1
|
Singh P, Anand A, Rana S, Kumar A, Goel P, Kumar S, Gouda KC, Singh H. Impact of COVID-19 vaccination: a global perspective. Front Public Health 2024; 11:1272961. [PMID: 38274537 PMCID: PMC10808156 DOI: 10.3389/fpubh.2023.1272961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction The COVID-19 pandemic has caused widespread morbidity, mortality, and socio-economic disruptions worldwide. Vaccination has proven to be a crucial strategy in controlling the spread of the virus and mitigating its impact. Objective The study focuses on assessing the effectiveness of COVID-19 vaccination in reducing the incidence of positive cases, hospitalizations, and ICU admissions. The presented study is focused on the COVID-19 fully vaccinated population by considering the data from the first positive case reported until 20 September 2021. Methods Using data from multiple countries, time series analysis is deployed to investigate the variations in the COVID-19 positivity rates, hospitalization rates, and ICU requirements after successful vaccination campaigns at the country scale. Results Analysis of the COVID-19 positivity rates revealed a substantial decline in countries with high pre-vaccination rates. Within 1-3 months of vaccination campaigns, these rates decreased by 20-44%. However, certain countries experienced an increase in positivity rates with the emergence of the new Delta variant, emphasizing the importance of ongoing monitoring and adaptable vaccination strategies. Similarly, the analysis of hospitalization rates demonstrated a steady decline as vaccination drive rates rose in various countries. Within 90 days of vaccination, several countries achieved hospitalization rates below 200 per million. However, a slight increase in hospitalizations was observed in some countries after 180 days of vaccination, underscoring the need for continued vigilance. Furthermore, the ICU patient rates decreased as vaccination rates increased across most countries. Within 120 days, several countries achieved an ICU patient rate of 20 per million, highlighting the effectiveness of vaccination in preventing severe cases requiring intensive care. Conclusion COVID-19 vaccination has proven to be very much effective in reducing the incidence of cases, hospitalizations, and ICU admissions. However, ongoing surveillance, variant monitoring, and adaptive vaccination strategies are crucial for maximizing the benefits of vaccination and effectively controlling the spread of the virus.
Collapse
Affiliation(s)
- Priya Singh
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Aditya Anand
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Shweta Rana
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Amit Kumar
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| | - Prabudh Goel
- Department of Pediatrics Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sujeet Kumar
- Centre for Proteomics and Drug Discovery, Amity University Maharashtra, Mumbai, India
| | - Krushna Chandra Gouda
- Earth and Engineering Sciences Division, CSIR Fourth Paradigm Institute, Bangalore, India
| | - Harpreet Singh
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
2
|
Li D, Sun C, Zhuang P, Mei X. Revolutionizing SARS-CoV-2 omicron variant detection: Towards faster and more reliable methods. Talanta 2024; 266:124937. [PMID: 37481886 DOI: 10.1016/j.talanta.2023.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The emergence of the highly contagious Omicron variant of SARS-CoV-2 has inflicted significant damage during the ongoing COVID-19 pandemic. This new variant's significant sequence changes and mutations in both proteins and RNA have rendered many existing rapid detection methods ineffective in identifying it accurately. As the world races to control the spread of the virus, researchers are urgently exploring new diagnostic strategies to specifically detect Omicron variants with high accuracy and sensitivity. In response to this challenge, we have compiled a comprehensive overview of the latest reported rapid detection techniques. These techniques include strategies for the simultaneous detection of multiple SARS-CoV-2 variants and methods for selectively distinguishing Omicron variants. By categorizing these diagnostic techniques based on their targets, which encompass protein antigens and nucleic acids, we aim to offer a comprehensive understanding of the utilization of various recognition elements in identifying these targets. We also highlight the advantages and limitations of each approach. Our work is crucial in providing a more nuanced understanding of the challenges and opportunities in detecting Omicron variants and emerging variants.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Cai Sun
- AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang, China
| | - Pengfei Zhuang
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China
| | - Xifan Mei
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
3
|
Zaman N, Parvaiz N, Gul F, Yousaf R, Gul K, Azam SS. Dynamics of water-mediated interaction effects on the stability and transmission of Omicron. Sci Rep 2023; 13:20894. [PMID: 38017052 PMCID: PMC10684572 DOI: 10.1038/s41598-023-48186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
SARS-Cov-2 Omicron variant and its highly transmissible sublineages amidst news of emerging hybrid variants strengthen the evidence of its ability to rapidly spread and evolve giving rise to unprecedented future waves. Owing to the presence of isolated RBD, monomeric and trimeric Cryo-EM structures of spike protein in complex with ACE2 receptor, comparative analysis of Alpha, Beta, Gamma, Delta, and Omicron assist in a rational assessment of their probability to evolve as new or hybrid variants in future. This study proposes the role of hydration forces in mediating Omicron function and dynamics based on a stronger interplay between protein and solvent with each Covid wave. Mutations of multiple hydrophobic residues into hydrophilic residues underwent concerted interactions with water leading to variations in charge distribution in Delta and Omicron during molecular dynamics simulations. Moreover, comparative analysis of interacting moieties characterized a large number of mutations lying at RBD into constrained, homologous and low-affinity groups referred to as mutational drivers inferring that the probability of future mutations relies on their function. Furthermore, the computational findings reveal a significant difference in angular distances among variants of concern due 3 amino acid insertion (EPE) in Omicron variant that not only facilitates tight domain organization but also seems requisite for characterization of mutational processes. The outcome of this work signifies the possible relation between hydration forces, their impact on conformation and binding affinities, and viral fitness that will significantly aid in understanding dynamics of drug targets for Covid-19 countermeasures. The emerging scenario is that hydration forces and hydrophobic interactions are crucial variables to probe in mutational analysis to explore conformational landscape of macromolecules and reveal the molecular origins of protein behaviors.
Collapse
Affiliation(s)
- Naila Zaman
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nousheen Parvaiz
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fouzia Gul
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rimsha Yousaf
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kainat Gul
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
4
|
Zeng Z, Geng X, Wen X, Chen Y, Zhu Y, Dong Z, Hao L, Wang T, Yang J, Zhang R, Zheng K, Sun Z, Zhang Y. Novel receptor, mutation, vaccine, and establishment of coping mode for SARS-CoV-2: current status and future. Front Microbiol 2023; 14:1232453. [PMID: 37645223 PMCID: PMC10461067 DOI: 10.3389/fmicb.2023.1232453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its resultant pneumonia in December 2019, the cumulative number of infected people worldwide has exceeded 670 million, with over 6.8 million deaths. Despite the marketing of multiple series of vaccines and the implementation of strict prevention and control measures in many countries, the spread and prevalence of SARS-CoV-2 have not been completely and effectively controlled. The latest research shows that in addition to angiotensin converting enzyme II (ACE2), dozens of protein molecules, including AXL, can act as host receptors for SARS-CoV-2 infecting human cells, and virus mutation and immune evasion never seem to stop. To sum up, this review summarizes and organizes the latest relevant literature, comprehensively reviews the genome characteristics of SARS-CoV-2 as well as receptor-based pathogenesis (including ACE2 and other new receptors), mutation and immune evasion, vaccine development and other aspects, and proposes a series of prevention and treatment opinions. It is expected to provide a theoretical basis for an in-depth understanding of the pathogenic mechanism of SARS-CoV-2 along with a research basis and new ideas for the diagnosis and classification, of COVID-19-related disease and for drug and vaccine research and development.
Collapse
Affiliation(s)
- Zhaomu Zeng
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital of Central South University, National Regional Medical Center for Nervous System Diseases, Nanchang, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiuchao Geng
- Department of Nursing, School of Medicine, Taizhou University, Taizhou, China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yixi Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zishu Dong
- Department of Zoology, Advanced Research Institute, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Liangchao Hao
- Department of Plastic Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Tingting Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Jifeng Yang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Ruobing Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yuhao Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
5
|
Sipala F, Cavallaro G, Forte G, Satriano C, Giuffrida A, Fraix A, Spadaro A, Petralia S, Bonaccorso C, Fortuna CG, Ronsisvalle S. Different In Silico Approaches Using Heterocyclic Derivatives against the Binding between Different Lineages of SARS-CoV-2 and ACE2. Molecules 2023; 28:molecules28093908. [PMID: 37175318 PMCID: PMC10180195 DOI: 10.3390/molecules28093908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Over the last few years, the study of the SARS-CoV-2 spike protein and its mutations has become essential in understanding how it interacts with human host receptors. Since the crystallized structure of the spike protein bound to the angiotensin-converting enzyme 2 (ACE2) receptor was released (PDB code 6M0J), in silico studies have been performed to understand the interactions between these two proteins. Specifically, in this study, heterocyclic compounds with different chemical characteristics were examined to highlight the possibility of interaction with the spike protein and the disruption of the interaction between ACE2 and the spike protein. Our results showed that these compounds interacted with the spike protein and interposed in the interaction zone with ACE2. Although further studies are needed, this work points to these heterocyclic push-pull compounds as possible agents capable of interacting with the spike protein, with the potential for the inhibition of spike protein-ACE2 binding.
Collapse
Affiliation(s)
- Federica Sipala
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Gianfranco Cavallaro
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Forte
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Cristina Satriano
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Alessandro Giuffrida
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Aurore Fraix
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Angelo Spadaro
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Salvatore Petralia
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Carmela Bonaccorso
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Cosimo Gianluca Fortuna
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
6
|
Chen D, Randhawa GS, Soltysiak MP, de Souza CP, Kari L, Singh SM, Hill KA. Mutational Patterns Observed in SARS-CoV-2 Genomes Sampled From Successive Epochs Delimited by Major Public Health Events in Ontario, Canada: Genomic Surveillance Study. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e42243. [PMID: 38935965 PMCID: PMC11135226 DOI: 10.2196/42243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/29/2024]
Abstract
BACKGROUND The emergence of SARS-CoV-2 variants with mutations associated with increased transmissibility and virulence is a public health concern in Ontario, Canada. Characterizing how the mutational patterns of the SARS-CoV-2 genome have changed over time can shed light on the driving factors, including selection for increased fitness and host immune response, that may contribute to the emergence of novel variants. Moreover, the study of SARS-CoV-2 in the microcosm of Ontario, Canada can reveal how different province-specific public health policies over time may be associated with observed mutational patterns as a model system. OBJECTIVE This study aimed to perform a comprehensive analysis of single base substitution (SBS) types, counts, and genomic locations observed in SARS-CoV-2 genomic sequences sampled in Ontario, Canada. Comparisons of mutational patterns were conducted between sequences sampled during 4 different epochs delimited by major public health events to track the evolution of the SARS-CoV-2 mutational landscape over 2 years. METHODS In total, 24,244 SARS-CoV-2 genomic sequences and associated metadata sampled in Ontario, Canada from January 1, 2020, to December 31, 2021, were retrieved from the Global Initiative on Sharing All Influenza Data database. Sequences were assigned to 4 epochs delimited by major public health events based on the sampling date. SBSs from each SARS-CoV-2 sequence were identified relative to the MN996528.1 reference genome. Catalogues of SBS types and counts were generated to estimate the impact of selection in each open reading frame, and identify mutation clusters. The estimation of mutational fitness over time was performed using the Augur pipeline. RESULTS The biases in SBS types and proportions observed support previous reports of host antiviral defense activity involving the SARS-CoV-2 genome. There was an increase in U>C substitutions associated with adenosine deaminase acting on RNA (ADAR) activity uniquely observed during Epoch 4. The burden of novel SBSs observed in SARS-CoV-2 genomic sequences was the greatest in Epoch 2 (median 5), followed by Epoch 3 (median 4). Clusters of SBSs were observed in the spike protein open reading frame, ORF1a, and ORF3a. The high proportion of nonsynonymous SBSs and increasing dN/dS metric (ratio of nonsynonymous to synonymous mutations in a given open reading frame) to above 1 in Epoch 4 indicate positive selection of the spike protein open reading frame. CONCLUSIONS Quantitative analysis of the mutational patterns of the SARS-CoV-2 genome in the microcosm of Ontario, Canada within early consecutive epochs of the pandemic tracked the mutational dynamics in the context of public health events that instigate significant shifts in selection and mutagenesis. Continued genomic surveillance of emergent variants will be useful for the design of public health policies in response to the evolving COVID-19 pandemic.
Collapse
Affiliation(s)
- David Chen
- Department of Biology, Western University, London, ON, Canada
| | - Gurjit S Randhawa
- School of Mathematical and Computational Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
| | | | - Camila Pe de Souza
- Department of Statistical and Actuarial Sciences, Western University, London, ON, Canada
| | - Lila Kari
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| | - Shiva M Singh
- Department of Biology, Western University, London, ON, Canada
| | - Kathleen A Hill
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|