970 to 2017 in eight environments under low (zero) or high N (40 kg ha-1) in top-dressing. Genetic progress, principal component analysis, correlations among traits, and cultivar stability were analyzed using Bayesian approaches. The lowest values of the deviance information criterion (DIC) for the full model tested indicated the presence of the genotype × N × environment interaction for all evaluated traits. Nitrogen utilization efficiency (NUtE) and nitrogen uptake efficiency (NUpE) were the traits that most contributed to discriminate cultivars. The genetic progress of SY under high N (0.53% year-1, 95% HPD = 0.39; 0.65% year-1) was similar to that obtained in low N conditions (0.48% year-1, 95% HPD = 0.31; 0.64% year-1). These results indicate that modern cultivars do not demand more N fertilizers to be more productive. In addition, we observed a high genetic variability for NUsE-related traits, but there was no genetic progress for these variables. SY showed negative correlation with seed protein content (Prot) in both N conditions, and there was no reduction in Prot in modern cultivars. Both modern and old cultivars showed adaptability and stability under contrasting N conditions. Our study contributed to improve our knowledge about the genetic progress of common bean breeding program in Brazil in the last 47 years, and our data will help researchers to face the challenge of increase NUsE and Prot in the next few years.
Collapse
Affiliation(s)
- Douglas Mariani Zeffa
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Brazil
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | - Vânia Moda-Cirino
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
| | - Isabella Arruda Medeiros
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Brazil
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | - Gustavo Henrique Freiria
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | - José dos Santos Neto
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
| | - Suzana Tiemi Ivamoto-Suzuki
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | - Jéssica Delfini
- Área de Genética e Melhoramento Vegetal, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Leandro Simões Azeredo Gonçalves
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Brazil
- Laboratório de Ecofisiologia e Biotecnologia Agrícola, Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
14
|
Gamela RR, Costa VC, Sperança MA, Pereira-Filho ER. Laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WDXRF) data fusion to predict the concentration of K, Mg and P in bean seed samples. Food Res Int 2020; 132:109037. [DOI: 10.1016/j.foodres.2020.109037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/23/2022]
|
15
|
DIAS DM, GOMES MJC, MOREIRA MEDC, NATAL D, SILVA RR, NUTTI M, MATTA SLD, SANT’ANA HMP, MARTINO HSD. Staple food crops from Brazilian Biofortification Program have high protein quality and hypoglycemic action in Wistar rats. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.32918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Abstract
The soils in the common bean-producing regions (Phaseolus vulgaris L.) of Brazil are usually acid and conta\y66\yin toxic levels of aluminum (Al) for plants. This ion causes yield losses by inhibiting root cell expansion, thus reducing water and nutrient uptake. This study investigates the optimal Al concentration for the screening of genotypes in hydroponics cultivation and tries to identify cultivars and lines for cultivation in Al-toxic soils. The study consisted of two series of experiments. In the first one, four cultivars were evaluated at five Al concentrations (0, 2.5, 5, 7.5 and 10 ppm) and in the second, four independent tests were carried out (1-carioca, 2-black, 3-red, and 4-white), each with seven genotypes and two Al concentrations (0 and 4 ppm). The optimized concentration of Al in the first stage was 4 ppm, which allowed the early identification of genotypes with less affected development under Al toxicity in the second stage. The common bean cultivars IPR Quero-Quero (carioca group), BRS Esplendor (black group), KID 44 (red group), and WLine 5 (white group) may be indicated for cultivation under Al toxicity.
Collapse
|
17
|
MIRANDA JATD, CARVALHO LMJD, VIEIRA ACDM, CASTRO IMD. Scanning Electron Microscopy and Crystallinity of starches granules from cowpea, black and carioca beans in raw and cooked forms. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.30718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Nta AI, Mofunanya AAJ, Ogar VB, Omara-Achong TE, Amara Azuike P. Comparative Effect of Acanthoscelides obtectus (Say) Infestation on Nutrients of Phaseolus vulgaris (Linn.) and Phaseolus acutifolius (Gray). Pak J Biol Sci 2019; 22:494-501. [PMID: 31930839 DOI: 10.3923/pjbs.2019.494.501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Acanthoscelides obtectus is a destructive post-harvest pest of beans. The destructions caused by this beans weevil are of economic and nutritional importance. This study was carried out to compare the effect of A. obtectus infestation on the nutrients of Phaseolus vulgaris L. and Phaseolus acutifolius G. MATERIALS AND METHODS A mix of infested and non-infested seeds of P. vulgaris and P. acutifolius was purchased from the Watt Market Calabar, Nigeria. The infested seeds were sorted from the non-infested ones into 3 groups (slight (SLI), moderate (MI) and severe (SI)) according to their levels of infestation. The seeds were kept for 3 months, sundried for 1 week, ground separately into powder and analyzed for nutrients using standard methods. RESULTS Results revealed a progressive decrease in some nutrients of P. vulgaris and P. acutifolius and increase in others according to the severity of A. obtectus infestation. Infestation led to significantly (p = 0.05) higher reduction/increase in nutrients of P. vulgaris than P. acutifolius. Effect of A. obtectus infestation on proximate nutrients revealed a reduction in moisture, protein, fat and carbohydrate with an increase in ash content. Percentage reduction in carbohydrate had values of 27.6, 28.1 and 30.5% for infested P. vulgaris at SLI, MI and SI levels compared to values of 10.2, 13.3, 22.2%, respectively for P. acutifolius. Effect of A. obtectus infestation on mineral nutrients showed a decrease in Na, Mg, Fe, Co with an increase in K and Zn for both P. vulgaris and P. acutifolius. In P. vulgaris, the beans weevil engendered reduction in Ca, Cu, Mn but caused an increase in Ca, Cu, Mn and Ni content in P. acutifolius. Reduction/increase in mineral nutrients due to infestation was higher in P. vulgaris compared to P. acutifolius except for Co and Mn which was higher in P. acutifolius. Reduction in Mg was higher for infested P. vulgaris with values of 12.5, 15.4 and 20.8% compared to values of 7.5, 9.8 and12.5%, respectively for P. acutifolius at SLI, MI and SI. Increase in Zn content of infested P. vulgaris had values of 21.4, 37.1 and 41.8% as against values for infested P. acutifolius of 19.6, 23.3 and 23.7%, respectively. Effect of infestation on vitamins depicted higher reduction in vitamin A and B1 with an increase in vitamin E in both species at all levels of infestation. CONCLUSION Comparatively, A. obtectus infestation caused higher significant reduction in some nutrients with an increase in others in infested P. vulgaris when compared to P. acutifolius resulting in nutrients fluctuation.
Collapse
|
19
|
Mallor C, Barberán M, Aibar J. Recovery of a Common Bean Landrace ( Phaseolus vulgaris L.) for Commercial Purposes. FRONTIERS IN PLANT SCIENCE 2018; 9:1440. [PMID: 30410497 PMCID: PMC6209639 DOI: 10.3389/fpls.2018.01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
The "Caparrona" bean is a landrace that was grown largely in Monzón, and for that reason, it is also known by the name of "Caparrona de Monzón." Historical references mention that in the thirties of the last century, Caparrona beans reached a production higher than 200,000 kg. Nevertheless, the increasing modernization of agriculture at the end of the 20th century enhanced its replacement by newer varieties. As a result, only a few local growers continued producing Caparrona beans mainly for family use. However, in recent years, the high demand for local products, grown with environmentally friendly farming techniques, has reawakened interest in this local bean. In order to recover the Caparrona bean crop, a study was conducted with the aim of assessing this landrace, along with all the processes, from collecting seeds to securing the in situ and ex situ conservation. Six bean samples were initially collected from local farmers and the traditional knowledge was also recorded. After the first seed-borne virus test, two samples were rejected because of the positive results for Bean Common Mosaic Virus (BCMV). The four remaining samples were evaluated in a randomized complete block design with three replications at two locations. All through the growth phase of the plants, samples were taken for a virus test. Two samples tested positive for BCMV and were discarded. Between the two healthy seed samples, regarding morphology, chemical composition, and agronomic data, no significant statistical differences were found. Therefore, both samples were selected for commercial production. The seeds obtained from the assays were transferred to a recently created producers' association, which registered a private label to commercialize the Caparrona beans as a gourmet product. Seeds are also available from the Spanish BGHZ-CITA public genebank.
Collapse
Affiliation(s)
- Cristina Mallor
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, IA2 Instituto Agroalimentario de Aragón (CITA – Universidad de Zaragoza), Zaragoza, Spain
| | - Miguel Barberán
- Escuela Politécnica Superior de Huesca, IA2 Instituto Agroalimentario de Aragón (CITA – Universidad de Zaragoza), Zaragoza, Spain
| | - Joaquín Aibar
- Escuela Politécnica Superior de Huesca, IA2 Instituto Agroalimentario de Aragón (CITA – Universidad de Zaragoza), Zaragoza, Spain
| |
Collapse
|